
Topology (H) Lecture 8
Lecturer: Zuoqin Wang
Time: April 1, 2021

COMPACTNESS: DEFINITIONS AND BASIC PROPERTIES

1. Compactness: various definitions and examples

¶ Properties of [0, 1].

As we have mentioned in Lecture 1, compactness is a generalization of finiteness.
The simplest compact sets are finite sets. The next simplest compact set are the
bounded closed intervals. Let’s compare finite sets, [0, 1] and (0, 1):

X = a finite set
a
b

b
X = [0, 1] X = (0, 1)

A continuous
function what
f : X → R

bounded, and attains
its maximal/minimal
values.

(Extremal value property)
bounded, and attains its
maximal/minimal values.

could be un-
bounded, or
bounded without
extremal value.

A sequence
x1, x2, · · · in X

has a constant subse-
quence xn1 = xn2 =
· · · = c ∈ X.

(Bolzano-Weierstrass) has
a convergent subsequence
xn1 , xn2 ,· · ·→c ∈X.

1, 1
2
, 1

3
, · · · has no

convergent sub-
sequence

An infinite sub-
set

a
b

b
A ⊂ X

——— A has a limit point c ∈ X. {1, 1
2
, 1

3
, · · · } has

no limit point

If X =
S
αUα,

with Uα open
∃Uα1 , · · · , Uαk

s.t.
X =

Sk
i=1 Uαi

.
(Heine-Borel) ∃Uα1 ,· · ·,Uαk

s.t. X =
Sk
i=1 Vαi

.

S∞
n=1( 1

n
, 1) no fi-

nite subcovering.

F1 ⊃ F2 ⊃ · · · a
nested sequence
of closed sets

T
kXk 6= ∅ (Cantor)

T
k Fk 6= ∅.

T∞
k=1(0, 1

k
] = ∅.

Remark 1.1. Why the finiteness/compactness is important? Because you can get global
information from local information. (local-to-global principal)
For example, the extremal value property:

local (pointwise) bounded (continuity) + compact  global bounded!
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2 COMPACTNESS: DEFINITIONS AND BASIC PROPERTIES

¶ Definitions of various compactness.

We start with some definitions on coverings:

Definition 1.2. Let (X,T ) be a topological space, and A ⊂ X be a subset.

• A family of subsets U = {Uα} is called a covering of A if A ⊂ Sα Uα.
• A covering U is called a finite covering if it is a finite collection.
• A covering U is called an open covering if each Uα is open.
• A covering V is a sub-covering of U if V ⊂ U .
• A covering V is a refinement of U if for any V ∈ V , there exists U ∈ U such

that V ⊂ U .

One should be aware of the difference between a sub-covering and a refinement.

Now we extend the different aspects of [0, 1] to different notions of compactness:1

Definition 1.3. Let (X,T ) be a topological space.

(1) We say X is compact in X if any open covering U = {Uα} of X admits a finite
sub-covering, i.e. there exists {Uα1 , Uα2 , · · · , Uαk

} ⊂ U s.t. X =
Sk
i=1 Uαi

.2

(2) We say X is sequentially compact if any sequence x1, x2 · · · ∈ X admits a
convergent subsequence xn1 , xn2 , · · · → x0 ∈ X.

(3) We say X is limit point compact if for any infinite subset S ⊂ X, S ′ 6= ∅.

Remark 1.4. Suppose A ⊂ X be a subset, then we say A is compact/sequentially com-
pact/limit point compact if, when endowed with the subspace topology, (A,Tsubspace)
is compact/sequentially compact/limit point compact. Note that by definition,

A ⊂ X is compact ⇐⇒ for any family of open sets U = {Uα} in X
satisfying A ⊂ Sα Uα, one can find Uα1 , · · · , Uαk

∈ U s.t. A ⊂ Skj=1 Uαj
.

¶ Examples of compactness.

Example 1.5. In the Euclidean space Rn,

bounded closed⇔ compact⇔ sequentially compact⇔ limit point compact.

Example 1.6. Consider the space (X,Tcofinite).

