Topology (H) Lecture 6 Lecturer: Zuoqin Wang

Time: March 25, 2021

THE QUOTIENT TOPOLOGY

1. The quotient topology

¶ The quotient topology.

Last time we introduced several abstract methods to construct topologies on abstract spaces (which is widely used in point-set topology and analysis). Today we will introduce another way to construct topological spaces: the quotient topology.

In fact the quotient topology is not a brand new method to construct topology. It is merely a simple special case of the co-induced topology that we introduced last time. However, since it is very concrete and "visible", it is widely used in geometry and algebraic topology. Here is the definition:

Definition 1.1 (The quotient topology).

- (1) Let (X, \mathcal{T}_X) be a topological space, Y be a set, and $p: X \to Y$ be a surjective map. The co-induced topology on Y induced by the map p is called the *quotient topology* on Y. In other words,
 - a set $V \subset Y$ is open if and only if $p^{-1}(V)$ is open in (X, \mathscr{T}_X) .
- (2) A continuous surjective map $p:(X,\mathcal{T}_X)\to (Y,\mathcal{T}_Y)$ is called a *quotient map*, and Y is called the *quotient space* of X if \mathcal{T}_Y coincides with the quotient topology on Y induced by p.
- (3) Given a quotient map p, we call $p^{-1}(y)$ the fiber of p over the point $y \in Y$.

Note: by definition, the composition of two quotient maps is again a quotient map.

Here is a typical way to construct quotient maps/quotient topology: Start with a topological space (X, \mathcal{T}_X) , and define an equivalent relation \sim on X. Recall that this means

- $x \sim x$;
- $x \sim y \Longrightarrow y \sim x$;
- $x \sim y, y \sim z \Longrightarrow x \sim z$.

Then one gets an abstract space consisting of all equivalence classes

$$Y = X/\sim$$

and a natural projection map

$$p: X \to X/\sim, x \mapsto [x].$$

So in this case, each fiber is an equivalence class. Note that the "quotient by a map" description and the "quotient by an equivalence relation" description are equivalent: Given any equivalence relation description, we have a natural projection map as shown above; conversely given any quotient map $f: X \to Y$, we can define an equivalence relation by $x \sim y \iff f(x) = f(y)$ and thus get an equivalence relation description of the same quotient space.

Example 1.2 (The circle). One can regard the circle S^1 as a quotient space via

- (1) $S^1 = [0, 1]/\{0, 1\}$: in other words, the only equivalence is $0 \sim 1$.
- (2) $S^1 = \mathbb{R}/\mathbb{Z}$: in other words, we used the equivalence relation

$$x \sim y \iff x - y \in \mathbb{Z}.$$

Example 1.3. Define an equivalence relation \sim on \mathbb{R} by

$$x \sim y \iff x - y \in \mathbb{Q}.$$

Then what is the quotient topology on $X = \mathbb{R}/\sim$? Let $U \subset X$ be an open set. Then $p^{-1}(U)$ is open in \mathbb{R} . In particular, there is an interval $(a,b) \subset U$. Since any real number $x \in \mathbb{R}$ is equivalent to some number in (a,b), we must have $p^{-1}(U) = \mathbb{R}$. So the quotient topology on X is the trivial topology.

¶ Universality.

According to the universality of the co-induced topology, namely Proposition 2.8 in Lecture 5 (whose proof is in your PSet), we have

Theorem 1.4 (Universality of quotient topology). Let X, Y, Z be topological spaces, $p: X \to Y$ be a quotient map, and $f: Y \to Z$ be a map. Then f is continuous if and only if $g = f \circ p$ is continuous. Moreover, the quotient topology on Y is the only topology satisfying this property.

As a consequence, we have

Corollary 1.5. If $p: X \to Y$ is a quotient map, $f: X \to Z$ is a continuous map such that f is constant on each fiber. Then the naturally induced map

$$\bar{f}: Y \to Z, \qquad \bar{f}(y) := f(p^{-1}(y))$$

is continuous.

¶ The real projective space.

Let's give an important example of quotient space: the real projective space. We can give two descriptions.

Example 1.6 (The real projective space).

