
LECTURE 3: SMOOTH FUNCTIONS; PARTITION OF UNITY

1. Smooth Functions

¶ Smooth functions on manifolds.

Definition 1.1. Let (M,A) be a smooth manifold, and f : M → R a function.
(1) We say f is smooth at p ∈ M if there exists a chart (ϕα, Uα, Vα) ∈ A with

p ∈ Uα, such that the function f ◦ ϕ−1α : Vα → R is smooth at ϕα(p).
(2) We say f is a smooth function on M if it is smooth at every x ∈M .

Remark. Suppose f ◦ ϕ−1α is smooth at ϕ(p). Let (ϕβ, Uβ, Vβ) be another chart in A
with p ∈ Uβ. Then by the compatibility of charts, the function

f ◦ ϕ−1β = (f ◦ ϕ−1α ) ◦ (ϕα ◦ ϕ−1β )

must be smooth at ϕβ(p). So the smoothness of a function is independent of the choice
of charts in the given atlas.

Remark. According to the chain rule, it is easy to see that if f : M → R is smooth at
p ∈M , and h : R→ R is smooth at f(p), then h ◦ f is smooth at p.

Example. Each coordinate function fi(x
1, · · · , xn+1) = xi is smooth on Sn since

fi ◦ ϕ−1± (y1, · · · , yn) =

{
2yi

1+|y|2 , 1 ≤ i ≤ n

±1−|y|2
1+|y|2 , i = n+ 1

are smooth functions on Rn. Similarly the latitude is a smooth function on S2, since it
can be written as the composition of the “height function” x3 with a smooth function.
However, the longitude is not even a well-defined real-valued function on S2.

We will denote the set of all smooth functions on M by C∞(M). Note that this is a
(commutative) algebra, i.e. it is a vector space equipped with a (commutative) bilinear
“multiplication operation”: If f, g are smooth, so are af + bg and fg; moreover, the
multiplication is commutative, associative and satisfies the usual distributive laws.

Now suppose f ∈ C∞(M). As usual, the support of f is by definition the set

supp(f) = {p ∈M | f(p) 6= 0}.
We say that f is compactly supported, denoted by f ∈ C∞0 (M), if the support of f is a
compact subset in M . Obviously

• if f, g ∈ C∞0 (M), then af + bg ∈ C∞0 (M).
• if f ∈ C∞0 (M) and g ∈ C∞(M), then fg ∈ C∞0 (M).

So C∞0 (M) is an ideal of of the algebra C∞(M). Note that if M is compact, then any
smooth function is compactly supported.
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¶ Bump functions.

A bump function (sometimes also called a test function) is a compactly supported
smooth function, which is usually supposed to be non-negative, no more than 1, and
equals to 1 on a given compact set (or has total integral 1 on a given set).

Example (A bump function on Rn). In what follows we first define two auxiliary func-
tions f1 and f2 on R. Then we define a bump function f3 on Rn. We list the definition of
fk in the left, and list the properties of fk in the right. The smoothness and properties
of fk follows from those of fk−1 (so you should check f1 is a smooth function):

f1(x) =

{
e−1/x, x > 0
0, x ≤ 0

=⇒ f1(x) =

{
∈ (0, 1), x > 0,
0, x ≤ 0,

f2(x) =
f1(x)

f1(x) + f1(1− x)
=⇒ f2(x) =

 0, x ≤ 0,
∈ (0, 1), 0 < x < 1,
1, x ≥ 1

f3(x) = f2(2− |x|) =⇒ f3(x) =

 0, |x| ≥ 2,
∈ (0, 1), 1 < |x| < 2,
1, |x| ≤ 1.

The graphs of f1, f2 and f3 (with n = 1) are shown below:

With the help of this Euclidean bump function, we can construct bump functions
on any smooth manifold with prescribed support and prescribed “equal to one region”:

Theorem 1.2. Let M be a smooth manifold, A ⊂M is a compact subset, and U ⊂M
an open subset that contains A. Then there is a bump function ϕ ∈ C∞0 (M) so that
0 ≤ ϕ ≤ 1, ϕ ≡ 1 on A and supp(ϕ) ⊂ U .

Proof. [The idea of the proof: Cover the compact set A by finitely many small pieces,
where each piece is contained in one (carefully chosen) chart, so that one can copy the
“Euclidean bump function” that we constructed above to such pieces.]

