
LECTURE 11: APPROXIMATIONS AND DEFORMATIONS

1. Whitney Approximation Theorems

¶ Approximation of functions.

We begin with the following application of P.O.U.: [In the special case when M is
compact, this also follows from the Stone-Weierstrass approximation theorem.]

Theorem 1.1 (Whitney approximation theorem for continuous functions).
Let M be a smooth manifold. Then for any continuous function g : M → R and any
positive continuous function δ : M → R>0, there exists a smooth function f : M → R
so that |f(p)− g(p)| < δ(p) holds for all p ∈M .

We will prove a stronger version of this theorem. We need a definition:

Definition 1.2. We say a function g : M → R is smooth on a subset A ⊂ M if there
exists an open set U ⊃ A and a smooth function g0 defined on U s.t. g0 = g on A.

As a consequence, any function g is smooth on any single point set {p}, although
it may fail to be smooth at p. Now we state the relative version of Theorem 1.1:

Theorem 1.3 (Whitney approximation theorem for functions, relative version).
Let M be a smooth manifold, and A ⊂ M a closed subset. Then for any continuous
function g : M → R which is smooth on A and any positive continuous function
δ : M → R>0, there exists a smooth function f : M → R with f = g on A, so that
|f(p)− g(p)| < δ(p) holds for all p ∈M .

Proof. [The idea of the proof: For each p one can find a tiny small open set Up con-
taining p so that g is “almost constant” on Up. Then on Up one can approximate g by
the constant function f(·) ≡ g(p) (on Up). Then “glue” all these constant functions
together via a P.O.U. ρp subordinate to the open cover {Up}.] By definition, there
exists an open set U ⊃ A and a smooth function g0 defined on U so that g0 = g on A.
Let U0 = {p ∈ U : |g0(p)− g(p)| < δ(p)}. Then U0 is open in M and U0 ⊃ A.

Next we construct a (nice) open cover of M \A. For any q ∈M \A, we let

Uq = {p ∈M \A : |g(p)− g(q)| < δ(p)}.

Then {Uq | q ∈M\A} is an open covering of M\A. Since the topology on M is second
countable, one can find countable many such Uqi , i = 1, 2, · · · , which cover M \A.

Now let {ρ0, ρi} be P.O.U. subordinate to the open cover {U0, Uqi : i = 1, 2, · · · } of
M , and define a smooth function on M via

f(p) = ρ0(p)g0(p) +
∑
i≥1

ρi(p)g(qi).
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Since the summation is locally finite, f is smooth. Also by definition, f = g0 = g on
A. Moreover, for any q ∈M one has

|f(p)− g(p)| =
∣∣∣∣ρ0(p)g0(p) +

∑
i≥1

ρi(p)g(qi)−
∑
i≥0

ρi(p)g(p)

∣∣∣∣
≤ ρ0(p)|g0(p)− g(p)|+

∑
i≥1

ρi(p)|g(qi)− g(p)|

< ρ0(p)δ(p) +
∑
i≥1

ρi(p)δ(p)

= δ(p),

where in the last inequality, the fact ρ0(p)|g0(p) − g(p)| < ρ0(p)δ(p) follows from the
facts that if p ∈ U0, then by definition |g0(p) − g(p)| < δ(p), while if p 6∈ U0, then
ρ0(p)=0; the fact ρi(p)|gi(q) − g(p)| < ρi(p)δ(p) follows from a similar argument on
whether p is in Uqi or not (and note that at least one of the inequality holds). �

By working on each component, it is obvious that the same conclusion holds for
any RK-valued maps:

Theorem 1.4 (Whitney approximation theorem for RK-valued maps, relative version).
Let M be a smooth manifold, and A ⊂M a closed subset. Then for any continuous map
g : M → RK which is smooth on A and any positive continuous function δ : M → R>0,
there exists a smooth map f : M → RK with f = g on A, so that |f(p)− g(p)| < δ(p)
holds for all p ∈M .

Remark. (1) By taking A = ∅ we see that Theorem 1.3 implies Theorem 1.1.

(2) Theorem 1.3 also implies a smooth version of Tietze extension theorem:

[Smooth Extension] Any smooth function on a closed subset A can
be extended to a smooth function on the whole manifold M .

Note that our definition “smooth on a closed subset” is quite strong. There is an
extension theorem under much weaker assumption, also due to Whitney:

Theorem 1.5 (Whitney extension theorem). Let A ⊂ Rn be a closes
subset, and {fα}|α|≤m is a collection of functions defined on A which are
compatible in the following sense:

fα(x) =
∑

|β|≤m−|α|

fα+β(y)

β!
(x− y)β + o(|x− y|m−|α|).