• On $X = \mathbb{R}^{n+1} - \{0\}$ we can define an equivalence relation

$$x \sim y \iff \exists 0 \neq \lambda \in \mathbb{R} \text{ s.t. } x = \lambda y.$$

The quotient space

$$\mathbb{RP}^n = \mathbb{R}^{n+1} - \{0\} / \sim$$

(endowed with the quotient topology¹) is called the real projective space. This gives a geometric explanation of the real projective space:

$$\mathbb{RP}^n$$
 = the space of all lines in \mathbb{R}^{n+1} passing the origin 0.

• We can also start with the unit sphere $S^n \subset \mathbb{R}^{n+1}$ and define an equivalence relation

$$x \sim y \iff x = \pm y.$$

Since every line in \mathbb{R}^{n+1} passing the origin 0 intersect S^n exactly at two antipodal points, the resulting quotient space are the same.

Note that when n = 1, \mathbb{RP}^1 is in fact homeomorphic to S^1 , since according to the second description, we may start with a half circle and identify the two end points. However, the geometric picture, even in the case n = 2 where we may start the construction with a hemisphere, is very complicated:

FIGURE 1. A "picture" of \mathbb{RP}^2

As one can see, there is a "self-intersection" in the picture. However, the intersection should not exist in a real "picture" of \mathbb{RP}^2 . In fact, there is no way to embed \mathbb{RP}^2 into \mathbb{R}^3 . It can only be embedded into \mathbb{R}^4 . Moreover, just like the Möbius band, \mathbb{RP}^n is not orientable for any even number n.

Remark 1.7. Similarly, one can define a topology on the space of complex lines in \mathbb{C}^{n+1} (the complex projective space \mathbb{CP}^n). More generally, one can define a topology on the space of k-dimensional vector subspaces of a vector space V (the Grassmannian manifold $Gr(k,V)^2$). Note that \mathbb{RP}^n is just a special Grassmannian : $\mathbb{RP}^n = Gr(1,\mathbb{R}^{n+1})$.

¹Here, we endow with $\mathbb{R}^{n+1} - \{0\}$ the standard Euclidean topology.

²However, for k > 1, Gr(k, V) can not be realized as a quotient space of V. Instead it can be realized as a quotient space of a much larger space, e.g. GL(V).

¶ Construction: Gluing one point to another in the same space.

In what follows we will introduce many very concrete geometric ways to get quotient spaces from known spaces. The first is :

Gluing: Let X be a topological space, by gluing the points a and b in X, we means: considering the quotient space obtained from the equivalence relation which contains only one non-trivial equivalence: $a \sim b$. Similarly, we may glue a subset A to a subset B in X by identifying each point in A to a specific point in B.

This is widely used in constructing surfaces topologically from planar polygons: just glue boundary line segments using prescribed way.³

FIGURE 2. The cylinder

FIGURE 3. The Möbius band

FIGURE 4. The torus

FIGURE 5. The Klein bottle

³Note that the Klein bottle can not be embedded into \mathbb{R}^3 . It is a non-orientable surface.

It turns out that any (compact) surface can be constructed by starting at a suitablychosen polygon and attaching its boundary edges in suitable way. Here is a more complicated one:

FIGURE 6. The 2-torus

At the end of this semester, we will use such polygonal presentation to prove the classification theorem of compact surfaces.

¶ Construction: Attaching space (adjunction space).

We may attach one space to another along a given map:

Attaching space: Let X, Y be topological spaces, and $A \subset Y$ a subspace, and $f: A \to X$ a continuous map. Then the attaching space $X \cup_f Y$ is formed by taking the disjoint union of X and Y and identifying each $a \in A$ with $f(a) \in X$, i.e.

$$X \cup_f Y = X \sqcup Y / \{a \sim f(a)\}.$$

There are two special cases that we are going to use later:

(1) (The wedge sum) Given two topological spaces X and Y, the wedge sum $X \vee Y$ of X and Y is formed by attaching one point in X to one point in Y:

$$X \vee Y = X \sqcup Y/\{x_0 \sim y_0\}.$$

More generally, given a family of spaces X_{α} , with a point $x_{\alpha} \in X_{\alpha}$ chosen, we may form the wedge sum $\bigvee_{\alpha} X_{\alpha}$ by attaching all X_{α} 's at the point x_{α} 's.

