
LECTURE 16: DISTRIBUTIONS AND FOLIATIONS

1. Distributions

¶ Distributions.

Suppose M is an n-dimensional smooth manifold. We have seen that any smooth vector
field X on M can be integrated locally near any point p to an integral curve γp. Moreover,

• If Xp = 0, then γp is the constant curve γp(t) ≡ p. (0-dimensional points)
• If Xp 6= 0, then γp is a 1-dimensional curve passing p. (1-dimensional curves)

In what follows we will develop a higher dimensional analogue to the “vector field! integral
curve” correspondence. We first generalize the conception of vector field.

Definition 1.1. Let M be a smooth manifold.

(1) A k-dimensional distribution V on M is a map which assigns to every point p ∈ M
a k-dimensional vector subspace Vp of TpM .

(2) A distribution V is called smooth if for every p ∈ M , there is a neighborhood
U of p and k smooth vector fields X1, · · · , Xk on U such that for every q ∈ U ,
{X1(q), · · · , Xk(q)} form a basis of Vq. (In particular, Xi(q) 6= 0 for all 1 ≤ i ≤ k.)

(3) We say a vector field X belongs to a distribution V if Xp ∈ Vp for all p ∈M .

In what follows, all distributions will be smooth.

We also generalize the conception of integral curves:

Definition 1.2. Suppose V is a k-dimensional smooth distribution on M .

(1) An immersed submanifold ι : N ↪→M is called an integral manifold for V if for every
p ∈ N , the image of dιN : TpN → TpM is Vp.

(2) We say the distribution V is integrable if through each point of M there exists an
integral manifold of V .
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2 LECTURE 16: DISTRIBUTIONS AND FOLIATIONS

¶ Examples of integrable and non-integrable distributions.

Example. The vector fields ∂
∂x1
, · · · , ∂

∂xk
span a k-dimensional distribution V in Rn. The

integral manifolds of V are “hyperplanes” defined by the system of equations

xi = ci (k + 1 ≤ i ≤ n).

We will see below (Theorem 2.2, the local Frobenius theorem) that locally any integrable
distribution can be written as this form.

Example. An integral manifold need not to be an embedded submanifold of M . For example,
consider M = S1 × S1 ⊂ R2

x × R2
y. Fix any irrational number a, the integral manifolds of

the non-vanishing vector field

Xa = (x2
∂

∂x1
− x1 ∂

∂x2
) + a(y2

∂

∂y1
− y1 ∂

∂y2
)

are “dense curves” in M . (However, they are immersed submanifolds.)

Example. Any non-vanishing vector field X is a 1-dimensional distribution. It is always
integrable: the image of any integral curve of X is an integral manifold.

It turns out that a higher dimensional distribution may fail to be integrable.

Example. Consider the smooth distribution V on R3 spanned by two vector fields

X1 =
∂

∂x1
+ x2

∂

∂x3
, X2 =

∂

∂x2
.

I claim that there is no integral manifold through the origin. In fact, if V is integrable,
then the integrable manifold N of V containing the origin must also contain the integrable
curve of X1 passing the origin (for a reason, see Corollary 2.3 below), which is a piece of the
x1-axis, i.e.

N ⊃ {(t, 0, 0) | |t| < ε}.
Similarly N must also contain the integral curves of the vector field X2 passing all these
points (t, 0, 0). It follows that for each |t| < ε, N contains a small piece of line segment
parallel to the x2-axis, i.e.

N ⊃ {(t, s, 0) | |t| < ε, |s| < δt.}

In other words, N contains a piece of the x1-x2 plane that contains the origin. This is a
contradiction, because the vector ∂

∂x1
is a tangent vectors of this piece of plane but is not in

Vp for any p 6= (t, 0, 0).

¶ Frobenius condition and involutive distributions.

Since not all distributions are integrable, we are interested in the conditions to make a
distribution integrable. A necessary condition is easy to find. Intuitively, if two vector fields
of M are tangent to a submanifold N of M , then their Lie bracket should also tangent to
N . Motivated by this fact, we have
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Theorem 1.3. If a distribution V is integrable, then for any two vector fields X and Y
belonging to V, their Lie bracket [X, Y ] belongs to V also.

