
LECTURE 11: THE METHOD OF MOVING FRAMES

In Riemannian geometry, one frequently encounters with heavy computations
(especially for those problems related to curvatures). There are three different meth-
ods to do these calculations: the invariant method via global vector fields and tensor
fields, the local method via carefully chosen coordinate charts (under the help of Ein-
stein summation convention), and E. Cartan’s method of moving frames via calculus
of differential forms. Today we will give a brief introduction to the method of mov-
ing frames where the use of differential forms is emphasized[when compared with tensor

fields, differential forms have the advantage that they can be pulled-back via smooth maps, and

we have the powerful tool of exterior derivative].

1. Cartan’s method of moving frames

¶ The connection 1-forms for a linear connection in a local frame.

Let M be a smooth manifold and ∇ a linear connection on M . We can regard
∇ (acting on vector fields) as a linear map

∇ : Γ∞(TM) → Γ∞(TM ⊗ T ∗M).

So if {e1, · · · , em} is a local frame [i.e. for each p ∈ U , e1(p), · · · , em(p) form a basis of

TpM ] of TM defined on an open set U ⊂ M , then one can find a set of one forms
{θji }1≤i,j≤m defined on U so that ∇Xei = θji (X)ej for all X ∈ Γ∞(TM), i.e.

(1) ∇ei = ej ⊗ θji .

These θji ’s are known as connection 1-forms of ∇ with respect to the local frame
{ei}, which are only locally defined.

Moreover, if we choose another local frame {ẽ1, · · · , ẽm} on Ũ , and ẽi = f j
i ej on

U ∩ Ũ , then ej = (f−1)ij ẽk (where f−1 is the inverse of the matrix f = (f j
i )) and

thus
ẽl ⊗ θ̃li = ∇ẽi = ∇(f j

i ej) = f j
i ∇ej + ej ⊗ df j

i

= f j
i ek ⊗ θkj + (f−1)lj ẽl ⊗ df j

i

= ẽl ⊗ (f−1)lkθ
k
j f

j
i + (f−1)ljdf

j
i ,

so we end up with

θ̃li = (f−1)lkθ
k
j f

j
i + (f−1)ljdf

j
i ,

on U ∩ Ũ , which can be written in brief as

(2) θ̃ = f−1θf + f−1df,
1
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where θ̃ and θ are understood as m ×m matrices whose entries are 1-forms, while
f and f−1 are invertible m×m matrices1 whose entries are functions (and thus one
can not exchange their positions in the product above).

To develop Riemannian geometry via differential forms only, let’s first derive
the dual formula for covariant derivative of differential forms via these connection
1-forms. We denote by {ω1, · · · , ωm} the local dual co-frame [i.e. ωi(ej) = δij for all i, j]

of T ∗M defined on U to the given local frame {e1, · · · , em}. Then we have

(∇Xω
i)(ej) = X(ωi(ej))− ωi(∇Xej) = −ωi(θkj (X)ek) = −θij(X).

It follows that the linear connection ∇ acting on one forms, viewed as a map

∇ : Γ∞(T ∗M) → Γ∞(T ∗M ⊗ T ∗M),

can be expressed in terms of the co-frame and the connection 1-forms as

(3) ∇ωi = −ωj ⊗ θij.

¶ The connection 1-forms: torsion freeness and metric compatibility.

Now suppose the linear connection ∇ is torsion free. Then

dωi(X, Y ) = X(ωi(Y ))− Y (ωi(X))− ωi([X, Y ])

= X(ωi(Y ))− Y (ωi(X))− ωi(∇XY −∇YX)

= (∇Xω
i)(Y )− (∇Y ω

i)(X)

= −ωj(Y )θij(X) + ωj(X)θij(Y ).

So the torsion free condition for a linear connection can be written, in terms of the
dual co-frame and the connection 1-forms, as

(4) dωi = ωj ⊗ θij − θij ⊗ ωj = ωj ∧ θij.

which can be written in brief as dω = −θ ∧ ω.