FIGURE 7. $S^1 \vee S^1$

FIGURE 8. $S^1 \vee S^1 \vee S^1 \vee S^1 \vee S^1$

Remark 1.8. When talking about wedge sum, we are really working on "pointed space" (X, x_0) , namely a space with a point x_0 chosen. The wedge sum of (X, y_0) and (Y, y_0) is again a pointed space $(X \vee Y, \{x_0\})$. By this way, when studying the wedge sum of many spaces, we are always attaching the marked points into one point.

(2) (The connected sum) Given two geometric objects A and B that are locally Euclidian ("manifolds"), the connected sum A#B is constructed as follows: one can remove a small ball (disk) from each, and then glue the boundary spheres (circles) so that they are "connected together".

Figure 9. The connected sum A # B

In other words,

$$A\#B = (A - D_1) \cup_f (B - D_2),$$

where D_1 , D_2 are small disks on A and B respectively, and f is the attaching map that identify ∂D_1 with ∂D_2 as shown in the picture.

¶ Construction: Squeeze a subset into one point.

Next let's consider

⁴This is widely used in constructing new surfaces from given surfaces, or more in constructing new manifolds from given ones in manifold theory.

Squeeze: Let X be a topological space, and $Y \subset X$. We may define an equivalence relation on X by requiring and only requiring $y_1 \sim y_2$ for any $y_1, y_2 \in Y$. In other words, in the quotient space, we "squeeze" all points in Y to one point. For simplicity we just denote the quotient space by X/Y.

For example, we consider the unit disk D in \mathbb{R}^2 . We can squeeze its boundary circle into one point. What do we get? A sphere S^2 ! Similarly we may squeeze the boundary sphere S^{n-1} of the unit ball B(0,1) in \mathbb{R}^n to get \mathbb{S}^n .

FIGURE 10. Squeeze the boundary circle to get a sphere

As another example: By regarding X as $X \times \{y_0\}$ and regarding Y as $\{x_0\} \times Y$, we can view the wedge sum $X \vee Y$ as a subspace of $X \times Y$. Then one may define the smash product of X and Y, denoted by $X \wedge Y$, as

$$X \wedge Y = X \times Y/X \vee Y$$
.

¶ Construction: the cone space and the suspension.

Given any topological space X, one may construct the cone space and the suspension of X (used in algebraic topology), both as a quotient space of the cylinder $X \times [0,1]$:

(1) The cone space of X, denoted by C(X), is formed by squeezing $X \times \{0\}$ in $X \times [0,1]$ into one point, namely, $C(X) = X \times [0,1]/X \times \{0\}$:

FIGURE 11. The cone space C(X)

(2) The suspension of X, denoted by S(X), is formed by squeezing $X \times \{0\}$ to one point, and also squeezing all points in $X \times \{1\}$ to another point.

FIGURE 12. The suspension S(X)

(3) More generally, given topological spaces X and Y, the *join* of X and Y, sometimes denoted by $X \star Y$, is defined as $X \star Y = X \times Y \times I / \sim$, where \sim is given by

$$(x, y_1, 0) \sim (x, y_2, 0), (x_1, y, 1) \sim (x_2, y, 1), \quad \forall x, x_1, x_2 \in X; y, y_1, y_2 \in Y.$$

FIGURE 13. The join $X \star Y$

 \P Construction: Mapping cylinder, mapping cone and mapping torus.

One may also study spaces associated to maps:

(1) Given a continuous map $f: X \to Y$, the mapping cylinder of f, denoted by $M_f = (X \times [0,1]) \sqcup_{\tilde{f}} Y$,

is by definition the attaching space of $X \times [0, 1]$ and Y via the map $\tilde{f}: X \times \{0\} \to Y, f(x, 0) := f(x)$.

FIGURE 14. Mapping cylinder

(2) Given a continuous map $f: X \to Y$, the mapping cone of f, denoted by C_f , is by definition to be the quotient space

$$C_f = (X \times [0,1]) \sqcup_{\tilde{f}} Y / \sim,$$

namely the quotient space of the mapping cylinder M_f with respect to the equivalence relation

$$(x_1, 1) \sim (x_2, 1), (x, 0) \sim f(x), \quad \forall x, x_1, x_2 \in X.$$

FIGURE 15. Mapping cone

(3) Given a homeomorphism $f: X \to X$, the mapping torus of f is defined to be $T_f := X \times [0,1]/(1,x) \sim (0,f(x)).$

Mapping tori of surface homeomorphisms play a key role in the theory of 3-manifolds and have been intensely studied.