Proof. Fix any p ∈M , suppose ι : N ↪→M is an integrable manifold of V passing p. Since N
is an immersed submanifold of M , one can “shrink” N so that ι(N) is in fact an embedded
submanifold of M . Now suppose X, Y are vector fields belonging to V , then the restrictions
X|N , Y |N of X, Y to N are vector fields that are tangent to the submanifold N . More

precisely, there exists X̃, Ỹ ∈ Γ∞(TN) such that

Xp = dιp(X̃p) and Yp = dιp(Ỹp), ∀p ∈ N = ι(N).

It follows from today’s PSet (PSet 5-1-3-a-ii)) that for any p ∈ N ,

[X, Y ]Mp = dιp([X̃, Ỹ ]Np ) ∈ Vp.

So [X, Y ] belongs to V also. �

Definition 1.4. A distribution V is involutive if it satisfies the following Frobenius condition:

Frobenius condition: If X, Y ∈ Γ∞(TM) belong to V , so is [X, Y ].

Example. Any 1 dimensional distribution is involutive since

[fX, gX] = (fX(g)− gX(f))X

is a multiple of X.

Note that by definition, to check a distribution V is involutive, one need to check [X, Y ] ∈
V for all X, Y ∈ V . It turns out that it is enough to check this for a set of local smooth basis
of V :

Lemma 1.5. Let V be a k dimensional distribution on M . Suppose for each p ∈ M ,
there exist a neighborhood U of p and k pointwise linearly independent smooth vector fields
X1, · · · , Xk on U so that [Xi, Xj] belong to V for all 1 ≤ i, j ≤ k. Then V is involutive.

Proof. Left as an exercise. �

Example. The distribution spanned by ∂
∂x1
, · · · , ∂

∂xk
in Rn is involutive, since

[
∂

∂xi
,
∂

∂xj
] = 0, ∀1 ≤ i, j ≤ k.

Example. The distribution V spanned by

X1 =
∂

∂x1
+ x2

∂

∂x3
, X2 =

∂

∂x2

is not involutive, since

[X1, X2] = − ∂

∂x3

is not in V .
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¶ Frobenius Theorem.

Theorem 1.3 tells us that any integrable distribution is involutive. It turns out that the
converse is also true, namely, any involutive distribution is integrable:

Theorem 1.6 (Global Frobenius Theorem). Let V be an involutive k-dimensional distribu-
tion. Then through every point p ∈M , there is a unique maximal connected integral manifold
of V (in particular, V is integrable).

Example. Let f : M → N be a submersion. For any p ∈M , let Vp = ker(dfp). Then

• V is a distribution since dimVp = dimM − dimN is constant for all p ∈M .
• V is involutive: if X, Y are vector fields belonging to V , then dfp(Xp) = dfp(Yp) = 0

for all p. It follows that for any g ∈ C∞(N), X(g ◦ f)(p) = dfp(Xp)(g) = 0 for all p,
i.e. X(g ◦ f) = 0. Similarly Y (g ◦ f) = 0. It follow that

dfp([X, Y ]p)(g) = [X, Y ]p(g ◦ f) = Xp(Y (g ◦ f))− Yp(X(g ◦ f)) = 0.

• V is integrable: the integrable manifold passing p ∈M is the submanifold f−1(f(p)).

Example. Consider the distribution V on R3 spanned by

X1 = x1
∂

∂x2
− x2 ∂

∂x1
, X2 =

∂

∂x3

on M = R3 − {x1 = x2 = 0}. Since [X1, X2] = 0, V is involutive. What are its integral
manifolds? Well, let’s first compute the integral curves of X1 and X2. Through any point
(x1, x2, x3), the integral curves of X1 are circles in the x3-plane with origin the center,
and the integral curves of X2 are the lines that are parallel to the x3-axis. Note that the
integral manifold passing (x1, x2, x3) of the distribution should contain all points of the form
ϕX1
t (ϕX2

s (x1, x2, x3)) for all t, s. In our case, these are the cylinders centered at the x3-axis.