• it is compact:
Suppose X ⊂ Sα Uα. Choose arbitrary α1. By definition, Uα1 is open,
so its complement X \Aα1 is a finite set. Now one only need to choose
finitely many elements in A to cover it.

• It is also sequentially compact:

1We only extend three different aspects in the table. We will see in today’s problem set that the
fourth one, the nested sequence property, is equivalent to a new compactness: countably compact.

2The definition of compactness via covering property of open sets was first introduced by Alexan-
droff and Urysohn in 1924.
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This is a consequence of Example 1.6 in Lecture 4: Consider any se-
quence x1, x2, · · · . If no element repents infinitely many times, then
the whole sequence converges to any point. If at least one element
repent infinitely many times, then that gives us a “constant” subse-
quence which converges to that element itself.

• And it is limit point compact:
Reason: For any infinite set S, S ′ = X since U∩S 6=∅ for any open U .

Example 1.7. Consider X = (N,Tdiscrete)× (N,Ttrivial).

• It is NOT compact:
Reason: Let Un = {n} ×N. Then {Un}n∈N is an open covering which
has no finite sub-covering.

• It is also NOT sequentially compact.
Reason: The sequence {xn = (n, 1)} has no convergent subsequence.

• BUT: it is limit point compact:
Reason: In fact, for any S 6= ∅, we have S ′ 6= ∅, since if (m0, n0) ∈ S
and n1 6= n0, then (m0, n1) ∈ {(m0, n0)}′ ⊂ S ′.

¶ Relations between various compactness.

It is not too hard to see that “limit point compact” is the weakest among the three:

Proposition 1.8. Let X be any topological space.

(1) If X is compact, then it is limit point compact.
(2) If X is sequentially compact, then it is limit point compact.

Proof. (1) Suppose X is compact, and S ⊂ X is any subset. Suppose S has no limit
point. Then S is closed since S ′ = ∅ ⊂ S. For each point a ∈ S, since a 6∈ S ′,
one can find an open set Ua ⊂ X s.t. S ∩Ua = {a}. Now {Sc, Ua | a ∈ S} is an
open covering of X. By compactness, there exists a1, · · · , ak ∈ S such that

X = Sc ∪ (
k[

i=1

Uai).

It follows that

S = S
\
X = (

k[

i=1

Uai) ∩ S = {a1, · · · , ak}

is a finite subset.
(2) Suppose X is sequentially compact, and S ⊂ X is any infinite set. Take any

infinite sequence {x1, x2, · · · } ⊂ S s.t. xi 6= xj for i 6= j. Then there exists a
subsequence xn1 , xn2 , · · · → x0 ∈ X. It follows from definition that

x0 ∈ {xn1 , xn2 , · · · }′ ⊂ {x1, x2, · · · }′ ⊂ S ′.

So S ′ 6= ∅. �
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Remark 1.9. (1) We will see later: for topological spaces,
• “compact : sequentially compact”,
• “compact ; sequentially compact”.

(2) We will prove: for metric spaces,
“compact ⇔ sequentially compact ⇔ limit point compact”.3

¶ Characterization of compactness via closed sets.

By applying the “open-closed duality”, we can convert “the definition of compact
sets via open sets” to an equivalent definition via closed sets:

X =
S
α Uα, Uα open

⇒ ∃Uαi
, X=

Sk
i=1 Uαi

.
⇔ ∅ =

T
α Fα, Fα closed

⇒ ∃Fαi
, ∅=

Tk
i=1 Fαi

.
⇔ Tk

i=1 Fαi
6= ∅ for any finite

collection {Fα1 , · · · , Fαk
}

⇒ T
α Fα 6= ∅.

So we arrive at

Proposition 1.10 (Characterize compactness via closed sets).
A topological space X is compact if and only if it satisfies the following property:

[Finite Intersection Property] If F = {Fα} is any collection of
closed sets s.t. any finite intersection

Fα1 ∩ · · · ∩ Fαk
6= ∅,

then ∩αFα 6= ∅.

As a consequence, we get

Corollary 1.11 (Nested sequence property). Let X be compact, and

X ⊃ F1 ⊃ F2 ⊃ · · ·
be a nested sequence of non-empty closed sets. Then

T∞
n=1 Fn 6= ∅.