2. Quotient by a group action

¶ The homeomorphism group.

Symmetries play an essential role in all branches of mathematics. The mathematical language of symmetry is group.

Proposition 2.1. Let X be a topological space and let

$$\operatorname{Hom}(X) = \{ f : X \to X \mid f \text{ is a homeomorphism} \}.$$

Then under the usual composition of maps, Hom(X) is a group.

Proof. This is almost trivial:

- given two homeomorphisms f and g of X, the composition $g \circ f$ is again a homeomorphism of X, and the associativity holds by definition,
- the identity map Id is the identity element in this group,
- the inverse map f^{-1} is a homeomorphism and is the inverse of f in this group.

So given any topological space X, we have a god-given group that describes symmetries of X in the category of topology:

Definition 2.2. Hom(X) is called the homeomorphism group of X.

Note that for any element $f \in \text{Hom}(X)$, we may say f "acts" on the space X by sending an element $x \in X$ to its image $f(x) \in X$.

¶ The group action.

We define

Definition 2.3. Let G be any group, and X be a space.

(1) An (left) $action^5$ of group G on the space X is a map

$$\alpha: G \times X \to X, \qquad (g, x) \mapsto g \cdot x,$$

so that for any $x \in X$ and any $g, h \in G$,

- $e \cdot x = x$ for any $x \in X$,
- $g \cdot (h \cdot x) = (gh) \cdot x$, for any $g, h \in G$ and $x \in X$.
- (2) In the case X is a topological space, an *(left) action* of the group G on the topological space X is an action so that for any $g \in G$, the map

$$\tau_g: X \to X, \quad x \mapsto \tau_g(x) := g \cdot x$$

is a continuous map (and thus is a homeomorphism since $(\tau_g)^{-1} = \tau_{g^{-1}}$ is also continuous).

(3) In the case X is a topological space and G is a topological group, we say the action is a *continuous action* if the map α is a continuous map.

Remark 2.4. So an action of G on a topological space X is a group homomorphism

$$\tau: G \to \operatorname{Hom}(X) = \{f: X \to X \mid f \text{ is a homeomorphism}\},$$

i.e. associate to any $g \in G$ a homeomorphism $\tau_g : X \to X$, such that

$$\tau_g \circ \tau_h = \tau_{gh}, \quad \forall g, h \in G.$$

⁵There is also a conception of *right action*, in which we use $x \cdot g$ instead, and replace the second condition by $(x \cdot g) \cdot h = x \cdot (gh)$. The theory for right action is almost the same as left actions.

Note that we may (and will always) assume τ is injective. Otherwise we can always replace G by $G/\ker(\tau)$, which acts on X in the obvious way. Such an action is called a faithful action.

¶ Orbits and the orbit space.

Definition 2.5. Given a group action of G on X, the *orbit* of $x \in X$ is the set

$$G \cdot x := \{ g \cdot x \mid g \in G. \}$$

We will see many examples below where the orbit is very simple. Here we give an example where the orbit is very complicated:

Example 2.6. Consider S^1 acts on $S^1 \times S^1$ by

$$e^{i\alpha} \cdot (e^{i\theta_1}, e^{i\theta_2}) := (e^{i(\theta+\alpha)}, e^{i(\theta+\sqrt{2}\alpha)}).$$

Then the orbit is a "dense curve" on the torus $S^1 \times S^1$.

We may define an equivalence relation \sim on X by

$$x_1 \sim x_2 \iff \exists \ g \in G \text{ s.t. } x_1 = g \cdot x_2.$$

In other words, two elements in X are equivalent if and only if they lie in the same orbit. It is easy to check that this is an equivalence relation.

Definition 2.7. Given a group action of G on a topological space X, the *orbit space* is defined to be the quotient space $X/G = X/\sim$.

So by definition, the orbit space is "the space of orbits", endowed with the quotient topology.

Example 2.8. Consider the $\mathbb{R}_{>0}$ (as a multiplicative group) action on \mathbb{R} by multiplication, i.e.

$$a \cdot x := ax$$
.

