
LECTURE 1: INTRODUCTION

1. Riemann’s inaugural lecture

On June 10, 1854, B. Riemann gave one of the most famous job talk in the history
of mathematics, with title “On the hypothesis which lie at the foundation of
geometry”. This talk not only gained a job for him (as a privatdocent at Göttingen
University), but also offered jobs for many of us including me: two of our courses,
Manifolds and Riemannian geometry, born in this probationary inaugural lecture.

What Riemann did in this talk was trying to develop a higher dimensional
intrinsic geometry. It is a very broad and abstract generalization of the intrinsic
differential geometry of surfaces in R3 developed by Gauss1.

At the beginning of Riemann’s talk was a brief “plan of investigation”, in which
he started with the sentence “geometry presuppose the concept of space”. To clear
the confusion over non-Euclidean geometry at that time, he proposed to distinguish
metric properties from the topological properties of the Space. The major part of the
talk was divided into three parts. In part one Riemann introduced the conception
of manifolds, characterized as locally looks like n-dimensional Euclidean space2.
Part two is the major part of the talk, in which Riemann developed the desired
intrinsic geometry, started by introducing a positive definite quadratic form (the
Riemannian metric)3 at each point. The crucial question Riemann asked himself in
this part was: when does two Riemannian metrics locally isometric? By a dimension

counting argument, Riemann argues that there should be a set of n(n−1)
2

functions
which will determine the metric completely. They are nothing else but sectional
curvatures (as a generalization of Gauss curvature for surfaces in R3) associated to

1In 1827, Gauss published a famous paper “General investigation of curved surfaces”, in
which he proved his Theorema Egregium (”remarkable theorem” in Latin): the Gauss curvature of
a surface can be determined entirely by measuring distances along paths on the surface (intrinsic),
and does not depend on how the surface might be embedded in 3-dimensional space (extrinsic).

2Riemann’s definition of manifold is a very primitive form. Since most of his audience were
non-mathematicians (faculty of Göttingen University), Riemann tried his best to make his lecture
intelligible to general audience. The modern abstract definition of manifolds as “topological spaces
that are Hausdorff, second countable and locally Euclidean” was introduced by H. Weyl in 1912.

3In fact Riemann was also aware of the existence of more general “metrics” that could be used
to measure the length of tangent vectors, including the so-called Finsler metric that was developed
by Finsler in 1918.
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2-dimensional vector subspaces of the tangent space! Finally in part three, Riemann
dealt with possible applications, especially to questions in physics. 4

2. Riemannian geometry for Euclidean submanifolds: a quick survey
on undergraduate differential geometry

Before we introduce the abstract conception of Riemannian metric on a smooth
manifold next time, let’s start with some basic geometry that we learned in under-
graduate differential geometry course (in a higher dimensional fashion). As one can
imagine, differential geometry starts by taking derivative. It turns out that all those
important geometric quantities appears by this way.

¶ Curves in RN .

Let γ : I → RN be a smooth curve defined on a finite interval I = [0, T ]. By
definition the arc length s = s(t) is given by

s(t) =

∫ t

0

∥γ′(τ)∥dτ.

Since s is strictly increasing, we may change variable and write γ as

γ = γ(s), s ∈ [0, l],

where l is the length of γ.

We start with the unit tangent vector γ′(s): since ∥γ′(s)∥ = 1, i.e.

⟨γ′(s), γ′(s)⟩ = 1,

taking derivative one gets

⟨γ′′(s), γ′(s)⟩ = 0,

i.e. γ′′(s) ⊥ γ′(s). In other words, γ′′(s) is a normal vector.

By definition,

κ(s) := ∥γ′′(s)∥
is called the curvature of γ at γ(s), and the vector

n(s) :=
γ′′(s)

∥γ′′(s)∥
is called the principal normal of γ at γ(s).

Remark. Note that n(s) is again a unit vector. So we may repeat this process.
What we will get is the torsion and the binormal. If we continue this process for
the binormal, we will get Frenet formula.

