拓扑学(H)(2024秋季学期)


中国科学技术大学数学科学学院


[课程公告] [课程信息] [课程安排,讲义以及习题]


课程公告

o (12/27) PSet 16, part 1 uploaded. Not to be turned in.

o (12/27) PSet 16, part 2 uploaded. Not to be turned in.

o (12/27) Final Exam Jan 08, 2025, 14:30-16:30 @ 5104 || Cover Lecture 1-Lecutre 30


课程信息

o 授课老师:   王作勤 (wangzuoq at ustc dot edu dot cn)

o 上课时间:   星期三上午 7:50am – 9:25am; 星期五下午 14:00am – 15:35am 

o 上课地点:   五教 5206

o 办公室:   管研楼1601,少院303

o 助教:   Zhechen ZHANG (zhangzhechen at mail dot ustc dot edu dot cn)   Hao WANG (wang2262558615 at mail dot ustc dot edu dot cn)

o 答疑时间:   周日晚上

o 答疑地点:   5206

o 参考教材:   James Munkres,拓扑学(第二版)

o 教材:   王作勤,拓扑学讲义 (9月晚些时候发布)

[top]


课程安排,讲义以及习题

o 课程安排可能会随着课程的进行而略有变动。

o 作业每周发布,截止日期见作业本身(一般在周三),课前交。

序号 日期 内容 作业
  Lecture 1     09/04     Introduction     PSet 1, part 1   : Due September 13.
  Lecture 2     09/08     Metric spaces     PSet 1, part 2   : Due September 13.
  Lecture 3     09/11     From metric to topology     PSet 2, part 1   : Due September 18.
  Lecture 4     09/13     Convergence and continuity     PSet 2, part 2   : Due September 18.
  Lecture 5     09/18     Construction of new topological spaces: basis and sub-basis     PSet 3, part 1   : Due September 25.
  Lecture 6     09/20     Construction of new topological spaces: induced and co-induced topology     PSet 3, part 2   : Due September 25.
  Lecture 7     09/25     Points and sets in topological space: Closed sets, limit points     PSet 4, part 1   : Due October 9.
  Lecture 8     09/27     Points and sets in topological space: Closure, interior, boundary     PSet 4, part 2   : Due October 9.
  Lecture 9     10/09     Compactness     PSet 5, part 1   : Due October 18.
  Lecture 10     10/11     Compactness of products     PSet 5, part 2   : Due October 18.
  Lecture 11     10/12     Compactness in metric space     PSet 6, part 1   : Due October 23.
  Lecture 12     10/16     Topologies on the space of mappings     PSet 6, part 2   : Due October 23.
  Lecture 13     10/18     Arzela-Ascoli theorem     PSet 7, part 1   : Due October 30.
  Lecture 14     10/23     Stone-Weierstrass theorem     PSet 7, part 2   : Due October 30.
      10/25     No class (运动会)  
  Lecture 15     10/30     Countability and separability     PSet 8, part 1   : Due November 08.
  Lecture 16     11/1     Urysohn lemma     PSet 8, part 2   : Due November 08.
  Lecture 17     11/6     Tietze extension     PSet 9, part 1   : Due November 15.
  Lecture 18     11/8     Paracompactness and partition of unity     PSet 9, part 2   : Due November 15.
      11/9     Midterm@2103: Cover Lecture 1-Lecture 17  
  Lecture 19     11/13     Connectedness     PSet 10, part 1   : Due November 22.
  Lecture 20     11/15     Path Connectedness     PSet 10, part 2   : Due November 22.
  Lecture 21     11/20     Homotopy     PSet 11, part 1   : Due November 29.
  Lecture 22     11/22     Path homotopy and the fundamental group     PSet 11, part 2   : Due November 29.
  Lecture 23     11/27     The fundamental group of $S^n (n\ge 1)$     PSet 12, part 1   : Due December 06.
  Lecture 24     11/29     Applications     PSet 12, part 2   : Due December 06.
  Lecture 25     12/4     Van Kampen Theorem     PSet 13, part 1   : Due December 13.
  Lecture 26     12/6     Covering space     PSet 13, part 2   : Due December 13.
  Lecture 27     12/11     Covering spaces v.s. the fundamental group     PSet 14, part 1   : Due December 20.
  Lecture 28     12/13     Brouwer fixed point theorem     PSet 14, part 2   : Due December 20.
  Lecture 29     12/18     Brouwer's invariance of domain theorem     PSet 15, part 1   : Due December 27.
  Lecture 30     12/20     Jordan curve theorem     PSet 15, part 2   : Due December 27.
  Lecture 31     12/25     Classification of curves     PSet 16, part 1   : Not to be turned in.
  Lecture 32     12/27     (Combinatorial) topology of compact surfaces     PSet 16, part 2   : Not to be turned in.
  Lecture 33     1/3     Classification of compact surfaces  
      1/8     Final Exam 14:30-16:30 @ 5104 || Cover Lecture 1-Lecutre 30  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[top]