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CONNECTEDNESS

1. Connectedness: Definitions and examples

¶ Connectedness: The definition.

Connectedness is one of the simplest/most useful topological properties. It is in-
tuitive and is relatively easy to understand, and, it is a powerful tool in proving many
well-known results, e.g. the intermediate value theorem (see Lecture 1).

For topological spaces which have simple pictures, it is easy to tell whether the space
is connected or not. But for more complicated spaces, it may be more complicated to
tell whether the space is connected or not.

Figure 1. Connected or disconnected

For abstract topological spaces that we don’t know how to draw a picture, we al-
so want to ask the question of connectedness. For example, the discrete topological
space (with more than one element) should be very disconnected. But, is the Sor-
genfrey line connected or disconnected? Is the space of continuous functions on [0, 1]
connected or disconnected? Of course some of these problems are not quite interest-
ing. However, people do concern on the following problems which arise naturally in
analysis: Is C(S1,R2) connected? Is C(S1,R2 \ {0}) connected? Is the path space
{γ ∈ C([0, 1], X) | γ(0) = γ(1)} connected?

So we need a rigorous definition of connectedness (via the collection of open sets).
Before we give such a rigorous definition, let’s first look at a couple sets in R

(a) (0, 3) (b) (0, 1) ∪ [2, 3) (c) (0, 1) ∪ (1, 3] (d) (0, 1] ∪ (1, 3)

Of course (a) is connected, (b) and (c) are disconnected, while (d) is connected! Al-
though (d) looks like a union of two intervals, they are really one interval (0, 3) written
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2 CONNECTEDNESS

as a disjoint union of two subsets. The two subsets (0, 1] and (1, 3) are “attached”
together at the point 1, which is an element of (0, 1], but sits inside the closure of
(1, 3]. For the case (c), although the two “components” (0, 1) and (1, 3] sit “next to
each other”, it is still disconnected because (0, 1) contains no element in the closure of
(1, 3], and (1, 3] contains no element in the closure of (0, 1).

This example motivates us to define connectedness. Unlike most other conceptions
that you learned, connectedness is defined by its opposite:

Definition 1.1. Let (X,T ) be a topological space.

(1) We say X is disconnected, if there exists non-empty sets A,B ⊂ X such that

X = A ∪B and A ∩B = A ∩B = ∅.
(2) We say X is connected if it is not disconnected.
(3) We say a subset in X is connected/disconnected if it is connected/disconnected

with respect to the subspace topology.

Note that by definition, the empty set is connected!

¶ Connectedness: Equivalent characterizations.

The definition above is intuitive but is also a little bit complicated. Fortunately
we have several other equivalent ways to describe connectedness.

Proposition 1.2 (Equivalent definitions/characterizatoins of connectedness).

For a topological space X, the following are equivalent:

(1) X is disconnected,
(2) there exist non-empty disjoint open sets A,B ⊂ X s.t. X = A ∪B,
(3) there exist non-empty disjoint closed sets A,B ⊂ X s.t. X = A ∪B,
(4) there exist A 6= ∅, A 6= X such that A is both open and closed in X.
(5) there exists a surjective continuous map f : X → {0, 1}.

Proof. We have (2)⇐⇒ (3)⇐⇒ (4) because

X = A ∪B and A ∩B = ∅ ⇐⇒ Ac = B and A = Bc.

The conclusion (1) =⇒ (3) follows from

A ∩B = ∅, X = A ∪B =⇒ B = B ∩B = X ∩B = B,

which implies that B is closed. Similarly A is closed.
Finally to prove (3) =⇒ (1), we take disjoint closed sets A,B in X such that

X = A ∪B.
Then A ∩B = A ∩B = ∅ and similarly A ∩B = ∅.

Finally we have (5) =⇒ (2) trivially, and we have (2) ⇐⇒ (5) because we can
define f(A) = 0 and f(B) = 1, which is continuous by definition. �
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¶ Examples of connected and disconnected spaces.

Example 1.3. (X,Ttrivial) is connected, while (X,Tdiscrete) is disconnected for |X| ≥ 2.

Example 1.4. Q ⊂ R is disconnected, since

Q = ((−∞,−
√

2) ∩Q) ∪ ((−
√

2,+∞) ∩Q).

