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CONVERGENCE AND CONTINUITY

1. Convergence in topological spaces

¶ Convergence.

As we have mentioned, topological structure is created to extend the conceptions
of convergence and continuous map to more general setting. It is easy to define the
conception of convergence of a sequence in any topological spaces.Intuitively, xn → x0
means “for any neighborhood N of x0, eventually the sequence xn’s will enter and stay
in N”. Translating this into the language of open sets, we can write

Definition 1.1 (convergence). Let (X,T ) be a topological space. Suppose xn ∈ X
and x0 ∈ X. We say xn converges to x0, denoted by xn → x0, if for any neighborhood
A of x0, there exists N > 0 such that xn ∈ A for all n > N .

Remark 1.2. According to the definition of neighborhood, it is easy to see that xn → x0
in (X,T ) if and only if for any open set U containing x0, there exists N > 0 such that
xn ∈ U for all n > N .

To get a better understanding, let’s examine the convergence in simple spaces:

Example 1.3. (Convergence in the metric topology) The convergence in metric topology
is the same as the metric convergence: xn→x0⇐⇒∀ε>0, ∃N>0 s.t. d(xn, x0)<ε for
all n>N .

Example 1.4. (Convergence in the discrete topology) Since every open ball B(x, 1) =
{x}, it is easy to see xn → x0 if and only if there exists N such that xn = x0 for all
n > N . In other words, only “eventually constant” sequences converge.

Example 1.5. (Convergence in the trivial topology) Since the only non-empty open set
is the set X, any sequence xn ∈ X converges and any point x0 ∈ X is a limit! In
particular, the limit of a convergent sequence is NOT unique!1

Example 1.6. (Convergence in the cofinite topology) To explore the convergence with
respect to the cofinite topology, let’s suppose xn → x0. Then by definition, for any
open neighborhood U of x0, there exists N such that xn ∈ U for n > N . This holds if
and only if for any x 6= x0, there are at most finitely many i ∈ N such that xi = x. So
the convergence is very subtle. For example,

1Don’t worry too much about such bad behaviors. We will see later that under suitable assumptions
on the topology, the limit of any convergent sequence is unique.

1



2 CONVERGENCE AND CONTINUITY

• If xn’s are all distinct, then x1, x2, · · · converges to any x0.
• Sequences like x0, x1, x0, x2, x0, ... with distinct xn’s will converge, with the u-

nique limit x0.
• Sequences like x1, x2, x1, x2, ... do not converge.

Example 1.7. (Convergence in the cocountable topology) Let X be an uncountable set,
equipped with the cocountable topology2. Suppose xn → x0. Take U = X \ {xn|xn 6=
x0}. Then U is an open neighborhood of x0. By definition, there exists N > 0 such
that xn ∈ U for n > N , i.e. xn = x0 for all n > N . In other words, only “eventually
constant” sequences converge. [So the convergence in the (X,Tcocountable) coincides
with the convergence in (X,Tdiscrete)!]

¶ The pointwise convergence topology.

Let X =M([0, 1],R) be the spaces of all functions (not necessarily continuous) on
[0, 1]. In X we can define pointwise convergence as usual:

fn → f if fn(x)→ f(x),∀x ∈ [0, 1].

It turns out that we can equip X with a suitable topology, Tp.c., so that the pointwise
convergence is exactly the convergence in the topological space (X,Tp.c.).

The topology Tp.c. is defined to be

Tp.c. = {U ⊂ X | ∀f0 ∈ U,∃x1, · · · , xn ∈ [0, 1] and ε > 0,

such that U ⊃ ω(f0;x1, · · · , xn; ε)}
where

ω(f0;x1, · · · , xn; ε) := {f ∈ X
��� |f(xi)− f0(xi)| < ε, 1 ≤ i ≤ n}.

is the set of functions f ’s that are ε-close to f0 at the points x1, · · · , xn.

Check. • ∅, X ∈ T

2Note: If X is a countable set, we automatically have Tcocountable = Tdiscrete. But for an uncount-
able set X, Tcocountable is strictly weaker than Tdiscrete.
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• If U1, U2 ∈ T , f0 ∈ U1 ∩ U2. Then

U1 ⊃ ω(f0;x1, · · · , xn; ε1)

U2 ⊃ ω(f0; y1, · · · , ym; ε2)

⇒ U1 ∩ U2 ⊃ ω(f0;x1, · · · , xn, y1, · · · , ym; min(ε1, ε2)).
• If Uα ∈ T , f0 ∈ ∪αUα, Then ∃α0 s.t. f0 ∈ Uα0 .
⇒ ω(f0;x1, · · · , xn; ε) ⊂ Uα0

⇒ ω(f0;x1, · · · , xn; ε) ⊂ ∪αUα i.e. ∪αUα is open.
�

¶ Pointwise convergence as a topological convergence.