Then there exists f ∈ Cm(Rn) so that
(1) For all |α| ≤ m, ∂αf = fα on A
(2) f is real-analytic on Ac = Rn \ A.

¶ Approximate continuous maps by smooth maps [in homotopy class].

Now let M,N be smooth manifolds and let g : M → N be a continuous map. A
natural question to ask is: Can we “approximate” g by a smooth map f : M → N?
Of course there is one issue in proposing the above question:
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What do we mean by “approximate g ∈ C0(M,N) by f ∈ C∞(M,N)”?

Usually there are two different meanings:

• Endow with N a metric d [e.g. by embedding N into Euclidean space so that it
admits an induced metric], so that C0(M,N) is a metric space (endowed with
the uniform metric du)
• f can be obtained by “deforming” the map g.

In what follows we will mainly work on the second meaning (however, we will see the
use of the first meaning in the proof). We will not work directly on the first meaning,
since the approximation depends heavily on the extra structure: the metric or the
embedding. (For example, for any ε > 0, we can embed Nn into an ε-ball in R2n+1,
so that any smooth map f ∈ C∞(M,N) is a ε-approximation of any continuous map
g ∈ C0(M,N), which is not what we want.)

Recall from topology that “continuous deformations” are equivalent to “homo-
topies” [For details, see my topology (H) notes. Note that manifolds are always locally
compact Hausdorff]. Recall that two maps f0, f1 ∈ C0(X, Y ) are homotopic if there
exists F ∈ C0(X × [0, 1], Y ) so that

F (·, 0) = f0(·) and F (·, 1) = f1(·).

Now we prove the Whitney Approximation Theorem for continuous maps, which claims
that any continuous map between smooth manifolds can be continuously deformed to
a smooth map:

Theorem 1.6 (Whitney Approximation Theorem for Continuous Maps).
Given any continuous mapping g ∈ C0(M,N), one can find a smooth mapping f ∈
C∞(M,N) which is homotopic to g. Moreover, if g is smooth on a closed subset A ⊂M ,
then one can choose f so that f = g on A.

Proof. We embed N into RK . By the ε-neighborhood theorem we proved last time,
there is a continuous function ε : N → R>0 so that each y ∈ N ε possesses a unique
closest point πε(y) ∈ N .

Think of g as a continuous function from M to RK and apply Theorem 1.4 to the
positive continuous function ε = ε ◦ g, we get a smooth map f̃ : M → RK which is
ε-close to g, i.e.

|f̃(x)− g(x)| < ε(g(x)), ∀x ∈M.

So f̃(x) ∈ B(g(x), ε(g(x))) ⊂ N ε. It follows that

(1− t)g(x) + tf̃(x) ∈ B(g(x), ε(g(x))) ⊂ N ε, ∀ 0 ≤ t ≤ 1.

Now define F : M × [0, 1]→ N by

F (x, t) = πε((1− t)g(x) + tf̃(x)).

Then F is a homotopy that connects the continuous map g to the smooth map

f = F (·, 1) = πε ◦ f̃ : M → N.
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Finally note that if g is smooth on a closed subset A, then the smooth function
f̃ can be chosen so that f̃ = g on A. It follows that f = g = F (·, t) on A. (In other
words, the homotopy connecting g to f can be chosen to be relative to A.) �

Remark. If M,N are real analytic manifolds, then one can approximate continuous
maps by analytic maps.

As an immediate consequence, we prove

Corollary 1.7. The homotopy group πk(S
n) ' {0} if k < n.

Proof. Any continuous map f : Sk → Sn is homotopic to a smooth map f̃ : Sk → Sn.
Since k < n, by Sard’s theorem, f̃(Sk) is of measure zero in Sn. In particular, f̃ is not
surjective, and thus is null-homotopic (why?). �

2. Smooth deformation of smooth maps

¶ Smooth homotopy.

Since in this course, we are mainly interested in smooth objects (smooth manifolds,
smooth submanifolds, smooth functions, smooth maps, smooth vector fields, smooth
vector bundle, smooth differential form etc), we are interested in homotopies connecting
two smooth maps via “smooth path”, i.e.

Definition 2.1. We say f0, f1 ∈ C∞(M,N) are smoothly homotopic if there exists
F ∈ C∞(M × [0, 1], N) so that

F (·, 0) = f0 and F (·, 1) = f1.

Of course if f0 and f1 are smoothly homotopic, then they are homotopic. Con-
versely, we have

Theorem 2.2 (Homotopy ≡ Smooth homotopy).
Suppose f0, f1 ∈ C∞(M,N) are homotopic, then they are smoothly homotopic.

Proof. Let F : M × [0, 1] → N be a homotopy connecting f0 and f1. Continuously

extend F to a mapping F̃ : M × R→ N by defining

F̃ (x, t) = F (x, 0) if t ≤ 0, and F̃ (x, t) = F (x, 1) if t ≥ 1.

