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STONE-WEIERSTRASS THEOREM

1. The uniform topology

¶ Three Topologies on M(X, Y ).

Let X be any set, and Y a metric space. Consider the space of maps,

M(X, Y ) = Y X = the space of all maps from X to Y .

On M(X, Y ) = Y X we have studied three topologies:

(1) the product topology, generated by the sub-basis

Sproduct =
n
π−1x

�
BY (yx, rx)

� ��� ∀x ∈ X, ∀yx ∈ Y, ∀rx > 0
o
.

(2) the box topology, generated by the basis

Bbox =

( Y
x∈X

�
BY (yx, rx)

� ����� ∀yx ∈ Y, ∀rx > 0

)
.

(3) Since Y is a metric space, we can define the uniform metric (See PSet 1-2-4-c)

du(f, g) := sup
x∈X

dY
�
f(x), g(x)

�
1 + dY

�
f(x), g(x)

� .
We have seen in PSet 1-2-4-c that du is a metric on M(X, Y ) and

fn → f uniformly 1⇐⇒ fn → f in (M(X, Y ), du).

Definition 1.1. The metric topology induced by du on M(X, Y ) is called the
uniform topology on M(X, Y ).

Remarks 1.2. As we know, the product topology coincides with the “pointwise conver-
gence topology”. Just as PSet 3-1-3(a), one can prove: the uniform topology is weaker
than the box topology, but stronger than the product topology. Moreover, for any
infinite set X and “non-trivial” Y , the three topologies are pairwise different. [They
are the same for finite set X.]

Similar to the proof of completeness of B(X, Y ) in PSet 5-1-1(b), we have (exercise.)

Proposition 1.3. Suppose Y is complete. Then du is a complete metric on M(X, Y ).

1Note: To define “uniform convergence” for maps in M(X,Y ), we don’t need metric structure or
even topological structure on X. We only need the metric structure on Y .
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2 STONE-WEIERSTRASS THEOREM

¶ The uniform topology on C(X, Y ).

Now suppose (X,T ) is a topological space. Then we can talk about continuity of
maps in M(X, Y ). In particular, we can study the space of continuous maps,

C(X, Y ) := {f ∈M(X, Y ) | f is continuous }.
As in PSet 1-2-4(b), we have (exercise)

Proposition 1.4. C(X, Y ) is a closed subset of (M(X, Y ), du).

Remark 1.5. In general C(X, Y ) is NOT closed in (M(X, Y ),Tproduct) or (M(X, Y ),Tbox).

As a consequence,

Corollary 1.6. If Y is complete, then (C(X, Y ), du) is complete.

Remark 1.7. Suppose X is compact. Then C(X, Y ) ⊂ B(X, Y ). On B(X, Y ) we have
a simpler metric d∞(f, g) := supx∈X |f(x)− g(x)|. It is easy to prove that fn → f with
respect to du if and only if fn → f with respect to d∞. In other words, both du and
d∞ induces the same topology on C(X, Y ). So in the case X is compact, we may (and
will) use d∞ instead of du, to make computation a bit simpler.

In the remaining of today’s lecture, we will concentrate only on C(X,R) or C(X,C),
viewed as a subspace inM(X,R) orM(X,C). We will assume X is compact and thus
use the metric d∞.

2. The Stone-Weierstrass Theorem

¶ Weierstrass Approximation Theorem.

We are familiar with the space (C([0, 1],R), d∞) in mathematical analysis. In par-
ticular, we have learned

Theorem 2.1 (Weierstrass Approximation Theorem, 1885). The set of polynomials,
P([0, 1]), is dense in (C([0, 1],R), d∞). In other words, for any ε > 0 and any f ∈
C([0, 1],R), there exists a polynomial P such that

sup
x∈[0,1]

|f(x)− P (x)| < ε.

