(06/18)Final ExamROOM CHANGE :June 21, 8:30-10:30 @ Room 2103. Cover Lecture 1 - Lecture 29. .
授课老师: 王作勤 (wangzuoq at ustc dot edu dot cn)
上课时间: 星期一上午 9:45am – 12:10pm; 星期三下午 14:00am – 15:35am
上课地点: 二教 2406
办公室: 管研楼1601
助教: Hanzhang YUN (yhzz123yhzz at mail dot ustc dot edu dot cn)
答疑时间: 星期六晚上,19:30-21:00
答疑地点: 管研楼1308
参考教材: James Munkres,拓扑学(第二版)
课程安排可能会随着课程的进行而略有变动。
课程的讲义将在每堂课后上传。
作业在每周一课前交。
序号 | 日期 | 内容 | 讲义 | 作业 |
---|---|---|---|---|
  Lecture 1   |   02/21   |   Introduction   |   Lect 1   |   PSet 1, part 1   : Due February 28. |
  Lecture 2   |   02/23   |   Metrics spaces   |   Lect 2   |   PSet 1, part 2   : Due February 28. |
  Lecture 3   |   02/28   |   Topology spaces: definitions and examples   |   Lect 3   |   PSet 2, part 1   : Due March 07. |
  Lecture 4   |   03/02   |   Convergence and continuity in topological spaces   |   Lect 4   |   PSet 2, part 2   : Due March 07. |
  Lecture 5   |   03/07   |   Bases and sub-bases, induced and co-induced topology   |   Lect 5   |   PSet 3, part 1   : Due March 14. |
  Lecture 6   |   03/09   |   Quotient topology, group actions   |   Lect 6   |   PSet 3, part 2   : Due March 14. |
  Lecture 7   |   03/14   |   Points and sets in topological space   |   Lect 7   |   PSet 4, part 1   : Due March 21. |
  Lecture 8   |   03/16   |   Compactness   |   Lect 8   |   PSet 4, part 2   : Due March 21. |
  Lecture 9   |   03/21   |   Compactness of product space, Tychonoff theorem   |   Lect 9   |   PSet 5, part 1   : Due March 28. |
  Lecture 10   |   03/23   |   Compactness in metric space   |   Lect 10   |   PSet 5, part 2   : Due March 28. |
  Lecture 11   |   03/28   |   Compactness in the space of continuous maps: Arzela-Ascolli theorem   |   Lect 11   |   PSet 6, part 1   : Due April 06. |
  Lecture 12   |   03/30   |   The algebra of functions: Stone-Weierstrass theorem   |   Lect 12   |   PSet 6, part 2   : Due April 06. |
  Lecture 13   |   04/02   |   Countability and Separation Axioms   |   Lect 13   |   PSet 7, part 1   : Due April 11. |
  Lecture 14   |   04/06   |   Urysohn lemma and Urysohn metrization theorem   |   Lect 14   |   PSet 7, part 2   : Due April 11. |
  Lecture 15   |   04/11   |   Tietze extension theorem and applications   |   Lect 15   |   PSet 8, part 1   : Due April 18. |
  Lecture 16   |   04/13   |   Paracompactness and partition of unity   |   Lect 16   |   PSet 8, part 2   : Due April 18. |
    |   04/18   |   Midterm: Cover Lecture 1-Lecutre 16 @ 1102   |     | |
  Lecture 17   |   04/20   |   Connectedness   |   Lect 17   |   PSet 9, part 1   : Due May 04. |
  Lecture 18   |   04/25   |   Path connecteness   |   Lect 18   |   PSet 9, part 2   : Due May 04. |
  Lecture 19   |   04/27   |   Homotopy and path homotopy   |   Lect 19   |   PSet 10, part 1   : Due May 09. |
  Lecture 20   |   05/04   |   The fundamental group   |   Lect 20   |   PSet 10, part 2   : Due May 09. |
  Lecture 21   |   05/09   |   The fundamental groups of $S^n$ ($n \ge 1$) and applications   |   Lect 21   |   PSet 11, part 1   : Due May 16. |
  Lecture 22   |   05/11   |   Van Kampen's theorem   |   Lect 22   |   PSet 11, part 2   : Due May 16. |
  Lecture 23   |   05/16   |   Covering spaces   |   Lect 23   |   PSet 12, part 1   : Due May 23. |
  Lecture 24   |   05/18   |   The classification of covering spaces   |   Lect 24   |   PSet 12, part 2   : Due May 23. |
  Lecture 25   |   05/23   |   Brouwer's fixed point theorem; Brouwer's invariance of domain theorem   |   Lect 25   |   PSet 13, part 1   : Due May 30. |
  Lecture 26   |   05/25   |   Jordan curve theorem   |   Lect 26   |   PSet 13, part 2   : Due May 30. |
  Lecture 27   |   05/30   |   Classification of curves; Knots and links   |   Lect 27   |   PSet 14, part 1   : Due June 08. |
  Lecture 28   |   06/01   |   Topology of compact surfaces   |   Lect 28-29   |   PSet 14, part 2   : Due June 08. |
  Lecture 29   |   06/06   |   Classification of compact surfaces   |   PSet 14, part 3   : Due June 08. | |
    |   06/08   |   Problem Session by TA   |     |   |
    |   06/21   |   Final Exam: Cover Lecture 1-Lecutre 29, 8:30-10:30 @ 2103   |     |
[top]