Then there are three orbits: $\mathbb{R}_{>0}$, $\{0\}$, $\mathbb{R}_{<0}$. As a result, the orbit space consists of three elements, $\{+,0,-\}$, and the topology on the orbit space is

$$\{\emptyset, \{+\}, \{-\}, \{+, -\}, \{+, 0, -\}\}.$$

¶ Examples.

We list several simple examples of orbit spaces which we will use when we study covering spaces later this semester.

Example 2.9 (S¹ again). $G = \mathbb{Z}$ acts on $X = \mathbb{R}$ via

$$\tau(n)(x) = n + x.$$
 (translation)

 $\leadsto \ \mathbb{R}/\mathbb{Z} \simeq S^1.$

Example 2.10 (S¹ again and again). $G = \mathbb{Z}_n$ acts on $X = S^1 \subset \mathbb{C}$ via

$$\tau(k)(z) = e^{2\pi i k/n} z.$$
 (rotation)

$$\rightsquigarrow S^1/\mathbb{Z}_n \simeq S^1.$$

Example 2.11 (\mathbb{RP}^n again). $G = \mathbb{Z}_2$ acts on $\widetilde{X} = S^n$ via

$$\tau(1)(x) = x$$
 and $\tau(-1)(x) = -x$. (antipodal)

$$\rightsquigarrow S^n/\mathbb{Z}_2 \simeq \mathbb{RP}^n.$$

Example 2.12 (n-torus). $G = \mathbb{Z}^n$ acts on $X = \mathbb{R}^n$ via

$$\tau(m_1, \cdots, m_n)(x_1, \cdots, x_n) = (x_1 + m_1, \cdots, x_n + m_n).$$

$$\longrightarrow \mathbb{R}^n/\mathbb{Z}^n \simeq \mathbb{T}^n \simeq S^1 \times \cdots \times S^1.$$

Example 2.13 (Lens space L(p,q)). Let p,q be co-prime numbers. We define an action of $G=\mathbb{Z}_p=\{1,e^{2\pi i/p},\cdots,e^{2\pi i(p-1)/p}\}$ on $X=S^3\subset\mathbb{C}^2$ via

$$\tau(e^{2\pi ik/p})(z_1, z_2) = (e^{2\pi ik/p}z_1, e^{2\pi ikq/p}z_2).$$

 $\rightsquigarrow L(p;q) := S^3/\mathbb{Z}_p$ is known as the lens space.

¶ Example: Hopf fibration.

Finally we give an example of a continuous group action (which is not properly discontinuous).

Let's regard the circle group S^1 as

$$S^1 = \{ z \in \mathbb{C} \mid |z| = 1 \}$$

and regard the three dimensional sphere S^3 as

$$S^3 = \{(z_1, z_2) \in \mathbb{C}^2 \mid |z_1|^2 + |z_2|^2 = 1\}.$$

Then we can define an action of S^1 on S^3 via

$$z\cdot(z_1,z_2):=(zz_1,zz_2).$$

Then one has

- (1) Each orbit $S^1 \cdot (z_1, z_2)$ is homeomorphic to a circle.
- (2) The orbit space S^3/S^1 is homeomorphic to S^2 :

A sketch of proof: We let

$$X = \{(z_1, z_2) \in S^3 \mid |z_1| \le |z_2|\}$$

and

$$Y = \{(z_1, z_2) \in S^3 \mid |z_1| \ge |z_2|\}.$$

Note that both X and Y (and thus $X \cap Y$) are invariant under the S^1 -action. So S^3/S^1 can be constructed as gluing X/S^1 and Y/S^1 along the "boundary" $X \cap Y/S^1$ which is a quotient of the torus

$$X \cap Y = (z_1, z_2) \in S^3 \mid |z_1| = |z_2|$$

by S^1 , and thus is a circle. Now consider X/S^1 . We can define a map

$$f: D^2 \to X, z \mapsto \frac{1}{\sqrt{2}}(z, 1)$$

and show that f is a homeomorphism which maps the boundary circle of D^2 to the boundary circle $X \cap Y/S^1$. Similarly Y/S^1 is homeomorphic to a disk whose boundary gets mapped to $X \cap Y/S^1$. As a result, the quotient S^3/S^1 is homeomorphic to the space obtained by gluing two unit disks along their boundary, which is the sphere S^2 !

The quotient map $p: S^3 \to S^3/S^1 \simeq S^2$ is known as the *Hopf fibration* and plays an important role in geometry and topology.