黎曼几何(英)(2024 春季学期)


中国科学技术大学数学科学学院


[课程公告] [课程信息] [课程安排,讲义以及习题]


课程公告

o (02/22) Welcome! This course will be taught in English.

o (02/27) Lecture 1 uploaded.

o (03/05) Lecture 2 and Lecture 3 uploaded.

o (03/14) Lecture 4 and Lecture 5 uploaded.

o (03/24) Lecture 6 and Lecture 7 uploaded.

o (03/24) PSet 1 uploaded. Due April 09.

o (03/31) Lecture 8 and Lecture 9 uploaded.

o (04/08) Lecture 10 and Lecture 11 uploaded.

o (04/15) PSet 2 uploaded. Due April 28.

o (04/15) Midterm:April 28, in class.

o (04/20) Lecture 12, 13, 14, 15 uploaded.

o (05/07) Lecture 16, 17, 18 uploaded.

o (05/07) PSet 3 uploaded. Due May 16.

o (05/16) Lecture 19, 20 uploaded.

o (05/26) PSet 4 uploaded. Due June 4.

o (05/29) Topics for A+ uploaded. Due June 20.

o (06/03) Lecture 21, 22, 23, 24, 25 uploaded.

o (06/11) Lecture 26, 27, 28, 29 uploaded.

[top]


课程信息

o 授课老师:   王作勤 (wangzuoq at ustc dot edu dot cn)

o 上课时间:   星期二下午 14:00pm – 15:35pm; 星期四晚上 19:30pm – 21:55pm 

o 上课地点:   五教 5302

o 办公室:   管研楼1601

o 助教:   叶星辰 (yexkif_1oclock at mail dot ustc dot edu dot cn)

o 助教:   李禹龙 (liyulon at mail dot ustc dot edu dot cn)

o 答疑时间:   周日下午 14:00 - 17:00 pm

o 答疑地点:   5302

o 参考书籍   M.do Carmo, Riemannian geometry

o 参考书籍   S. Gallot, D. Hulin, J. Lafontaine, Riemannian Geometry

o 参考书籍   Peter Petersen, Riemannian geometry

o 参考书籍   T. Sakai, Riemannian geometry

[top]


课程安排,讲义以及习题

o 课程安排可能会随着课程的进行而略有变动。

o 课程的讲义将在每堂课后上传。

o A+大作业 Topics

序号 日期 内容 讲义 作业
  Lecture 1     02/27     Introduction     Lect 1  
  Lecture 2     02/29     The Riemannian Metric     Lect 2     PSet 1   : Due April 09.
  Lecture 3     03/05     The Riemannian Distance     Lect 3  
  Lecture 4     03/07     The Riemannian Measure     Lect 4  
  Lecture 5     03/12     Linear Connections     Lect 5  
  Lecture 6     03/14     The Levi-Civita Connection     Lect 6  
  Lecture 7     03/19     The curvature tensor     Lect 7     PSet 2   : Due April 28.
  Lecture 8     03/21     The Riemann curvature tensor and its decomposition     Lect 8  
  Lecture 9     03/26     The Sectional and Ricci Curvature     Lect 9  
  Lecture 10     03/28     Spaces with constant curvature     Lect 10  
  Lecture 11     04/02     The method of moving frame     Lect 11  
  Lecture 12     04/09     Geodesics as self-parallel curves on manifolds with connection     Lect 12     PSet 3   : Due May 16.
  Lecture 13     04/11     Geodesics as self-parallel curves on Riemannian manifolds     Lect 13  
  Lecture 14     04/16     Existence of length-minimizing geodesics     Lect 14  
  Lecture 15     04/18     Completeness: Rinow-Hopf theorem and Ambrose theorem     Lect 15  
  Lecture 16     04/23     Variation formulae     Lect 16  
      04/28     Midterm Cover: Lecture 1-Lecture 15      
  Lecture 17     04/25     Jacobi fields     Lect 17     PSet 4   : Due June 4.
  Lecture 18     04/30     First applications of Jacobi fields to curvature     Lect 18  
  Lecture 19     05/07     Conjugate points and applications     Lect 19  
  Lecture 20     05/09     The index form     Lect 20  
  Lecture 21     05/14     Cut locus     Lect 21  
  Lecture 22     05/16     Various theorem on curvature and topology     Lect 22  
  Lecture 23     05/21     Rauch comparison theorem     Lect 23  
  Lecture 24     05/23     The global Hessian and Toponogor comparison theorem     Lect 24  
  Lecture 25     05/28     The Laplacian and volume comparison theorem     Lect 25  
  Lecture 26     05/30     Applications of the volume comparison theorem     Lect 26  
  Lecture 27    06/04     The sphere theorem     Lect 27  
  Lecture 28     06/06     Bochner's technique     Lect 28  
  Lecture 29     06/11     Eigenvalues of the Laplacian     Lect 29  
      06/13     Final Cover: Lecture 1-Lecture 29      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[top]