¶ Foliation.

As a consequence, given any k-dimensional involutive distribution on M , one can “de-
compose” M into a disjoint union of k-dimensional connected immersed submanifolds. Such
a decomposition is called a foliation structure on M .

Definition 1.7. A k-dimensional foliation F of an m-dimensional manifold M is a decom-
position of M into a union of disjoint connected immersed submanifolds {Lα}α∈A, called the
leaves of the foliation, with the following property:

Every point in M has a neighborhood U and a system of local coordinates
x = (x1, · · · , xm) on U such that for each leaf Lα, the connected components
of U ∩ Lα are described by the equations xk+1 = ck+1, · · · , xm = cm.

A foliation is called regular if each leaf is an embedded submanifold.

Using the language of foliation, we can rewrite the Frobenius theorem as: Let V be an
involutive k-dimensional distribution. Then the collection of all maximal connected integral
manifold of V form a k-dimensional foliation F of M . Conversely, given any k-dimensional
foliation F , by definition the collection of all tangent spaces of all leaves form an integrable
k-dimensional distribution.
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2. The proof of Frobenius theorem

¶ Flatten one vector field locally.

We first prove the following useful lemma:

Lemma 2.1. Let X be any smooth vector field on M with Xp 6= 0. Then there is a local
chart (ϕ,U, V ) near p so that X = ∂1 on U .

Proof. Choose a local chart (Ũ , y1, · · · , yn) around p such that Xp = ∂
∂y1

∣∣∣
p
. Denote X =∑n

i=1 ξi
∂
∂yi

on Ũ , where ξi are smooth functions on Ũ . Shrinking Ũ if necessary, we may

assume ξ1 6= 0 on Ũ . Consider the system of ODEs

dyi

dy1
=
ξi(y

1; y2, · · · , yn)

ξ1(y1; y2, · · · , yn)
, 2 ≤ i ≤ n.

By basic theory of ODE, locally for any given initial data (z2, · · · , zn), with |z| < ε, the
system above has a unique solution

yi = yi(y1; z2, · · · , zn), |y1| < ε

with initial condition

yi(0; z2, · · · , zn) = zk, 2 ≤ i ≤ n

and the functions yi depends smoothly on y1 and on zj’s. Consider

y1 = z1,

yi = yi(z1; z2, · · · , zn), 2 ≤ i ≤ n.

Since the Jacobian

∂(y1, · · · , yn)

∂(z1, · · · , zn)

∣∣∣∣
z1=0

= 1,

we can make the change of variables from (y1, · · · , yn) to (z1, · · · , zn), i.e. there exists a

neighborhood U ⊂ Ũ of p, with (z1, · · · , zn) as local coordinate functions. We have in this
new chart

X =
∑

ξi
∂

∂yi
= ξ1

∑ ∂yi
∂z1

∂

∂yi
= ξ1

∂

∂z1
.

Finally if we let x1(z1, · · · , zn) =
∫ z1
0

dt
ξ1(t,z2,··· ,zn) and xj = zj for j ≥ 2, then {x1, · · · , xn}

are local coordinate functions on U such that X = ∂
∂x1

on U . �

Remark. More generally, if [Xi, Xj] = 0 and if Xi’s are linearly independent, then there
exists a coordinate chart so that Xi = ∂i. The proof is left as an exercise. Note that the
condition [Xi, Xj] = 0 is necessary since in any local charts, we have [∂i, ∂j] = 0.
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¶ Local Frobenius Theorem: “Flatten” an involutive distribution.

Before proving the global Frobenius theorem, we first prove the following local version:
locally any involutive distribution is “flat”, and thus is integrable.

Theorem 2.2 (Local Frobenius Theorem). Let V be an involutive k-dimensional distribu-
tion. Then for every p ∈ M , there exists a coordinate patch (U, x1, · · · , xn) centered at p
such that for all q ∈ U , Vq = span{∂1(q), · · · , ∂k(q)}.

Proof. By Lemma 2.1, the theorem holds for k = 1. Now suppose the theorem holds for
k − 1 dimensional involutive distributions. Let V be an k dimensional distribution spanned
locally by X1, X2, · · · , Xk near p. Suppose V is involutive, i.e.