Next suppose there is a Riemannian metric g on M , and the connection ∇ is
metric compatible. To encode the information of the metric into our consideration,
it is reasonable to choose an

::::::::::::
orthonormal

:::::::
frame {e1, · · · , em} instead of a general

frame. Then

0 = ⟨∇ei, ej⟩+ ⟨ei,∇ej⟩ = ⟨ek ⊗ θki , ej⟩+ ⟨ei, ek ⊗ θkj ⟩ = θji + θji .

So the metric compatibility of ∇ becomes: for any orthonormal frame, the connec-
tion 1-forms satisfy

(5) θji + θji = 0,

i.e. the matrix of connection 1-forms is anti-symmetric.

1So one may regard f as a map from U ∩ Ũ to the general linear group GL(m). If we are in the
setting of Riemannian manifold and we are only using local orthonormal frames, then the group
encountered is O(m) instead. The method of moving frame works in a more general setting, and
there is always such a Lie group behind the theory that plays an important role.
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¶ Cartan’s formulation of Riemannian geometry.

It turns out that one can develop Riemannian geometry starting with local
frames and connection 1-forms (i.e. via the differential 1-forms ωi, θij) instead of the
Riemannian metric g and its Levi-Civita connection[since one can recover the Riemannian

metric g from the local orthonormal co-frame {ωi}, and then recover the Levi-Civita connection

∇ from its connection 1-forms θji ]. We start with a simple lemma:

Lemma 1.1. Suppose ω1, · · · , ωs ∈Λ1V ∗ (s≤m=dimV ) are linearly independent.

(1) If η1, · · · , ηs ∈ Λ1V ∗ and
∑

ηi ∧ ωi = 0, then there exist uniquely determined
real numbers Ai

j (1 ≤ i, j ≤ s) with Ai
j = Aj

i such that ηi = Ai
jω

j.

(2) If s = m, and a collection of linear 1-forms θij ∈ Λ1V ∗ (1 ≤ i, j ≤ m) satisfy

ωj ∧ θij = 0 and θij + θji = 0,

then θij = 0.

Proof. (1) Obviously ηi ∈ span{ω1, · · · , ωs}. Write ηi = Ai
jω

j. Then∑
ηi ∧ ωi =

∑
i<j

(Ai
j − Aj

i )ω
i ∧ ωj

and the conclusion follows.

(2) Write θij = aijkω
k. Then the two conditions becomes

aijk − aikj = 0 and aijk + ajik = 0.

Thus
aijk = aikj = −akij = −akji = ajki = ajik = −aijk

and the conclusion follows. □

Now we state
:::
the

::::::::::::::
fundamental

:::::::::
theorem

::
of

:::::::::::::
Riemannian

:::::::::::
geometry [i.e. the existence

and uniqueness of Levi-Civita connection] in the language of connection 1-forms:

Theorem 1.2 (E. Cartan). Let ω1, · · · , ωm ∈ Ω1(U) be a collection of 1-forms on
an open set U ⊂ M that are linearly independent at each point. Then there exists a
unique collection of 1-forms, θij ∈ Ω1(U) (1 ≤ i, j ≤ m), so that

dωi = ωj ∧ θij and θij + θji = 0.

[These equations are known as Cartan’s structural equations. ]

Proof. Uniqueness follows from Lemma 1.1 (2). For the existence, one just start
with the Riemannian metric g =

∑
ωi ⊗ ωi (so that the dual frame {ei} of {ωi} is an

orthonormal basis for each point in U) and take θij to be the connection 1-forms for the
Levi-Civita connection of this metric. □

Remark. How to get from local to global? To glue, one need the connection 1-forms
to satisfy the change of frame formula (2) for any orthogonal transformation f .



4 LECTURE 11: THE METHOD OF MOVING FRAMES

¶ The curvature 2-form.

We start with any linear connection on a smooth manifold M . Suppose we are
given a local co-frame {ωi} and the corresponding connection 1-forms θij. We may
express the curvature using differential forms (in terms of the connection 1-forms)
as follows. By definition

R(X, Y )ei=∇X∇Y ei −∇Y∇Xei −∇[X,Y ]ei

=∇X(θ
j
i (Y )ej)−∇Y (θ

j
i (X)ej)− θji ([X, Y ])ej

=X(θji (Y ))ej+θji (Y )θkj (X)ek−Y(θji (X))ej−θji (X)θkj (Y )ek−θji ([X, Y ])ej

=(dθji )(X, Y )ej + θjk ∧ θki (X, Y )ej.

