PROBLEM SET 4, PART 1: TOPOLOGY (H) DUE: MARCH 21, 2022

- (1) ["sequential conitnuous=continuous" for (A1) spaces] Let X be an (A1) space, Y be any topological space. Prove: A map $f: X \to Y$ is continuous at x_0 if and only if it is sequentially continuous at x_0 .
- (2) [Locally finiteness]

Let (X, \mathcal{T}) be a topological space.

- (a) Let A, B be subsets in X. Prove: $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
- (b) Let A_{α} be a family of subsets in X. Prove: $\bigcup_{\alpha} \overline{A_{\alpha}} \subset \overline{\bigcup_{\alpha} A_{\alpha}}$
- (c) Find an example so that $\bigcup_{\alpha} \overline{A_{\alpha}} \neq \overline{\bigcup_{\alpha} A_{\alpha}}$ for a family of subsets $A_{\alpha} \in \mathbb{R}$.
- (d) We say a family $\{A_{\alpha}\}$ of subsets in X is locally finite if for any $x \in X$, there exists an open neighborhood U_x of x so that $A_{\alpha} \cap U_x \neq \emptyset$ for only finitely many α 's. Prove: If $\{A_{\alpha}\}$ is a locally finite family, then $\bigcup_{\alpha} \overline{A_{\alpha}} = \overline{\bigcup_{\alpha} A_{\alpha}}$.
- (3) [Characterize continuity via interior]

In class we proved

A map $f: X \to Y$ between two topological spaces is continuous if and only if $f(\overline{A}) \subset \overline{f(A)}$ holds for any $A \subset X$.

Apply the idea of "open-closed" duality, write down the corresponding characterization of continuity of f via the interior operation, and then prove it.

(4) [Not required] [Convergence by net]

We call (P, \preceq) a directed set if

- (P, \prec) is a partially ordered set (c.f. Def. 1.84),
- for any $\alpha, \beta \in P$, there exists $\gamma \in P$ such that $\alpha \leq \gamma$ and $\beta \leq \gamma$.

For a topological space X, a *net* is a map $f:(P, \preceq) \to X$ from a directed set (P, \preceq) to X. We will use the notation (x_{α}) instead of a map " $f: \alpha \mapsto x_{\alpha}$ " if there is no ambiguity. We say a net (x_{α}) converges to x_0 , denoted by $x_{\alpha} \to x_0$, if for any neighborhood U of x, there is an $\alpha \in P$ such that $x_{\beta} \in U$ holds for any $\alpha \preceq \beta$.

- (a) Realize $\mathcal{N}(x)$ as a directed set. [You need to carefully choose the partial order relation so that it can be used in part (b) below.]
- (b) Prove: $x \in A$ if and only if there exists a net (x_{α}) in A which converges to x_0 .
- (c) Prove: A map $f: X \to Y$ is continuous if and only if for any net (x_{α}) in X which converges to a limit x_0 , the net $(f(x_{\alpha}))$ in Y converges in Y to $f(x_0)$.