Proof. Here is a “probabilistic proof ” by S. Bernstein2 in 1912:

Bn(f)(x) :=
nX
i=0

f(
i

n
) ·
 
n

i

!
xi(1− x)n−i

uniformly−→ f. �

As a consequence,

2Sergei Natanovich Bernstein, 1880-1968, Russian and Soviet mathematician known for contribu-
tions to partial differential equations, differential geometry, probability theory, and approximation
theory. He was the founder of the constructive theory of functions, and he introduced a priori esti-
mates in PDE.
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Corollary 2.2. For any 0 < ε, δ < 1
2
, there exists a polynomial q = q(t) with q(0) = 0

and q([0, 1]) ⊂ (−δ, 1 + δ), such that

q([0, ε)) ⊂ (−δ, δ) and q((2ε, 1]) ⊂ (1− δ, 1 + δ).

Proof. According to the Weierstrass approximation theorem, there is a polynomial
q1 ∈ P([0, 1]) such that:

|q1(t)− f0(t)| <
δ

2
, where f0(t) =

8><
>:

0 on [0, ε],

linear on [ε, 2ε],

1 on [2ε, 1].

Then let q(t) = q1(t)− q1(0). 3 �

¶ C(X,R) as a unitary algebra.

One main purpose today is to extend Weierstrass approximation theorem to more
general topological spaces. In the remaining of this lecture, unless otherwise stated we
will always assume

Assumption: X is a compact Hausdorff space.

Of course in general we will no longer have the conception of polynomials on topological
spaces. But still we can ask:

Question: Can we approximate C(X,R) by a relative simple subset of functions?

In the case of Weierstrass approximation theorem, we used the subset

P([0, 1]) = the space of polynomials.

Observation: C([0, 1],R) is an algebra, and P([0, 1]) is a subalgebra in C([0, 1],R).

Definition 2.3. An algebra A is a vector space with a bilinear multi-
plication structure which is distributive. In other words, an algebra is a
triple (A,+, ·) such that
• (A,+) is a vector space (over a field, say, R or C).
• The product · : A×A → A is a binary operation such that for any
x, y, z ∈ A and any scalars a, b,

– (distributive) (x+y) ·z = x ·z+y ·z, x ·(y+z) = x ·y+x ·z.
– (compatibility) (ax) · (by) = (ab)(x · y).

Definition 2.4. An algebra is unitary (or unital) if it has an identity
element with respect to the multiplication: 1 · x = x · 1 = x.

Obviously both C([0, 1],R) and P([0, 1]) are unitary algebras.

3One can also construct a function of the form q(t) = 1− (1− tm)n explicitly.
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It is trivial to define the conception of subalgebra. As in the case of topological vector
space, one can also define a topological algebra to be a topological vector space A which
is also an algebra, such that the product map · : A×A → A is (jointly) continuous. A
subalgebra of a topological algebra is called a closed subalgebra if it is both a subalgebra
and a closed subspace. One can prove

Proposition 2.5. Let A be a topological algebra, and A1 ⊂ A a subalgebra. Then the
closure A1 is a (closed) subalgebra of A.

For the remaining of this section, we will endow C(X,R) with the uniform topology
(the topology generated by d∞), so that C(X,R) is a unitary topological algebra.

¶ Two conditions: “vanishes at no point” and “separates points”.

Now let A ⊂ C(X,R) be a subalgebra. We want to find out conditions such that
A is dense in C(X,R). To do so, we first start with examples where A is NOT dense:

Example 2.6.

(1) Consider

A =

(
f =

nX
k=1

akx
k

����� n ∈ N, ak ∈ R
)
⊂ C([0, 1],R).

Then A is a sub-algebra in C([0, 1],R) but it is NOT dense since

f(0) = 0, ∀f ∈ A,
which implies: by using functions in A only, you can’t approximate any function
that is nonzero at x = 0.

(2) Consider

A =

(
f =

nX
k=0

(ak cos(kx) + bk sin(kx))

����� n ∈ N, ak, bk ∈ R
)
⊂ C([0, 2π],R).