For each q ∈ A, there is a chart (ϕq, Uq, Vq) near q so that Uq ⊂ U and Vq contains
the open ball B3(0) of radius 3 centered at 0 in Rn. (Question: Why one can find such

a chart which is compatible with given charts?) Let Ũq = ϕ−1q (B1(0)), and let

fq(p) =

{
f3(ϕq(p)), p ∈ Uq,
0, p /∈ Uq.

Then fq ∈ C∞0 (M), supp(fq) ⊂ Up and fq ≡ 1 on Ũq. (Question: which assumption on
manifold do we need here?)
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Now the family of open sets {Ũq}q∈A is an open cover of A. Since A is compact,

there is a finite sub-cover {Ũq1 , · · · , ŨqN}. Let ψ =
∑N

i=1 fqi . Then ψ is a compactly
supported smooth function on M so that ψ ≥ 1 on A and supp(ψ) ⊂ U . It follows
that the function ϕ(p) = f2(ψ(p)) satisfies all the conditions we want. �

Here is what such a bump function will look like:

As a simple consequence, we see that the vector space C∞0 (M) (and thus C∞(M))
is infinitely dimensional (assuming dimM > 0).

2. Partition of unity

¶ Partition of unity.

So for any compact subset K ⊂ M , one can always cover it by finitely many nice
neighborhoods on which we can construct nice “local” functions. By adding these
(finitely many) local functions, we can get nice global functions on M that behaves
nicely on K. It turns out that the same idea applies to the whole manifold M : we can
generate an infinite collection of smooth functions on M , and add them to get a global
smooth function, provided that near each point, there are only finitely many nonzero
functions in our collection. More importantly, we can use such a collection of functions
to “glue” geometric/analytic objects that can be defined locally using charts.

Definition 2.1. Let M be a smooth manifold, and {Uα} an open cover of M . A (s-
mooth) partition of unity (P.O.U. in brief)1 subordinate to the cover {Uα} is a collection
of smooth functions {ρα} defined on the whole manifold M so that

(1) 0 ≤ ρα ≤ 1 for all α.
(2) supp(ρα) ⊂ Uα for all α.
(3) each p ∈M has a neighborhood which intersects only finitely many supp(ρα)’s.
(4)

∑
α ρα(p) = 1 for all p ∈M .

Remark. Two consequences of the local finiteness condition (3): Let’s denote by Wp a
neighborhood of p which intersect only finitely many supp(ρα)’s. Then

1In this course, when we talk about P.O.U., we always mean smooth partition of unity. See my
general topology course notes for a theory of continuous partition of unity for paracompact spaces.
Recall that a topological space X is paracompact if every open covering admits a locally finite open
refinement. It is not hard to show each topological manifold is paracompact.
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• Since {Wp}p∈M is an open cover of M , and since M is second countable, one
can find countably many Wpi ’s which also cover M . Since each Wpi intersect
only finitely many supp(ρα)’s, we conclude that there are only countable many
ρα’s whose support are non-empty. So even if we may start with uncountably
many open sets, the P.O.U. automatically “delete” most of them so that only
countably many of them are left (which still form an open cover of M).
• For each p, on the open set Wp, a sum like (4) [which looks like an uncountable

sum, or maybe a countable infinite sum in view of the previous paragraph] is
in fact a finite sum. This fact is CRUCIAL in applications.

The main result in this section is to prove

Theorem 2.2 (The existence of P.O.U.). Let M be a smooth manifold, and {Uα} an
open cover of M . Then there exists a P.O.U. subordinate to {Uα}.

Locally each manifold looks like Rn, so that one have rich mathematics on it.
P.O.U. is the tool that can “glue” local smooth objects into a global smooth object.
We will see many such examples in the future. For example, we will

• approximate continuous functions/maps via smooth functions/maps.
• define integrals of differential forms in local charts, and use P.O.U. to define

the integral of a differential form on the whole manifold.
• (in future course) construct Riemannian metric, linear connection etc.

As an immediate application of P.O.U., we generalize Theorem 1.2 to closed subsets:

Corollary 2.3. Let M be a smooth manifold, A ⊂ M is a closed subset, and U ⊂ M
an open subset that contains A. Then there is a “bump” function ϕ ∈ C∞(M) so that
0 ≤ ϕ ≤ 1, ϕ ≡ 1 on A and supp(ϕ) ⊂ U .

Proof. Obviously {U,M \ A} is an open covering of M . Let {ρ1, ρ2} be a P.O.U.
subordinate to this open covering. Then the function ϕ = ρ1 is what we need: ρ1 is
smooth, 0 ≤ ρ1 ≤ 1, supp(ρ1) ⊂ U , and finally ρ1 = 1 on A since ρ2 = 0 on A. �

Note that this implies a smooth version of Urysohn’s lemma [See today’s PSet].

