(12/14) No class on Dec. 23. Classes on Dec. 16 and Dec. 30 will be extended by 45 minutes each.
(12/16) Projects for A+ uploaded. [Prerequirement: Midterm at least 119 ]
(12/16) Lecture 25 uploaded.
(12/16) PSet 7,part 2 uploaded. Due: Dec. 28.
(12/16) Final Exam: Jan. 06, 16:00-18:00 @ 5303 Cover Lecture 1 - Lecture 28.
(12/23) Lecture 26 uploaded.
(12/23) PSet 8,part 1 uploaded. Due: Jan. 4.
(12/28) Lecture 27 uploaded.
(12/31) Lecture 28 uploaded.
(12/31) PSet 8,part 2 uploaded. Due: Jan. 4.
授课老师: 王作勤 (wangzuoq at ustc dot edu dot cn)
上课时间: 星期二上午 07:50 – 09:25; 星期四下午 15:55 – 17:30;
上课地点: 一教 1102
办公室: 管研楼1601
助教: HONG Fang (hongf at mail dot ustc dot edu dot cn) HUANG Shuping (hsp at mail dot ustc dot edu dot cn) CHEN Hengyu (hichychen at mail dot ustc dot edu dot cn)
答疑时间: Saturday, 9:30-11:30
答疑地点: 5103
参考书籍 John Lee, Introduction to Smooth Manifolds (Second Edition)
参考书籍 Loring Tu, An Introduction to Manifolds
参考书籍 Victor Guillemin and Alan Pollack, Differential Topology
课程安排可能会随着课程的进行而略有变动。
课程的讲义将在每堂课后上传。
作业在标明的日期(通常是周二)课前交。
序号 | 日期 | 内容 | 讲义 | 作业 |
---|---|---|---|---|
  Lecture 1   |   09/14   |   Review of Topology, Topological Manifolds   |   Lect 1   |   PSet 1, Part1   : Due Sep. 28. |
  Lecture 2   |   09/16   |   Smooth Manifolds   |   Lect 2   | |
  Lecture 3   |   09/23   |   Smooth Functions, Partition of Unity   |   Lect 3   |   PSet 1, Part2   : Due Sep. 28. |
  Lecture 4   |   09/28   |   Smooth Maps   |   Lect 4   |   PSet 2, Part 1   : Due Oct. 14. |
  Lecture 5   |   09/30   |   The Differential   |   Lect 5   | |
  Lecture 6   |   10/09   |   Local Behavior via the Differential   |   Lect 6   |   PSet 2, Part 2   : Due Oct. 14. |
  Lecture 7   |   10/12   |   Sard's Theorem   |   Lect 7   |   PSet 3, Part 1   : Due Oct. 28. |
  Lecture 8   |   10/14   |   Smooth Submanifolds   |   Lect 8   | |
  Lecture 9   |   10/19   |   The Whitney Embedding Theorem   |   Lect 9   |   PSet 3, Part 2   : Due Oct. 28. |
  Lecture 10   |   10/21   |   Tubular Neighborhood Theorem   |   Lect 10   | |
  Lecture 11   |   10/26   |   Smooth Approximations and Smooth Deformations   |   Lect 11   |   PSet 4, Part 1   : Due Nov. 11. |
  Lecture 12   |   10/28   |   Transversality   |   Lect 12   | |
  Lecture 13   |   11/02   |   Smooth Vector Fields   |   Lect 13   |   PSet 4, Part 2   : Due Nov. 11. |
  Lecture 14   |   11/04   |   Integral Curves of Vector Fields   |   Lect 14   | |
  Lecture 15   |   11/09   |   The dynamical system associated with a vector field   |   Lect 15   |   PSet 5, Part 1   : Due Nov. 25. |
  Lecture 16   |   11/11   |   Distributions and foliations   |   Lect 16   | |
  Lecture 17   |   11/16   |   Lie groups and Lie algebras   |   Lect 17   |   PSet 5, Part 2   : Due Nov. 25. |
  Lecture 18   |   11/18   |   The exponential map   |   Lect 18   | |
  Lecture 19   |   11/23   |   Lie subgroups   |   Lect 19   |   PSet 6, Part 1   : Due Dec. 9. |
  Lecture 20   |   11/25   |   Lie group actions   |   Lect 20   | |
    |   11/30   |   考前答疑   | ||
    |   12/01   |   Midterm 16:00-18:00 @ 5202 Cover: Lec 1 - Lec 18.   | ||
  Lecture 21   |   12/02   |   Tensors and k-forms   |   Lect 21   |   PSet 6, Part 2   : Due Dec. 9. |
  Lecture 22   |   12/07   |   The exterior derivative   |   Lect 22   |   PSet 7, Part 1   : Due Dec. 28. |
  Lecture 23   |   12/09   |   Integration on manifolds   |   Lect 23   | |
  Lecture 24   |   12/14   |   The Stokes' formula   |   Lect 24   |   PSet 7, Part 2   : Due Dec. 28. |
  Lecture 25   |   12/16 (extended)   |   The De Rham Cohomology   |   Lect 25   | |
  Lecture 26   |   12/21   |   The Mayer-Vietoris sequence   |   Lect 26   |   PSet 8, Part 1   : Due Jan. 04. |
    |   12/23 (canceled)   |   No class.   |     | |
  Lecture 27   |   12/28   |   Compactly supported De Rham Cohomology   |   Lect 27   |   PSet 8, Part 2   : Due Jan. 04. |
  Lecture 28   |   12/30 (extended)   |   Applications of de Rham Theory   |   Lect 28   | |
    |   01/04   |   考前答疑   |     |   Projects for A+ candidates   : Due Jan. 8. |
    |   01/06   |   Final Exam 16:00-18:00 @ 5303 Cover: Lec 1 - Lec 28.   |     |
[top]