4About 60 years later, Einstein used the theory of pseudo-Riemannian manifolds (a general-
ization of Riemannian manifolds) to develop his general theory of relativity. In particular, his
equations for gravitation are constraints on the curvature of spacetime.
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¶ The first fundamental form.

Now let M be an n-dimensional manifold embedded into RN . For simplicity we
suppose U ⊂ Rn is an open set, and suppose

φ : U ⊂ Rn → RN

is an injective immersion such that φ(U) = M (or a portion of M). In what follows
we denote

φj =
∂φ

∂xj
, 1 ≤ j ≤ n.

Then Tφ(x)M = span(φ1, · · · , φn). Now let µ = (µ1, · · · , µn) : I → U be a curve in
U , so that γ = φ ◦ µ : I → M be a curve in RN that sits in M . Then

γ′(t) =
d(φ ◦ µ)

dt
=

n∑
j=1

dµj

dt
φj(µ(t))

The arc length of γ is again given by

s(t) =

∫ t

0

∥γ′(τ)∥dτ.

If we denote vj := dµj

dt
, x = µ(t) and

gjk(x) := ⟨φj(x), φk(x)⟩,

then we get (ds
dt

)2
= ∥γ′(t)∥2 =

n∑
j,k=1

gjk(µ(t))v
jvk.

After polarizing, we get a quadratic form

I(
∑
j

vjφj,
∑
k

wkφk) :=
n∑

j,k=1

gjk(x)v
jwk

defined on Tφ(x)M , which is known as the first fundamental form of M .

¶ The Second fundamental form.

We may continue to calculate the second derivative to get

γ′′(t) =
d2(φ ◦ µ)

dt2
=

n∑
j=1

d2µj

dt2
φj(µ(t)) +

n∑
j,k=1

dµj

dt

dµk

dt
φjk(µ(t)),

where φjk(x) =
∂2φ

∂xj∂xk (x). Note that the first term lies in Tγ(t)M . So when projecting

to the normal plane Nγ(t)M = (Tγ(t)M)⊥, and denoting

hjk = ProjNγ(t)M
(φjk),
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one gets
n∑

j,k=1

hjkv
jvk = ProjNγ(t)M

(γ′′(t)).

For simplicity let’s take arc length parametrization, so that
∑

vjφj is a unit vector

(i.e.
∑

gjk
dµj

ds
dµk

ds
= 1). Then we get

n∑
j,k=1

hjkv
jvk = κ(s)ProjNγ(s)M

(n(s)).

After polarizing, the resulting quadratic form

II(
∑

vjφj,
∑

wkφk) :=
∑

hjkv
jvk

(defined on TxM with value in NxM) is known as the second fundamental form of
M . In the case M is a hypersurface (i.e. n = N − 1), by fixing an orientation
on M one may identify Nγ(t)M with R, and thus II can be viewed as a real-valued
quadratic form.

¶ The Christoffel symbols.

Interesting quantities also appears when we study the tangent component of
γ′′(t). Since φjk(x)− hjk(x) ∈ Tφ(x)M = span(φ1, · · · , φn), one may write

φjk(x) =
n∑

l=1

Γl
jkφl(x) + hjk(x).

Paring with the vector φi, one gets

⟨φjk, φi⟩ =
n∑

l=1

Γl
jkgli.

A miracle is that the mysterious coefficients Γl
jk can be calculated via gjk’s: From

∂kgij = ⟨φik, φj⟩+ ⟨φi, φjk⟩
one gets

⟨φjk, φi⟩ =
1

2
(∂kgij + ∂jgik − ∂igkj).

So if we denote (gij) = (gij)
−1, then

Γl
jk =

∑
i

gil⟨φjk, φi⟩ =
1

2

∑
i

gil(∂kgij + ∂jgik − ∂igkj).

