(1) **Measure zero set in smooth manifolds**
 (a) Prove: the phrase “measure zero” is well-defined on smooth manifolds.
 (b) Deduce Sard’s theorem from the Euclidean case.
 (c) Show that if \(f : M \to N \) is a smooth map of constant rank \(r < \dim N \), then \(f(M) \) has measure zero.

(2) **An counterexample to Sard’s Theorem**
Here is a counterexample to Sard’s theorem if \(f \) is not smooth enough (constructed by E. Grinberg). Let \(C \subset [0,1] \) be the Cantor set.
 (a) Construct a \(C^1 \) function \(f : \mathbb{R} \to \mathbb{R} \) such that the critical set of \(f \) contains \(C \).
 (Hint: Denote \([0,1] \setminus C = \cup_{k=1}^{\infty} (a_k, b_k)\). Start with a “continuous bump function” \(f_k \) on \((a_k, b_k)\) with \(\int f_k(t) \, dt = b_k - a_k \).
 (b) Show that the function \(g : \mathbb{R}^2 \to \mathbb{R} \) defined by \(g(x, y) = f(x) + f(y) \) is \(C^1 \), and the set of critical values contains an interval. (Hint: Show that \(C + C = [0,2] \).)

(3) **Morse functions**
Let \(U \subset \mathbb{R}^n \) be an open set, and \(f \in C^\infty(U) \).
 - We say a critical point \(p \in U \) of \(f \) is non-degenerate if the Hessian matrix
 \[
 \text{Hess}_f(p) = \left(\frac{\partial^2 f}{\partial x^i \partial x^j} \right)(p)
 \]
 is non-degenerate.
 - A function is called a Morse function if every critical point is non-degenerate.

Prove:
 (a) Use inverse function theorem to prove that non-degenerate critical point must be isolated.
 (b) Given any \(f \in C^\infty(U) \), for almost every \(a \in \mathbb{R}^n \), the “linear perturbation”
 \[
 f_a : U \to \mathbb{R}, \quad x \mapsto f(x) + a_1 x^1 + \cdots + a_n x^n
 \]
 of \(f \) is a Morse function on \(U \).
 (Hint: Consider regular values of the map \(g = df = (\frac{\partial f}{\partial x^1}, \ldots, \frac{\partial f}{\partial x^n}) : U \to \mathbb{R}^n \).)
 (c) (Not required) Suppose \(U \) is bounded. Prove: for any \(f \in C^\infty(U) \) and any \(\varepsilon > 0 \), there is a Morse function \(g \in C^\infty(U) \) so that \(|g - f| < \varepsilon \) and all critical values of \(g \) are distinct.
 (d) (Not required) Extend the result in (c) to smooth functions defined on a compact manifold.
(4) **The Lagrange multiplier**

Let M be a smooth manifold, and $f \in C^\infty(M)$ a smooth function. We would like to study the critical points of the function $\tilde{f} := f|_S \in C^\infty(S)$ for a smooth submanifold $S \subset M$. For simplicity, we suppose there is a smooth map $g : M \to N$ and a regular value $p \in N$ of g so that $S = g^{-1}(q)$. Prove: a point $p \in S$ is a critical point of \tilde{f} if there exists a linear function $L : T_qN \to \mathbb{R}$ (called a Lagrange multiplier), so that $df_p = L \circ dg_p$.

(5) **Proper maps**

Recall that a map is called *proper* if the pre-image of any compact set is compact. Let $f : M \to N$ be a smooth and proper map.

(a) Prove: If an injective immersion $f : M \to N$ is proper, then it is an embedding.

(b) Now suppose $\dim M = \dim N$, and suppose $q \in f(M)$ be a regular value of f. Prove: $f^{-1}(q)$ is a finite set $\{p_1, \ldots, p_k\}$, and there exist a neighborhood V of q in N and neighborhoods U_i of p_i in M such that

- U_1, \ldots, U_k are disjoint coordinate charts in M,
- $f^{-1}(V) = U_1 \cup \cdots \cup U_k$,
- For each $1 \leq i \leq k$, f is a diffeomorphism from U_i onto V.

(6) **The cotangent bundle**

Let M be a smooth manifold of dimension n. Let T^*_pM be the dual vector space of T_pM, with a dual basis $\{dx^1, \ldots, dx^n\}$ (which is defined locally for a coordinate chart of M) which is defined to be the dual of $\{\partial_1, \ldots, \partial_n\}$. Let $T^*M = \bigcup_T T^*_pM$ be the disjoint union of all T^*_pM. We will call T^*M the *cotangent bundle* of M.

(a) Modify PSet2-1-3 to endow with T^*M a topology so that it is a smooth manifold of dimension $2n$.

(b) Prove: T^*M is orientable.

(c) **(Not required)** Prove: If f is a smooth function on M, then the map

$$ s_f : M \to T^*M, \quad p \mapsto (p, df_p) $$

is an injective immersion and is proper. [In particular, its image is a smooth submanifold of T^*M.]

(d) **(Not required)** For any $(p, \xi_p) \in T^*M$, the tangent space $T_{(p, \xi_p)}T^*M \cong T_pM \oplus T^*_pM$.