Then F̃ is a continuous map from M×R to N , and is smooth on closed subsets M×{0}
and M × {1}. (Note that by Definition 1.2, F̃ is smooth on M × {0} means there is a

smooth function G̃ defined on M × (−ε, ε) so that G̃(x, 0) = F̃ (x, 0). We don’t require

F̃ to be smooth in a neighborhood of M × {0}.) So by Theorem 1.6, there exists a

smooth map F : M × R → N (that is homotopic to F̃ , which we don’t need here),

such that F = F̃ on M × {0} and M × {1}, i.e.

F (·, 0) = f0 and F (·, 1) = f1.

It follows that F is the desired smooth homotopy connecting f0 and f1. �
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Recall that homotopy is an equivalence relation on the space of continuous maps
from M to N . The equivalence classes are called homotopy classes of maps. The-
orem 2.2 implies that smooth homotopy is an equivalence relation on the space of
smooth maps from M to N . Moreover, combining Theorem 1.6 and Theorem 2.2,
we immediately see that homotopy classes of continuous maps coincides with the s-
mooth homotopy classes of smooth maps. But in general the smooth theory is easier
to compute, since we have a power weapon: the differentiation.

¶ Stable properties.

In many applications, it is important that certain properties of maps will remain
unchanged under a small deformation.

Definition 2.3. We say a property P concerning maps in C∞(M,N) is a stable property
if it is preserved under small deformation, namely, if f ∈ C∞(M,N) satisfies P and
F is a smooth homotopy with F (x, 0) = f , then there exists ε > 0 so that for each
0 < t < ε, the map ft(·) = F (·, t) satisfies the property P .

Theorem 2.4. Suppose M is compact. Then the following properties of maps in
C∞(M,N) are stable:

(1) immersion,
(2) submersion,
(3) embedding,
(4) local diffeomorphism,
(5) diffeomorphism.

Proof. (1) Let f : M → N be an immersion. Then for any p ∈ M , there is a m ×m
sub-matrix of dfp which is non-singular. By continuity, there exists an open set Up 3 p
and [0, εp) so that the corresponding m×m sub-matrix of (dft)q is non-singular for all
(q, t) ∈ Up × [0, εp). (Strictly speaking, here we are working inside a coordinate chart
U around p so that f(U) is contained in a coordinate chart around f(p).) Now the
set
⋃
p Up × [0, εp) is an open neighborhood of M × {0} inside M × [0, 1]. By the tube

lemma in general topology, there exists ε > 0 so that

M × [0, ε) ⊂
⋃
p

Up × [0, εp).

As a consequence, for any t < ε, (dft)p is injective for all p ∈M , i.e. ft : M → N is an
immersion.

(2) The proof is almost the same as (1).

(3) Recall that a map from a compact manifold is an embedding if and only if it
is an injective immersion. In view of (1), we only need to show: there exists ε > 0 so
that for each 0 < t < ε, the map ft is injective. (The proof is just a modification of the
proof to GIFT (compact case) that we did last time.) Suppose we can find ti → 0 and
xi, x

′
i with fti(xi) = fti(yi). By compactness, after passing to subsequences we may

assume xi → x0 and x′i → x′0. Then x0 = x′0 since

f(x0) = F (x0, 0) = lim
i→∞

F (xi, t0) = lim
i→∞

F (x′i, t0) = F (x′0, 0) = f(x′0).
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This will give us the desired contradiction, since the (m+ 1)× (n+ 1) matrix

dG(x0,0) =

(
dfx0 ∗

0 1

)
has rank m+1, which implies that G is an immersion at (x0, 0), and thus by the canon-
ical immersion theorem, G is an immersion (and thus is injective) in a neighborhood
of (x0, 0).

(4) This is a consequence of (1): A local diffeomorphism is merely an immersion
between manifolds of the same dimension.

(5) Let f : M → N be a diffeomorphism. Then f maps each connected component
of M diffeomorphically to a connected component of N , and F maps a connected
component of M into the corresponding connected component of N . So without loss
of generality, we may assume M is connected.

Since a diffeomorphism is automatically an embedding, a submersion and a local
diffeomorphism. By (2), (3) and (4), there exists ε > 0 os that for each 0 < t < ε,
the map ft is an embedding (and thus is injective), an submersion and is a local
diffeomorphism. Also recall that in PSet 2-2-1, we showed that any submersion from a
compact manifold to a connected manifold is surjective. So each ft is a diffeomorphism
for 0 < t < ε. �

Remark. However, being “constant rank” is not a stable property. (why?)

Remark. The properties listed in Theorem 2.4 fails to be stable if M is non-compact.
See PSet for a counterexample.