The functions Γl
jk are known as Christoffel symbols. Note that they are determined

by the first fundamental form. In summary, we see that

γ′′(t) =
n∑

j=1

(
d2µj

dt2
+

n∑
i,k=1

Γj
ik
dµi

dt

dµk

dt

)
φj(µ(t)) mod Nγ(t)M.
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¶ The covariant derivative and geodesics.

In particular, if γ is parametrized by arc length s (i.e.
∑

gjk
dµj

ds
dµk

ds
= 1), then

n∑
j=1

(
d2µj

ds2
+

n∑
i,k=1

Γj
ik
dµi

ds

dµk

ds

)
φj(µ(s)) = κ(s)ProjTγ(t)M

(n(s)).

The length

κg(s) :=

∥∥∥∥∥
n∑

j=1

(
d2µj

ds2
+

n∑
i,k=1

Γj
ik
dµi

ds

dµk

ds

)
φj(µ(s))

∥∥∥∥∥
is known as the geodesic curvature of γ. If κg(s) ≡ 0, then γ is called a geodesic.
They are locally shortest paths (generalizations of straight lines in Euclidean space
and great circles in sphere) in M .

More generally, given any vector field X =
∑

Xj(x)φj(x) along γ (which, by
definition, is tangent to M everywhere), the same computation yields

dX

dt
=

n∑
j,k=1

(
∂kX

j + Γj
ikX

i
) dµk

dt
φj(µ(t)) mod Nγ(t)M,

which is known as the covariant derivative of the vector field X along γ.

¶ The Riemann curvature.

What about vector fields N that are normal to M? We may calculate the
tangential component of the derivative of N(x) in a similar way. For this purpose
we write

∂iN(x) =
n∑

k=1

Nk
i (x)φk(x) mod Nφ(x)M.

Start with the equation ⟨N(x), φj(x)⟩ = 0. By taking derivative we get

⟨∂iN(x), φj(x)⟩+ ⟨N,φij⟩ = 0,

i.e. ∑
k

Nk
i gkj = −⟨hij, n⟩.

It follows

Nk
i = −

∑
j

⟨hij, N⟩gkj

and thus we get, for any normal vector field N on M ,

∂iN(x) = −
∑
j,k

⟨hij, N⟩gkjφk(x) mod Nφ(x)M.
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Applying this formula to the normal vector fields hij, we may calculate the
tangential component of φijk = ∂i∂j∂kφ. Since φij =

∑
Γl

ijφl + hij, we get

φkij = ∂kφij =
n∑

m=1

(
∂kΓ

m
ij +

∑
l

Γl
ijΓ

m
lk −

∑
l

⟨hij, hkl⟩glm
)
φm mod Nφ(x)M.

Since φkij = φjik, we get

∂jΓ
m

ik − ∂kΓ
m

ij +
n∑

l=1

(
Γl

ikΓ
m

lj − Γl
ijΓ

m
lk

)
=

n∑
l=1

(
⟨hik, hjl⟩ − ⟨hij, hkl⟩

)
glm.

We define

Rijk
m := ∂jΓ

m
ik − ∂kΓ

m
ij +

n∑
l=1

(
Γl

ikΓ
m

lj − Γl
ijΓ

m
lk

)
and let

Rijkl :=
∑
m

glmRijk
m,

then we get Rlijk = ⟨hik, hjl⟩ − ⟨hij, hkl⟩. The (0, 4)-tensor

R(
∑

X lφl,
∑

Y iφi,
∑

Zjφj,
∑

W kφk) :=
∑

RlijkX
lY iZjW k

on TxM is called the Riemann curvature tensor. It admits many nice symmetry
properties from which one can show that the quantity

R(X, Y,X, Y )

⟨X,X⟩⟨Y, Y ⟩ − ⟨X, Y ⟩2

depends only on the two dimensional plane span(X, Y ). It is known as the sectional

curvature of M with respect to the plane. By taking a basis there are n(n−1)
2

such

functions, and they are the n(n−1)
2

functions first studied by Riemann!