Fact: The usual pointwise convergence in X =M([0, 1],R) coincides the (topological)
convergence in (X,Tp.c.).

Proof. Suppose fn → f pointwise, and let U ⊂ X be an open set in Tp.c.

with f ∈ U . Then ∃x1, · · · , xm ∈ [0, 1] and ε > 0 s.t.

ω(f ;x1, · · · , xm; ε) ⊂ U.

Since fn → f pointwise, we have fn(xi) → f(xi), 1 ≤ i ≤ m. So there
exists N such that for any n > N ,

fn ∈ ω(f ;x1, · · · , xm; ε) ⊂ U,

i.e. fn → f in (X,Tp.c.).
Conversely, suppose fn → f in (X,Tp.c.). For any x ∈ [0, 1], we take

U = ω(f, x, ε). Then there exists N s.t.

fn ∈ U, ∀n > N,

i.e. |fn(x) − f(x)| < ε for all n > N . This is the same as saying
fn(x)→ f(x), so fn → f pointwise. �

Remark 1.8. We will see later that there exists no metric d on X so that the pointwise
convergence is a metric convergence in (X, d). This gives another reason why we need
to introduce general topological spaces instead of working only in metric spaces.

2. Continuity of maps between topological spaces

¶ Continuous maps between topological spaces.

As we have explained in Lecture 1, topological structure is the structure that can
be used to define continuity for maps. There are two different ways to do so: either
use convergence, or use the topological structure itself (namely open sets, closed sets,
neighborhoods). Unfortunately the two methods give two different results.

Let’s first define continuity via convergent sequences, which match our intuition:

Definition 2.1. We say a map f : (X,TX)→ (Y,TY ) is
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(1) sequentially continuous at x0 if for any convergent sequence xn → x0 in X, one
has f(xn)→ f(x0) in Y ,

(2) sequentially continuous if it is sequentially continuous everywhere.

You may have noticed that we used the word “sequentially”, so that it can be
distinguished with continuous maps in general.

To define continuous maps via the topological structure itself (namely using open
sets/closed sets/neighborhoods etc), we recall from Lecture 3 a map f : (X, dX) →
(Y, dY ) between metric spaces is continuous at a point x0 if and only if the pre-image
f−1(B) of any neighborhood B of f(x0) in the target space Y is a neighborhood of x
in the source space,

Inspired by this property, we may define

Definition 2.2. We say a map f : (X,TX)→ (Y,TY ) is

(1) continuous at a point x0 if the pre-image f−1(B) of any neighborhood B of
f(x0) in Y is a neighborhood of x0 in X,

(2) a continuous map if it is continuous at any point.

From definition we can easily prove

Proposition 2.3. Let X, Y, Z be topological spaces.

(1) If f : X → Y is continuous at x0 and g : Y → Z is continuous at f(x0), then
g ◦ f : X → Z is continuous at x0.

(2) If f : X → Y is sequentially continuous at x0 and g : Y → Z is sequentially
continuous at f(x0), then g ◦ f : X → Z is sequentially continuous at x0.

Proof. If both f and g are continuous, then for any neighborhood C of g(f(x0)) in
Z, g−1(C) is a neighborhood of f(x0) in Y and thus (g ◦ f)−1(C) = f−1(g−1(C)) is a
neighborhood of x in X. It follows that g ◦ f is continuous at x0.

If both f and g are sequentially continuous, then for xn → x0 in X, we have
f(xn)→ f(x0) and thus g(f(xn))→ g(f(x0)). So g ◦ f is sequentially continuous. �

As a consequence, we see that the composition of (sequentially) continuous maps
is still (sequentially) continuous.

¶ Sequentially continuity v.s. continuity.

In metric spaces, sequentially continuity and continuity are equivalent. For topo-
logical spaces, we have

Proposition 2.4. If f : (X,TX) → (Y,TY ) is continuous at x0, then it is also se-
quentially continuous at x0. In particular, any continuous map f : (X,TX)→ (Y,TY )
is sequentially continuous.
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Proof. Suppose xn → x0. Take any neighborhood B of f(x0) in Y . Then by continuity,
f−1(B) is a neighborhood of x0. Since xn → x0, there exists N > 0 so that xn ∈ f−1(B)
for n > N . It follows that f(xn) ∈ B for all n > N , i.e. f(xn) → f(x0). So f is
sequentially continuous at x0. �

However, the converse is not true.

Example 2.5. Consider the identity map

Id : (R,Tcocountable)→ (R,Tdiscrete), x 7→ x.

Then Id is sequentially continuous, since as have have seen, a sequence converges
in (R,Tcocountable) if and only if it converges in (R,Tdiscrete) (and to the same limit).
However, Id is not continuous at any point: for any x ∈ R, the interval [x−1, x+1] is an
open neighborhood of x in (R,Tdiscrete), but not a neighborhood of x in (R,Tcocountable).