Note that the only connected subsets in Q are single point sets, since there exist
irrational numbers between any two rational numbers. [However, the induced subspace
topology on Q is NOT the discrete topology!]

Definition 1.5. We say a topological space is totally disconnected if the only connected
subsets are single point sets.

Example 1.6. Q, Qc, the Cantor set, discrete spaces are all totally disconnected.

Example 1.7. The Sorgenfrey line (R,TSorgenfrey) is totally disconnected: For any sub-
set A ⊂ R with at least two elements, say, a < b, we take c ∈ (a, b). By definition,
both (−∞, c) = ∪x<c[x, c) and [c,+∞) are open in (R,TSorgenfrey). It follows that
A = A1 ∪ A2, where A1 = A ∩ (−∞, c) and A2 = A ∩ [c,∞) are both non-empty and
open.

Example 1.8. R is connected (w.r.t. the usual Euclidean topology).

Proof. Suppose R is disconnected. Then there exists an open set U ⊂ R
s.t. U c is also open, and U 6= ∅, U c 6= ∅. Without loss of generality, we
assume that there exist a < b such that a ∈ U and b ∈ U c. Let

A = {x ∈ U | x < b}
and let c = supA. Then
• c /∈ U : If c∈U , then ∃ε > 0 s.t. b > c+ ε ∈ U , a contradiction.
• c /∈ U c: If c∈U c, then ∃ ε > 0 s.t. (c−ε, c] ⊂ U c, a contradiction.

So c /∈ U ∪ U c = R, a contradiction! �

Remark 1.9. By the same proof, one can show that all intervals

(a, b), [a, b], {a}, (a, b], [a, b), (a,+∞), [a,+∞), (−∞, b], (−∞, b), (−∞,+∞)

are connected. Conversely, by an argument similar to Example 1.4, one can show that
these intervals are the only non-empty connected subsets of R.

Remark 1.10. In the proof we only used the fact that R has an order relation < s.t.

(1) Any subset that is bounded above has a least upper bound.
(2) For each pair x < y, ∃x s.t. x < z < y.

So the same result holds for any totally ordered set satisfying (1),(2) (called “Dedekind
complete”) equipped with the order topology.
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¶ The continuity method.

In particular we see any interval (including R itself) is connected. This is a simple
but very useful fact.

The continuity method:

To show a family of properties P (t) hold for all t ∈ I, it suffices to check
(a) ∃ t0 ∈ I s.t. P (t0) holds.
(b) {t | P (t) holds} is open in I.
(c) {t | P (t) holds} is closed in I.

=⇒ P (t) holds for all t ∈ I.
For example, in proving Calabi conjecture, S.T.Yau need to solve the so-called Monge-
Ampére equation MA(ϕ) = F . He constructed a family Ft with F1 = F , so that
the equation MA(ϕ) = F0 could be solved easily. Then he proved that the set S =
{t | MA(ϕ) = Ft admits a solution } is both open (this step is relatively easy and is
also known as the method of continuity) and closed (this step is the hard part where
he need to prove various a priori estimates).

Here is a simple example illustrating how to use the continuity method:

Example 1.11. If f : R→ R is a real analytic function, and there exists x0 ∈ R s.t.

f (n)(x0) = 0, ∀n.
Then f(x) ≡ 0.

Proof. Let S = {x ∈ R | f (n)(x) = 0,∀n}. Then

• x0 ∈ S =⇒ S 6= ∅.
• S is open: x ∈ S =⇒ any y within the convergence radius of f at x lies in S.
• S closed: xn ∈ S, xn → x0 =⇒ x0 ∈ S.

Conclusion: S = R, i.e. f(x) ≡ 0. �

Remark 1.12. One may regard the continuity method as a “continuous version” of
mathematical induction. Sometimes to prove P (t), one need to introduce auxiliary
properties A(t) and apply the following variation of continuity method (for example,
c.f. T. Tao, Nonlinear dispersive equations, §1.3.)