¶ Existence of P.O.U.: The proof.

The proof relies on the following technical lemma from general topology.

Lemma 2.4. For any open covering U = {Uα} of a topological manifold M , one can
find two countable family of open covers V = {Vj} and W = {Wj} of M so that

• For each j, V j is compact and V j ⊂ Wj.
• W is a refinement of U : For each j, there is an α = α(j) so that Wj ⊂ Uα.
• W is locally finite: Any p ∈ M has a neighborhood W such that W ∩Wj 6= ∅

for only finitely many Wj’s.

We will first prove Theorem 2.2 and postpone the proof Lemma 2.4 as an appendix.
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Proof of Theorem 2.2. [Please compare the first paragraph of this proof with the proof
of Theorem 1.2.] Since V j is compact and V j ⊂ Wj, according to Theorem 1.2 we can
find nonnegative functions ϕj ∈ C∞0 (M) so that

0 ≤ ϕj ≤ 1, ϕj ≡ 1 on V j, supp(ϕj) ⊂ Wj.

Since W is a locally finite covering, the function

ϕ =
∑
j

ϕj

is a well-defined smooth function on M . Since each ϕj is nonnegative, and V is a
covering of M , ϕ is strictly positive on M . It follows that the functions

ψj =
ϕj
ϕ

are smooth and satisfy 0 ≤ ψj ≤ 1 and
∑

j ψj = 1.

Next let’s re-index the family {ψj} to get the demanded P.O.U. subordinate to
{Uα}. For each j, we fix an index α(j) so that Wj ⊂ Uα(j), and define

ρα =
∑
α(j)=α

ψj.

Note that the right hand side is a finite sum near each point, so it does define a smooth
function. By local finiteness of W ,

suppρα =
⋃

α(j)=α

suppψj =
⋃

α(j)=α

suppψj =
⋃

α(j)=α

suppψj ⊂ Uα.

Clearly the family {ρα} is a P.O.U. subordinate to {Uα}. �

¶ Appendix: The proof of Lemma 2.4.

It remains to prove Lemma 2.4. In particular, we want to prove the existence of
locally finite open refinement. The proof is quite geometric. First we prove

Lemma 2.5. For any topological manifold M , there exists a countable collection of
open sets {Xi} so that [Such a collection of subsets is called an exhaustion of M ]

(1) For each j, the closure Xj is compact.
(2) For each j, Xj ⊂ Xj+1.
(3) M = ∪jXj.

Proof. Since M is second countable, there is a countable basis of the topology of M .
Out of this countable collection of open sets, we pick those that have compact closures,
and denote them by Y1, Y2, · · · . Since M is locally Euclidean, it is easy to see that
Y = {Yj} is an open cover of M .
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We let X1 = Y1. Since Y is an open cover of X1 which is compact, there exist
finitely many open sets Yi1 , · · · , Yik so that

X1 ⊂ Yi1 ∪ · · · ∪ Yik .
Let

X2 = Y2 ∪ Yi1 ∪ · · · ∪ Yik .
Obviously X2 is compact. By repeating this procedure we get a sequence of open sets
X1, X2, X3, · · · which satisfies (1) and (2). It satisfies (3) since Xk ⊃ ∪kj=1Yj �

Proof of Lemma 2.4. For each p ∈M , there is an j and an α(p) so that p ∈ Xj+1 \Xj

and p ∈ Uα(p). Since M is locally Euclidean, one can choose open neighborhoods Vp,Wp

of p so that V p is compact and

V p ⊂ Wp ⊂ Uα(p) ∩ (Xj+2 \Xj−1).

Now for each j, since the “stripe” Xj+1 \ Xj is compact, one can choose finitely

many points pj1, · · · , p
j
kj

so that Vpj1
, · · · , Vpjkj

is an open cover of Xj+1 \Xj. Denote all

these Vpjk
’s by V1, V2, · · · , and the corresponding Wpjk

’s by W1,W2, · · · . Then V = {Vk}
and W = {Wk} are open covers of M that satisfies all the conditions in Lemma 2.4.
For example, the local finiteness property ofW follows from the fact that there are only
finitely many Wk’s (that correspond to j and j − 1 above) intersect Xj+1 \Xj−1. �

We end this section with the following question:

Where did we use the Hausdorff condition in proving P.O.U.?