¶ Global continuity via open sets.

We showed in Theorem 1.6 in Lecture 3 that f : (X, dX)→ (Y, dY ) is a continuous
map if and only if the pre-image f−1(V ) of any open set V in Y is an open set in X. By
repeating the proof word by word, one can easily write down a proof of the following
characterization of global continuity via open sets:

Proposition 2.6. Let f : (X,TX) → (Y,TY ) be a map. Then f is continuous if and
only if for any V ∈ TY , one has f−1(V ) ∈ TX .

By taking complementary, we have

Proposition 2.7. Let f : (X,TX) → (Y,TY ) is continuous if and only if for any
closed set F in Y , the pre-image f−1(F ) is closed in X.

Proof. Note that f−1(F ) is closed if and only if X \ f−1(F ) = f−1(Y \ F ) is open. So
the conclusion follows. �

Remark 2.8. In many cases a fact described by open sets has a “dual description” via
closed sets. We call this principle the open-closed duality.

¶ Open/closed maps.

So under continuous maps, the pre-image of an open set is open, and the pre-image
of any closed maps is closed. But in general, (write an example for each!)

• the image of an open set under a continuous map needn’t be open,
• the image of a closed set under a continuous map needn’t be closed.

Definition 2.9. Let X, Y be topological spaces. A map f : X → Y is called

• an open map if for any open set U in X, f(U) is open in Y .
• a closed map if for any closed set F in X, f(F ) is closed in Y .
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Although it seems that open/closed maps are “more natural”, they are not as
important/convenient as continuous maps in topology. Here is one reason:
We always have

f−1(
[

α

Bα) =
[

α

f−1(Bα), f−1(
\

α

Bα) =
\

α

f−1(Bα), f−1(Y \B) = X \ f−1(B).

But in general, we only have

f(
[

α

Aα) =
[

α

f(Aα), f(
\

α

Aα) ⊂
\

α

f(Aα), f(X \ A) ⊃ f(X) \ f(A).

However, open/closed maps do appear in some other branches of mathematics and
plays a very important role. For example,

• One of the most important theorems in functional analysis, the open mapping
theorem, claims that every surjective continuous linear operator between Ba-
nach spaces is an open map.
• In complex analysis, there is also an open mapping theorem which states that

any non-constant holomorphic function defined on a connected open subset of
the complex plane is an open map.
• We will prove later in this course the following Brouwer’s invariance of domain

theorem: if U ⊂ Rn is an open set, then any injective continuous map f : U →
Rn is an open map.

¶ Examples of continuous maps.

We give some examples of continuous maps.

Example 2.10. Any constant function f : X → Y is continuous.

Reason: Suppose f(x) ≡ y0 ∈ Y , and let U be any open set in Y . Then
Case 1: y0 ∈ U ⇒ f−1(U) = X is open in X.
Case 2: y0 /∈ U ⇒ f−1(U) = ∅ is open in X.
So f is continuous.

Remark 2.11. This explains why we always assume ∅, X to be open in any topology:
if not, constant functions could be discontinuous!

Example 2.12. From Proposition 2.6 and definitions we immediately get

• Any map f : (X,TX)→ (Y,Ttrivial) is continuous.
• Any map f : (X,Tdiscrete)→ (Y,TY ) is continuous.
• The identity map Id : (X,T2)→ (X,T1) is continuous if and only if T1 ⊂ T2,

i.e. T1 is weaker than T2.
• If A ⊂ X, then the inclusion map ι : A ↪→ X is continuous.
• If f : X → Y is continuous, A ⊂ X, then f |A : A→ Y is continuous.

Example 2.13. Recall that a function f : R→ R is called right continuous at x0 if

lim
x→x0+

f(x) = f(x0).
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Fact. f : R → R is right continuous at x0 ⇐⇒ f : (R,TSorgenfrey) →
(R,Tusual) is continuous at x0.

3

Proof. Left as exercise. �

Example 2.14. Let (X,TX) and (Y,TY ) be topological spaces. Let (X × Y,TX×Y ) be
the product topological space. Then the projections

πX : X × Y → X, (x, y) 7→ x

πY : X × Y → X, (x, y) 7→ y

are continuous maps and are open maps.

Proof. We only prove the conclusions for πX , since the proof for πY is
similar. πX is continuous since

∀U ∈ TX , π
−1
X (U) = U × Y ∈ TX×Y .