[Xi, Xj] ≡ 0 mod (X1, · · · , Xk), 1 ≤ i, j ≤ k.

According to Lemma 2.1, there exits a local chart (U ; y1, · · · , yn) near p such that Xk = ∂yk .
For 1 ≤ i ≤ k − 1 let

X ′i = Xi −Xi(y
k)Xk,

then X ′i(y
k) = 0 for 1 ≤ i ≤ k − 1, and Xk(y

k) = 1. Note that the vector fields
X ′1, · · · , X ′k−1, Xk still span V . Moreover, if we denote

[X ′i, X
′
j] = aijXk mod (X ′1, · · · , X ′k−1), 1 ≤ i, j ≤ k − 1,

then after applying both sides to the function yk, we see aij = 0 for all 1 ≤ i, j ≤ k − 1.
According to Lemma 1.5, the k − 1 dimensional distribution

V ′ = span{X ′1, · · · , X ′k−1}
is involutive. By induction hypothesis, there is a local chart (U, z1, · · · , zn) near p such that
V ′ is spanned by {∂z1 , · · · , ∂zk−1}. Since each ∂zi(1 ≤ i ≤ j) is a linear combination of X ′j
for 1 ≤ j ≤ k − 1, we conclude ∂zi(y

k) = 0.

Now denote
[∂zi , Xk] = biXk mod (∂z1 , · · · , ∂zm−1).

Apply both sides to the function yk, we see bi = 0 for all i. So we can write

[∂zi , Xk] =
k−1∑
j=1

Ci
j∂zj .

Suppose Xk =
∑n

j=1 ξj∂zj . Insert this into the previous formula, we see

∂ziξj = 0, 1 ≤ i ≤ k − 1, k ≤ j ≤ n.

In other words, for j ≥ k, ξj = ξj(z
k, · · · , zn). Let

X ′k =
n∑
j=k

ξj∂zj .

Then {∂z1 , · · · , ∂zk−1 , X ′k} still span V . Finally according to Lemma 2.1 again, there is a
local coordinate change from (z1, · · · , zk, · · · , zn) to (x1, · · · , xk, · · · , xn) with xi = zi for
1 ≤ i ≤ k − 1, such that X ′k = ∂xk . This completes the proof. �
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As a consequence, we get the following result that we used in previous examples:

Corollary 2.3. Let X be a smooth vector field belongs to V. Then for any p ∈ M , the
integral curve of X passing the point p lies in the integral manifold of V passing p.

¶ Sketch of proof of the Global Frobenius theorem:

Sketch of proof of the Global Frobenius theorem: For any p ∈M , let

Np = {q ∈M | ∃ a piecewise smooth integral curve of V jointing p to q}1.
We claim that Np is the maximal connected integral manifold of V containing p.

The manifold structure is defined as follows: for any q ∈ Np, there is a coordinate patch
(φ, U, V ) (with φ(w) = (x1(w), · · · , xn(w))) centered at q such that V = span{∂1, · · · , ∂k} in
U . For each small ε, let

Wε = {w ∈ U | (x1)2(w) + · · ·+ (xk)2(w) < ε, xk+1(w) = · · · = xn(w) = 0}.
Then any point w ∈ Wε can be joint to q by the integral curve

γ(t) = φ−1(tx1(w), · · · , txk(w), 0, · · · , 0).

So Wε ⊂ Np. Let

ϕ : Wε → Bk(ε) ⊂ Rk, w 7→ (x1(w), · · · , xk(w)).

Now we define the topology on Np by giving it the weakest topology such that all these
ϕ’s are homeomorphisms. The atlas on Np is defined to be the set of charts (ϕ,W,Bk(ε)).
One can check that Np is a manifold with this given atlas. For more details, c.f. Warner,
pg.48-49. �

1We say γ is a piecewise smooth integral curve of V if γ is of the form “γ1 connected to γ2 connected · · ·
connected to γm”, where each γi is a smooth integral curve of a smooth vector field in V.