Then A is a subalgebra of C([0, 2π],R) but it is NOT dense since

f(0) = f(2π), ∀f ∈ A,
which implies: by using functions in A only, you can’t approximate any function
with f(0) 6= f(2π).

It turns out that they are “the only bad examples”.

Definition 2.7. We say a subalgebra A ⊂ C(X,R)

(1) vanishes at no point if ∀x ∈ X, ∃f ∈ A such that f(x) 6= 0.
(2) separates points if ∀x 6= y ∈ X, ∃f ∈ A such that f(x) 6= f(y).4

Obviously if A is unitary, then it vanishes at no point. Conversely,

4Note: X has to be Hausdorff, otherwise no subalgebra of C(X,R) separates points.
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Proposition 2.8. If a subalgebra A of C(X,R) vanishes at no point, then 1 ∈ A, i.e.
A is unitary.

Proof. For any x ∈ X, there exists fx ∈ A such that fx(x) 6= 0. Let

Ux = {y | fx(y) 6= 0}.

Then {Ux} is an open covering of X. So there exist points x1, · · · , xm such that
X ⊂ Ux1 ∪ · · · ∪ Uxm . Let

f1(x) = f 2
x1

+ · · ·+ f 2
xm ∈ A.

Then f1(x) > 0 for all x ∈ X. By compactness of X, there exist a, b > 0 such that
a 6 f1(x) 6 b for any x ∈ X. This shows that

a

b
6
f1(x)

b
6 1,∀x ∈ X.

For any δ > 0, by Corollary 2.2, there exists q ∈ P([0, 1]) with q(0) = 0 such that

f(x) := q(
f1(x)

b
) ⊂ (1− δ, 1 + δ),

i.e. d∞(f, 1) < δ. Finally f ∈ A since q ∈ P([0, 1]) with q(0) = 0. �

Note: In the proof we actually proved: A subalgebra of C(X,R) vanishes at no
point if and only if it contains a nonzero function.

¶ Stone-Weierstrass Theorem, Version 1.

In 1937, M. Stone5 generalized Weierstrass approximation theorem to compact
Hausdorff spaces:

Theorem 2.9 (Stone-Weierstrass Theorem for compact Hausdorff space, Version 1).
Let X be any compact Hausdorff space. Let A ⊂ C(X,R) be a subalgebra which vanishes
at no point and separates points. Then A is dense in C(X,R).

Stone-Weierstrass theorem is one of the most useful theorem in modern analysis.
Its importance cannot be overemphasized. In his book “General Topology” Kelly wrote

This is unquestionably the most useful known result on C(X).

5Marshall Harvey Stone (1903-1989), American mathematician who contributed to real analysis,
functional analysis, topology and the study of Boolean algebras. He is known for Stone-von Neumann
theorem (1930), Stone-Čech compactification (1934), Stone’s representation theorem and Stone duality
(1936), Banach-Stone theorem (1937), Stone-Weierstrass Theorem (1937 and 1948) etc. NOTE: There
was another mathematician “Stone” who contributed to topology, Arthur Harold Stone (1916-2000),
a British mathematician. A. Stone is known for Stone’s theorem (Every metric space is paracompact)
and Stone metrization theorem.



6 STONE-WEIERSTRASS THEOREM

We will see some of its applications in today’s PSet. The theorem has been further
generalized or extended to many different contexts, and there still exist attractive
unsolved problems associated with it.

For the remaining of today’s lecture we will prove Stone-Weierstrass theorem, and
discuss several of its generalizations. You can see how such a great theorem grows in
some expected and some unexpected way.

¶ Stone-Weierstrass Theorem, Version 2 and proof.

According to Proposition 2.5 and Proposition 2.8, Theorem 2.9 is equivalent to

Theorem 2.10 (Stone-Weierstrass Theorem for compact Hausdorff space, Version 2).
Let X be compact Hausdorff, and A ⊂ C(X,R) be a closed unitary subalgebra which
separates points. Then A = C(X,R).