¶ Characterization of compactness via basis/sub-basis.

It is NOT surprising that we can characterize compactness via “basis covering”:

Proposition 1.12. Let B be a basis of (X,T ). Then X is compact if and only if any
basis covering U ⊂ B of X, one can find a finite sub-covering.

Proof. Suppose X is compact, and let U ⊂ B be any basis covering. Since B ⊂ T , U
is automatically an open covering. So it admits a finite sub-covering.

Conversely suppose any basis covering of X admits a finite sub-covering, and let
U be any open covering of X. For any x ∈ X, there exists Ux ∈ U and Ux ∈ B s.t.

x ∈ Ux ⊂ Ux.

3But they are not equivalent to “bounded closed” in a general metric space.
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Since {Ux} is a basis covering of X, there exist Ux1 , · · · , Uxm s.t. X =
Sn
i=1 Uxi . It

follows that for Ux1 , · · · , Uxn ∈ U , X =
Sn
i=1 U

xi , so X is compact. �

It is natural to extend this proposition to sub-basis.

Theorem 1.13 (Alexander sub-basis theorem). Let S be a sub-basis of (X,T ). Then
X is compact if and only if any sub-basis covering U ⊂ S of X has a finite sub-covering.

Surprisingly, the proof is much more harder and it is equivalent to the axiom of
choice! We will postpone the proof to next lecture.

2. Proposition of compactness

¶ Compactness v.s. continuous map.

Among the three different compactness, compactness and sequentially compactness
are more important because they are preserved under continuous maps:

Proposition 2.1. Let f : X → Y be continuous.

(1) If A ⊂ X is compact, then f(A) is compact in Y .
(2) If A ⊂ X sequentially compact, then f(A) is sequentially compact in Y .

Proof. (1) Suppose A is compact. Given any open covering V = {Vα} of f(A), the
pre-image U = {f−1(Vα)} is an open covering of A. By compactness, there exists
α1, · · · , αk such that A⊂Ski=1 f

−1(Vαi
). It follows f(A)⊂Ski=1 Vαi

, i.e. f(A) is compact.

(2) For any sequence y1, y2, · · · in f(A), there exists x1, x2, · · · in A such that
f(xi) = yi. Since A is sequentially compact, there exists a convergent subsequence
xn1 , xn2 , · · · → x0 ∈ A. It follows from the continuity of f that yn1 , yn2 , · · · → f(x0) ∈
f(A). So f(A) is sequentially compact. �

Remark 2.2. The image of a limit point compact space under a continuous map need
not be limit point compact. For example, as we have just seen, the product space
X = (N,Tdiscrete)×(N,Ttrivial) is limit point compact. We also know that the projection

π1 : (N,Tdiscrete)× (N,Ttrivial)→ (N,Tdiscrete)

is continuous. However, the image (N,Tdiscrete) is not limit point compact since A′ = ∅
for any subset in any space with discrete topology.

Since a subset in R is compact (with respect to the usual topology) if and only if
it is sequentially compact if and only if it is bounded and closed, we immediately get

Corollary 2.3 (The extremal value property). Let f : X → R be any continuous
map. If A ⊂ X is compact or sequentially compact in X, then f(A) is bounded in R.
Moreover, there exists a1, a2 ∈ A s.t. f(a1) ≤ f(x) ≤ f(a2) for ∀x ∈ A.

Proof. By Proposition 2.1, f(A) is bounded closed in R. The conclusion follows. �
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Since any quotient map is continuous, we have

Corollary 2.4. The quotient space of any compact/sequentially compact space is still
compact/sequentially compact.

So in particular, RPn and the Klein bottle are compact.

¶ Proper maps.

In general, the pre-image of a compact set under a continuous map is no longer
compact. Such examples are easy to construct.

Definition 2.5. Let X, Y be topological spaces. A map f : X → Y is called a proper
map if for any compact set B ⊂ Y , its pre-image f−1(B) is compact in X.