Abstract bootstrap principle:

To show a family of properties P (t) hold for all t ∈ I, one may introduce
auxiliary properties A(t) with the same set of parameters t, and check
(a) For any t, A(t) implies P (t)
(b) If P (t0) holds, then A(t) holds for t near t0
(c) {t | P (t) holds} is closed in I.
(d) ∃ t0 ∈ I s.t. A(t0) holds.

=⇒ P (t) holds for all t ∈ I.
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2. Consequences of connectedness

¶ Generalized intermediate value theorem.

We list a couple properties of connected spaces. The first property is the one we
have mentioned in Lecture 1:

Proposition 2.1 (Generalized Intermediate value theorem). Suppose f : X → Y is
continuous. Then for any connected subset A ⊂ X, the image f(A) ⊂ Y is connected.

Proof. By contradiction we suppose f(A) is disconnected. Then there exist non-empty
open sets V1, V2 in Y with Vi ∩ f(A) 6= ∅ (i = 1, 2) and V1 ∩ V2 ∩ f(A) = ∅, s.t.

f(A) = (V1 ∩ f(A)) ∪ (V2 ∩ f(A)).

Now let Ai = f−1(Vi) ∩ A. Then A1, A2 6= ∅, A1 ∩ A2 = ∅, and

f(A) ⊂ V1 ∪ V2 =⇒ A = A1 ∪ A2,

which is a contradiction. �

Remark 2.2. Of course it may happen that the image of a disconnected set under a
continuous map is connected.

In particular connectedness is a topological property:

Corollary 2.3. If f : X → Y is a homeomorphism, then X is connected if and only
if Y is connected.

Since the only connected subsets in R are intervals, we get

Corollary 2.4 (Intermediate value theorem). If X is connected, f : X → R is contin-
uous, and if there exist x1, x2 ∈ X s.t. f(x1) = a < b = f(x2), then for any a < c < b,
there exists x ∈ X s.t. f(x) = c.

Proof. f(X) is an interval containing a and b, and thus contains c. �

Another immediate consequence is

Corollary 2.5 (Borsuk-Ulam Theorem, n = 1). For any continuous map f : S1 → R,
there exists x0 ∈ S1 such that f(x0) = f(−x0).

Proof. Define F : S1 → R by F (x) = f(x) − f(−x). Pick any a ∈ S1. If F (a) = 0,
we are done. If F (a) 6= 0, then both F (a) and −F (a) = F (−a) lie in the image of S1

under F . Since S1 is connected, we conclude that 0 is in the image of F . �
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¶ The closure.

Next we give several useful criteria for connectedness:

Proposition 2.6. If A ⊂ X is connected, A ⊂ B ⊂ A, then B is connected.

Proof. If B is disconnected, then there exist open sets U1, U2 of X s.t. if we let

B1 = U1 ∩B, B2 = U2 ∩B,
then B1, B2 6= ∅ and B = B1 ∪B2 (so in particular B ⊂ U1 ∪ U2). We set

A1 = U1 ∩ A, A2 = U2 ∩ A.
Since A ⊂ B, and since A is connected, we conclude that either A1 = ∅, or A2 = ∅.
WLOG, let’s assume A1 = ∅. Then A ⊂ U c

1 . It follows A ⊂ U c
1 , which implies B ⊂ U c

1 .
So B1 = B ∩ U1 = ∅, contradiction. �

In particular, we get

Corollary 2.7. If A is connected, so is A.

As another consequence, we see that the middle one in Figure 1 is connected:

Corollary 2.8 (“Topologist’s sine curve”). For any subset C ⊂ {(0, t) | − 1 ≤ t ≤ 1},
the set

S = {(x, y) | 0 < x ≤ 1, y = sin
1

x
} ∪ C ⊂ R2

is connected.

¶ The union.

The next proposition, although looks simple, is very useful:

Proposition 2.9. Let Aα ⊂ X be a collection of non-empty connected subsets in X,
and assume ∩αAα 6= ∅. Then ∪αAα is connected.