Proof. 6 We start with two observations which hold for any closed unitary subalgebra:

Observation 1. f ∈ A =⇒ |f | ∈ A.

Reason: Since f is bounded, by Weierstrass approximation theorem,
there exists a sequence of polynomials pn(t)→

√
t uniformly on [0, |f |2∞].

So
pn ◦ f 2 −→

È
f 2 = |f | uniformly.

By closedness of A, |f | ∈ A.

Observation 2. fk ∈ A =⇒ max{f1, · · · , fn} ∈ A, min{f1, · · · , fn} ∈ A.

This follows from

max{f, g} =
f + g + |f − g|

2
, min{f, g} =

f + g − |f − g|
2

.

Now we prove the theorem. Let f ∈ C(X,R). We need to find fε ∈ A such that
d∞(f, fε) < ε. For any a 6= b ∈ X, since A separates points, there exists g ∈ A such
that g(a) 6= g(b). Let

fa,b(x) = f(a) +
f(b)− f(a)

g(b)− g(a)
(g(x)− g(a)).

Then fa,b ∈ A and fa,b(a) = f(a), fa,b(b) = f(b). Now consider the sets

Ua,b,ε := {x ∈ X | fa,b(x) < f(x) + ε}.
By continuity of f and fa,b, it is open. Moreover, for any b and ε fixed, {Ua,b,ε}a∈X is
an open covering of X. By compactness of X, we can find a finite sub-covering

{Ua1(b,ε),b,ε, Ua2(b,ε),b,ε, · · · , Uan(b,ε),b,ε}.
It follows

f εb := min{fa1(b,ε),b, fa2(b,ε),b, · · · , fan(b,ε),b} < f + ε on X.

6For another elementary and more “constructive” proof, see my lecture notes in 2019.
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Note that by Observation 2, f εb ∈ A. Moreover, by definition, f εb (b) = f(b). So the sets

Vb,ε := {x ∈ X | f εb (x) > f(x)− ε}
is again an open covering of X when we vary b. By compactness, we can find a finite
sub-covering

{Vb1,ε, Vb2,ε, · · · , Vbm,ε}.
It follows

f + ε > fε := max{f εb1 , f
ε
b2
, · · · , f εbm} > f − ε on X.

Using Observation 2 again, we get fε ∈ A. The proof is completed. �

¶ Stone-Weierstrass Theorem, Version 3.

We can also state the Stone-Weierstrass Theorem in the following form:

Theorem 2.11 (Stone-Weierstrass Theorem for compact Hausdorff space, Version 3).
Let X be compact Hausdorff, and A ⊂ C(X,R) be a subalgebra which separates points.
If A is NOT dense, then there exists a unique x0 ∈ X such that

A = {f ∈ C(X,R)|f(x0) = 0}.

Proof. Since A 6= C(X,R), there must exists an x0 such that f(x0) = 0 for all f ∈ A.
Moreover, such x0 must be unique since A separates points. So there exists a unique
x0 ∈ X with

A ⊂ {f ∈ C(X,R) | f(x0) = 0}.
Conversely, any f ∈ C(X,R) satisfying f(x0) = 0 can be approximated by fn ∈ A1,

where A1 is the unitary subalgebra generated by A and constant functions. It follows
that fn − fn(x0) ∈ A and fn − fn(x0) → f since fn(x0) → f(x0) = 0. The conclusion
follows. �

¶ Stone-Weierstrass Theorem for complex-valued functions.

We only considered Stone-Weierstrass theorem for real valued functions above.
In general the theorem does not hold for the algebra of complex-valued continuous
functions. For example, the algebra of complex polynomials on D (the closed unit disc
in C) is a unitary complex subalgebra which separate points, but it is not dense in
C(D,C), since the function f(z) = z̄ cannot be approximated by complex polynomials:
If pn(z)→ f(z) = z̄, then we would get

0 =
Z 2π

0
pn(eit)eitdt→

Z 2π

0
e−iteitdt = 2π,

a contradiction. However, if we we assume the subalgebra A is self-adjoint, i.e. closed
with respect to conjugation: 7

f ∈ A =⇒ f̄ ∈ A,
7A complex algebra with such a conjugation operation is called a ∗-algebra. We will denote f∗ = f̄ .
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then we rescue the theorem:

Theorem 2.12 (Stone-Weierstrass Theorem for complex-valued functions). Let X be
compact Hausdorff, and A ⊂ C(X,C) be a complex subalgebra 8 which separates points
and vanishes at no point. Moreover, assume A is self-adjoint, then A is dense in
C(X,C).

