(02/22) Welcome! This course will be taught in English.
(02/27) Lecture 1 uploaded.
(03/05) Lecture 2 and Lecture 3 uploaded.
(03/14) Lecture 4 and Lecture 5 uploaded.
(03/24) Lecture 6 and Lecture 7 uploaded.
(03/24) PSet 1 uploaded. Due April 09.
(03/31) Lecture 8 and Lecture 9 uploaded.
(04/08) Lecture 10 and Lecture 11 uploaded.
(04/15) PSet 2 uploaded. Due April 28.
(04/15) Midterm:April 28, in class.
(04/20) Lecture 12, 13, 14, 15 uploaded.
(05/07) Lecture 16, 17, 18 uploaded.
(05/07) PSet 3 uploaded. Due May 16.
(05/16) Lecture 19, 20 uploaded.
(05/26) PSet 4 uploaded. Due June 4.
(05/29) Topics for A+ uploaded. Due June 20.
(06/03) Lecture 21, 22, 23, 24, 25 uploaded.
(06/11) Lecture 26, 27, 28, 29 uploaded.
授课老师: 王作勤 (wangzuoq at ustc dot edu dot cn)
上课时间: 星期二下午 14:00pm – 15:35pm; 星期四晚上 19:30pm – 21:55pm
上课地点: 五教 5302
办公室: 管研楼1601
助教: 叶星辰 (yexkif_1oclock at mail dot ustc dot edu dot cn)
助教: 李禹龙 (liyulon at mail dot ustc dot edu dot cn)
答疑时间: 周日下午 14:00 - 17:00 pm
答疑地点: 5302
参考书籍 M.do Carmo, Riemannian geometry
参考书籍 S. Gallot, D. Hulin, J. Lafontaine, Riemannian Geometry
参考书籍 Peter Petersen, Riemannian geometry
参考书籍 T. Sakai, Riemannian geometry
课程安排可能会随着课程的进行而略有变动。
课程的讲义将在每堂课后上传。
A+大作业 Topics 。
序号 | 日期 | 内容 | 讲义 | 作业 |
---|---|---|---|---|
  Lecture 1   |   02/27   |   Introduction   |   Lect 1   | |
  Lecture 2   |   02/29   |   The Riemannian Metric   |   Lect 2   |   PSet 1   : Due April 09. |
  Lecture 3   |   03/05   |   The Riemannian Distance   |   Lect 3   | |
  Lecture 4   |   03/07   |   The Riemannian Measure   |   Lect 4   | |
  Lecture 5   |   03/12   |   Linear Connections   |   Lect 5   | |
  Lecture 6   |   03/14   |   The Levi-Civita Connection   |   Lect 6   | |
  Lecture 7   |   03/19   |   The curvature tensor   |   Lect 7   |   PSet 2   : Due April 28. |
  Lecture 8   |   03/21   |   The Riemann curvature tensor and its decomposition   |   Lect 8   | |
  Lecture 9   |   03/26   |   The Sectional and Ricci Curvature   |   Lect 9   | |
  Lecture 10   |   03/28   |   Spaces with constant curvature   |   Lect 10   | |
  Lecture 11   |   04/02   |   The method of moving frame   |   Lect 11   | |
  Lecture 12   |   04/09   |   Geodesics as self-parallel curves on manifolds with connection   |   Lect 12   |   PSet 3   : Due May 16. |
  Lecture 13   |   04/11   |   Geodesics as self-parallel curves on Riemannian manifolds   |   Lect 13   | |
  Lecture 14   |   04/16   |   Existence of length-minimizing geodesics   |   Lect 14   | |
  Lecture 15   |   04/18   |   Completeness: Rinow-Hopf theorem and Ambrose theorem   |   Lect 15   | |
  Lecture 16   |   04/23   |   Variation formulae   |   Lect 16   | |
    |   04/28   |   Midterm Cover: Lecture 1-Lecture 15   |     | |
  Lecture 17   |   04/25   |   Jacobi fields   |   Lect 17   |   PSet 4   : Due June 4. |
  Lecture 18   |   04/30   |   First applications of Jacobi fields to curvature   |   Lect 18   | |
  Lecture 19   |   05/07   |   Conjugate points and applications   |   Lect 19   | |
  Lecture 20   |   05/09   |   The index form   |   Lect 20   | |
  Lecture 21   |   05/14   |   Cut locus   |   Lect 21   | |
  Lecture 22   |   05/16   |   Various theorem on curvature and topology   |   Lect 22   | |
  Lecture 23   |   05/21   |   Rauch comparison theorem   |   Lect 23   | |
  Lecture 24   |   05/23   |   The global Hessian and Toponogor comparison theorem   |   Lect 24   | |
  Lecture 25   |   05/28   |   The Laplacian and volume comparison theorem   |   Lect 25   | |
  Lecture 26   |   05/30   |   Applications of the volume comparison theorem   |   Lect 26   | |
  Lecture 27  |   06/04   |   The sphere theorem   |   Lect 27   | |
  Lecture 28   |   06/06   |   Bochner's technique   |   Lect 28   | |
  Lecture 29   |   06/11   |   Eigenvalues of the Laplacian   |   Lect 29   | |
    |   06/13   |   Final Cover: Lecture 1-Lecture 29   |     |
[top]