Remark 2.6. Why do we study proper maps? Here is one reason: Recall that the
morphism between topological spaces are continuous maps, since they pull-back open
sets to open sets. On the other hand, usually topological properties of compact sets
are easier (since we have the “local-to-global” principle). As a result, some topological
invariants are defined only for compact objects, or for “compactly-supported” object-
s. For the latter case, the correct “morphism” should be continuous proper maps,
since proper maps can pull-back compactly-supported objects to compactly supported
objects. This is the case, for example, in studying compactly supported cohomology
groups.

¶ Subspace of a compact space.

As usual, we would like to construct new compact spaces from old compact spaces,
or even non-compact spaces. The first candidates one can look at is: subspaces of
a compact space. Unfortunately, it is easy to see that a compact space could have
non-compact subspace, e.g. (0, 1) is a subspace of [0, 1].

We can take a closer look at the problem: which subsets of [0, 1] remain to be
compact? We know that a set in R is compact if and only if it is bounded and closed.
If A is a subset of [0, 1], it is automatically bounded. So for a subset A ⊂ [0, 1] to be
compact, it is enough to require A to be closed.

It turns out that for more general topological spaces, it is also enough to require
closedness for a subset to be compact:

Proposition 2.7. Let A ⊂ X be a closed subset.

(1) If X is compact, then A compact.
(2) If X is sequentially compact, then A is sequentially compact.
(3) If X is limit point compact, then A is limit point compact.

Proof. Let A ⊂ X be closed.
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(1) For any open covering U of A, U ∪ {Ac} is an open covering of X, which
admits a finite sub-covering U1, · · · , Um, Ac. It follows

A ⊂ U1 ∪ · · · ∪ Um,
i.e. {U1, · · · , Um} is a finite sub-covering of U .

(2) For any sequence x1, x2, · · · ∈ A, it is a sequence in X, and thus has a convergent
sequence xnk

→ x0 ∈ X. Since A is closed and x0 ∈ A.
(3) For any infinite subset S ⊂ A, we have S ′ 6= ∅ in X. But S ′ ⊂ A′ ⊂ A, so

S ′ 6= ∅ in A. �

¶ Compact v.s. Hausdorff.

However, it is important to point out that a compact subset of a compact set need
not be closed. For example, for (X,Ttrivial), any subset is compact.

Definition 2.8. We say a topological space (X,T ) is Hausdorff if for any x1 6= x2 ∈
X, there exists open sets U1 3 x1 and U2 3 x2 s.t. U1 ∩ U2 = ∅
Remark 2.9. Hausdorff property is one of the most widely assumed property in ap-
plications. For example, one can easily see that (check!) in a Hausdorff space, if a
sequence converges, then the limit is unique.

We will study Hausdorff property and other separation axioms in detail later.

Although it seems that compactness and Hausdorff property are very different, it
turns out that they are “the dual” to each other in the following sense:

Proposition 2.10. (1) If (X,T ) is compact, then
(a) Every closed subset in X is compact.
(b) If T ′ ⊂ T , then (X,T ′) is compact.
(c) (X,Ttrivial) is always compact.

(2) If (X,T ) is Hausdorff, then
(a) Every compact subset in X is closed.
(b) If T ′ ⊃ T , then (X,T ′) is Hausdorff.
(c) (X,Tdiscrete) is always Hausdorff.

Proof. We have proved (1)(a). It is trivial to check (1)(b), (1)(c) and (2)(b), (2)(c).

So it remains to prove (2)(a): Let A ⊂ X be compact, x0 ∈ X \A. For any y ∈ A,
we can find Uy 3 x0 and Vy 3 y s.t. Uy ∩ Vy = ∅. Since A ⊂ ∪y∈AVy, one can find
y1, · · · , ym s.t. A ⊂ Vy1 ∪ · · · ∪ Vym ⇒ Uy1 ∪ · · · ∪ Uym ⊂ X \ A. So X \ A is open. �

Remark 2.11. So compact topologies “tends to be weak”, Hausdorff topologies “tends
to be strong”. In particular, compact Hausdorff spaces form a very special class of
topological spaces: If T is a compact Hausdorff topology on X, T1 and T2 are two
topologies on X such that T1 $ T $ T2, then (X,T1) is NOT Hausdorff, and (X,T2)
is NOT compact. Thus for a compact Hausdorff space,
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