The proof will be left as an exercise.

¶ A long remark: algebraization of topology.

Back to the case of compact Hausdorff space X. Note that C(X,C) is a Banach
space with respect to the norm

‖f‖ := du(f, 0).

Moreover, the product, norm and conjugation are “compatible” in the following sense

‖fg‖ ≤ ‖f‖ · ‖g‖ and ‖f̄f‖2 = ‖f‖2.
In general,

Definition 2.13. An C∗-algebra (A,+, ·, ∗, ‖ · ‖) is a complex algebra (A,+, ·) with
an involution ∗ : A → A, and a norm ‖ · ‖, so that

(1) (A,+, ·, ∗) is a ∗-algebra, i.e.
• x∗∗ = x,
• (x+ y)∗ = x∗ + y∗, (xy)∗ = y∗x∗,
• (λx)∗ = λ̄x∗.

(2) (A,+, ·, ‖ · ‖) is a Banach algebra, i.e. (A,+, ‖ · ‖) is a Banach space, and
‖xy‖ ≤ ‖x‖‖y‖.

(3) compatibility between the ∗-algebra structure and the Banach structure: ‖x∗x‖ =
‖x∗‖‖x‖.

So C(X,C) is a commutative unitary C∗-algebra. It turns out that not onlyX deter-
mines C(X,C), but also the commutative C∗-algebra C(X,C) determines the compact
Hausdorff space X:

Theorem 2.14 (Banach-Stone). Two compact Hausdorff spaces X1 and X2 are home-
omorphic if and only if C(X1,C) and C(X2,C) are isomorphic.

And a remarkable theorem in the theory of operator algebra, proven by Israel
Gelfand9 and Mark Naimark in 1943, claims that any (abstract) unitary commutative

8In other words, the scalars a and b in Definition 2.3 are complex numbers now.
9Israel M. Gelfand (1913-2009), one of the greatest mathematicians of the 20th century who made

significant contributions to many branches of mathematics, including group theory, representation
theory and functional analysis, as well as in mathematics education. I will not list his contributions
because the list is too long, but only mention that he was awarded the first Wolf Prize in 1978, and
that he was awarded Order of Lenin three times.
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C∗-algebra arises in this way and thus gives an explicit construction from C(X,C) to
X:

Theorem 2.15 (Gelfand-Naimark). Any (abstract) unitary commutative C∗-algebra
A is isomorphic to C(X,C) for some compact Hausdorff space X.

Remark 2.16. Here is a rough sketch explaining how to construct such a compact
Hausdorff space form a unitary commutative C∗-algebra A: An character of A is
defined to be an algebra homomorphism φ : A → F. The space we want to construct
is the set of non-zero characters, Σ, on which we endow a topology as follows. Note
that A is a Banach space, and every character is an element in the dual space A∗.
Moreover, each character φ has (dual) norm ≤ 1 in A∗, i.e. the set of characters Σ is
a subset in B(A∗). According to the Banach-Alaoglu theorem in Lecture 10, B(A∗) is
a compact Hausdorff space with respect to the weak-* topology. One can show that Σ
is weak-* closed, and thus is also compact and Hausdorff.

In other words, one can replace a space (a geometric notion) by an algebra, with
no loss. By extending this duality between functions and spaces, one may philosophi-
cally regard the more complicated noncommutative C∗-algebras as “non-commutative
spaces”. This leads to a new branch of mathematics: noncommutative geometry.