It is an open map because for any open set W ∈ X × Y and any
x ∈ πX(W ), there exists a point (x, y) ∈ W . By definition of the
product topology, there exists open sets U 3 x in X and V 3 y in Y
such that (x, y) ∈ U × V ⊂ W . It follows that x ∈ U ⊂ πX(W ). So
πX(W ) is open in X, i.e. πX is an open map. �

Remark 2.15. The projection map need not be closed. For example, the projection of
the closed set {(x, 1/x) | x > 0} ⊂ R2 onto R is (0,+∞) which is not closed in R.

¶ Homeomorphism.

Using continuous maps, we can define equivalence of topological spaces.

Definition 2.16. We say topological spaces X and Y are homeomorphic, denoted by
X ' Y , if there exists an invertible map f : X → Y such that both f and f−1 are
continuous. The map f is called a homeomorphism between X and Y .

Example 2.17. With the usual topology,

(1) (0, 1) ' R. [Can you explicitly construct an homeomorphism?]
(2) Sn − {the north pole} ' Rn.
(3) [0, 1] 6' (0, 1) 6' [0, 1) 6' S1 6' R2.

Proposition 2.18. Homeomorphism is an equivalent relation among topological spaces.

Proof. We have

• X ' X: since Id : (X,TX)→ (X,TX) is a homeomorphism.
• X ' Y =⇒ Y ' X: If f : X → Y is a homeomorphism, so is f−1 : Y → X.

3So the Sorgenfrey topology is also called “the right continuous topology”.
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• X ' Y, Y ' Z =⇒ X ' Z: If f : X → Y and g : Y → Z are homeomorphisms,
then g ◦ f : X → Z is bijective. Moreover, by Proposition 2.3, both g ◦ f and
(g ◦ f)−1 = f−1 ◦ g−1 are continuous.

So the conclusion follows. �

Remark 2.19. We will regard homeomorphic topological spaces as the same space. We
will say a property is a topological property if it is preserved under a homeomorphism.

Other than being continuous and bijective, it is clear from definition that homeo-
morphisms must be both an open map and a closed map. Conversely,

Proposition 2.20. Let f : X → Y be a bijective continuous map. If f is either open
or closed, then f is a homeomorphism.

Proof. This follows from a simple observation: if f is invertible, then f−1 is continuous
if and only if f is open (and if and only if f is closed). �

As in the metric case, we can define the conception of a topological embedding:

Definition 2.21. Let f : X → Y be an injective continuous map. We say f is a
topological embedding if f is a homeomorphism from X to f(X) ⊂ Y (endowed with
the subspace topology).

¶ Compatibility: Topological groups and topological vector spaces.

We can also use continuity to define compatibility of different structures with topo-
logical structure. For example,

Definition 2.22. A topological group is a group G with a topological structure4 so
that the groups operations

m : G×G→ G, (g1, g2) 7→ m(g1, g2) := g1 · g2
and

i : G→ G, g 7→ i(g) := g−1

are continuous maps. [Here G×G is endowed with the product topology.]

Similarly one can define topological rings, topological fields etc.

Topological groups (and their smooth analogues, Lie groups) are used widely in
mathematics to describe continuous symmetries. Here are some examples:

Example 2.23.

(1) (Not interesting)Any groupG, with the discrete topology, is a topological group.
(2) R and C, with the usual group structure and the usual topology, are topological

groups (and in fact are topological fields).

4In the definition of topological groups, some authors will require the topology on G to satisfy
further separation properties like T1 or T2.
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(3) S1, Rn, Tn := (S1)n are topological groups (with the usual structures).
(4) Matrix groups GL(n,R), GL(n,C), SL(n,R), SL(n,C), O(n), SO(n), U(n),

SU(n) etc are topological groups (with the usual structures).
(5) Examples in (2), (3), (4) are in fact Lie groups. Here is a topological group

which is not a Lie group: Q, with the usual structures, is a topological group.

In functional analysis where people study analysis on (usually infinitely dimen-
sional) vector spaces, it is crucial that the topological structure of the vector space is
compatible with the vector space structure:

Definition 2.24. A topological vector space is a vector space X over R or C (or a
topological field K) that is endowed with a topology5 such that the vector addition
map

+ : X ×X → X, (x, y) 7→ x+ y

and the scalar multiplication map

• : K×X → X, (λ, x) 7→ λx

are continuous maps. [Here both X × X and K × X are endowed with the product
topology.]

Note that a topological vector space is automatically a topological group.

Example 2.25.

(1) Rn, Cn, with the usual structures.
(2) Warning: Rn is NOT a topological vector space when endowed with the dis-

crete topology. [Although the vector addition is still continuous, the scalar
multiplication is no longer continuous.]

(3) {Hilbert spaces} ⊂ {Banach spaces} ⊂ {normed vector spaces} ⊂ {Fréchet s-
paces}⊂{locally convex topological vector spaces}⊂{topological vector spaces}

5Again, in the definition of topological vector spaces, some authors will require the topology on G
to satisfy further separation properties like T1.