Proof. Denote Y = ∪αAα. Assume Y = Y1 ∪ Y2, where Y1 ∩ Y2 = ∅, and

Y1 = Y ∩ U1, Y2 = Y ∩ U2,

where U1, U2 are open in X. Take any x ∈ ∩αAα. WLOG, assume x ∈ Y1. For any α,
since

Aα = (Aα ∩ U1) ∪ (Aα ∩ U2),

and since x ∈ Aα ∩ U1 which implies Aα ∩ U1 6= ∅, we conclude Aα ∩ U2 = ∅ since Aα
is connected. It follows

Y2 = (
[

α

Aα) ∩ U2 =
[

α

(Aα ∩ U2) = ∅.

So Y is connected. �

Corollary 2.10. Suppose A1, A2, · · · , AN (N ≤ +∞) are connected, and An∩An+1 6= ∅
holds for any n < N , then ∪Nn=1An is connected.
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Proof. By induction and the above proposition, for each n, the set

Bn := A1 ∪ · · · ∪ An
is connected. Now the conclusion follows since ∩Nn=1Bn 6= ∅. �

¶ The product.

Another consequence of the fact that “the union of connected sets with a common
point is connected” is

Corollary 2.11. If X, Y are connected, so is X × Y .

Proof. We may assume X, Y are non-empty. Fix b ∈ Y. Then X × {b} is connected
since it is the image of a connected set X under a continuous map

jb : X → X × Y, x 7→ (x, b).

It follows that for any x ∈ X, the set

({x} × Y ) ∪ (X × {b})
is connected. Moreover, since

\

x

({x} × Y ) ∪ (X × {b}) 6= ∅,

we conclude that
X × Y =

[

x

(({x} × Y ) ∪ (X × {b}))

is connected. �

Corollary 2.12. Rn, [0, 1]n and Sn are connected.

Proof. For Sn, we can write Sn = Sn+∪Sn−, where Sn± = Sn\{0, · · · , 0,±1} are connected
since they are homeomorphic to Rn via the stereographic projection. �

It turns out that the connectedness is productive:

Proposition 2.13. If for each α ∈ Λ, Xα is connected, then the product space
Q
αXα

is connected with respect to the product topology.

Proof. For any α, fix an element aα ∈ Xα. For any finite set of indices K ⊂ Λ, by
induction the product

Q
α∈K Xα is connected. Let

XK = {(xα) | xα = aα for α /∈ K}.
Then XK is the image of under the canonical embedding map

jK :
Y

α∈K
Xα →

Y

α∈Λ

Xα '
Y

α∈K
Xα ×

Y

α 6∈K
Xα,

1 (xα)α∈K 7→ ((xα)α∈K , (aα)α 6∈K)

1One should check that the product topology is commutative and associative, i.e. if Λ = ∪βΛβ ,

where Λβ ∩ Λβ′ = ∅ fro β 6= β′, then
Q

α∈ΛXα '
Q

β

�Q
α∈Λβ

Xα

�
, where each product is endowed

with the product topology.
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which is continuous, so XK is connected. Note that by construction, (aα) ∈ ∩KXK . So
by Proposition 2.9, the set

X :=
[

finite K⊂Λ

XK

is connected. On the other hand, there is no non-empty open set inside

Xc = (
[

finite K⊂Λ

XK)c =
\

finite K⊂Λ

Xc
K .

So we conclude
X = (Int(Xc))c = (∅)c =

Y

α

Xα.

It follows from Proposition 2.6 that the product space
Q
αXα is connected. �

Remark 2.14. Conversely if
Q
αXα is connected, then each Xα is connected since it is

the image of
Q
αXα under the projection map which is continuous.

Remark 2.15. When endowed with the box topology, M([0, 1],R) = R[0,1] =
Q
α∈[0,1] R

is disconnected, although each component R is connected. [This is another reason that
we prefer the product topology on the product space.]

Reason: Let

A = {f : [0, 1]→ R | ∃M s.t |f(x)| ≤M},
B = {f : [0, 1]→ R | sup

x∈[0,1]
|f(x)| = +∞}.

ThenM([0, 1],R) = A∪B, and both A and B are open in box topology:

f ∈ A =⇒ {g : [0, 1]→ R | g(x) ∈ (f(x)− 1, f(x) + 1)} ⊂ A,

f ∈ B =⇒ {g : [0, 1]→ R | g(x) ∈ (f(x)− 1, f(x) + 1)} ⊂ B.

So M([0, 1],R) is disconnected with respect to the box topology.