As a consequence, if we denote R(ek, el)ei = Rkli
jej, then we get

(6) dθji + θjk ∧ θki = R j
kli ωk ⊗ ωl =

1

2
R j

kli ωk ∧ ωl.

We shall denote

Ωj
i =

1

2
R j

kli ωk ∧ ωl,

and call it the curvature 2-form, which can be expressed in terms of θji ’s as

(7) Ωj
i = dθji + θjk ∧ θki .

The formula can be taken as definition of curvature (for given connection 1-forms)
and is usually written in brief as

Ω = dθ + θ ∧ θ,

where Ω is regarded as an m×m matrix whose entries are 2-forms.

Unlike the connection 1-forms, given a linear connection, the curvature 2-form
is independent of the choice of co-frame and thus is globally defined. To see this,
we use the frame transformation formula for connection 1-forms above to get

Ω̃ = dθ̃ + θ̃ ∧ θ̃ =(df−1) ∧ θf + f−1(dθ)f − f−1θ ∧ df + (df−1) ∧ df

+ f−1θ ∧ θf + f−1θ ∧ df + f−1df ∧ f−1θf + f−1df ∧ f−1df.

In view of the fact df−1 = −f−1(df)f−1, we get

Ω̃ = f−1(dθ + θ ∧ θ)f = f−1Ωf,

which is equivalent to say Ω is independent of the choice of frames.

Now suppose (M, g) is a Riemannian manifold. Then we may start with or-
thonormal co-frame {ωi}, and we have Cartan’s structural equations, which implies

Ωj
i = −Ωi

j.

We may also express the curvature 2-form Ωj
i using Rijkl := Rm(ei, ej, ek, el) as

Ωi
j =

1

2
R i

klj ω
k ∧ ωl = −1

2
Rkljiω

k ∧ ωl =
1

2
Rijklω

k ∧ ωl.
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Remark. More generally, one can develop the theory of linear connections on vector
bundles (or principal bundles) via moving frames, as follows. Let E be a rank r
vector bundle over M , and {e1, · · · , er} a local frame of E. Then one can either
define a linear connection

∇ : Γ∞(E) → Γ∞(E ⊗ T ∗M)

via axioms that we mentioned earlier, or via connection 1-forms θji (1 ≤ i, j ≤ r)
that are locally defined such that

∇ei = ej ⊗ θji .

As we calculated above, the matrix θ transform under change of basis as

θ̃ = f−1θf + f−1df.

One can further define the curvature 2-form to be

Ω = dθ + θ ∧ θ.

2. Applications to Riemannian geometry

¶ Calculating curvatures.

As the first application, we use moving frames to calculate the curvature of
a Riemannian manifold (M, g). Let {e1, · · · , em} be a local orthonormal frame of
(M, g). By definition the sectional curvature of the plane spanned by {ei, ej} is

K(ei, ej) = Rm(ei, ej, ei, ej) = Rijij = Ωj
i (ej, ei).

Theorem 2.1. (M, g) has constant sectional curvature c at p ∈ M if and only if
for any local orthonormal frame {ei}, at p we have

(8) Ωi
j = cωi ∧ ωj.

Proof. Suppose (8) holds at p for any orthonormal frame. Let Πp be any two di-
mensional plane in TpM . Choose an orthonormal basis {e1, e2} of Πp, extend it to
an orthonormal frame and denote by ω1, · · · , ωm the dual co-frame. Then

K(Πp) = K(e1, e2) = cΩ2
1(e2, e1) = cω2 ∧ ω1(e2, e1) = c.

Conversely suppose (M, g) has constant sectional curvature c at p, then with respect
to any orthonormal frame,

Rijkl =
c

2
g ∧○g(ei, ej, ek, el) = c(δikδjl − δjkδil)

at p and thus the conclusion follows. □

Example. Consider the upper half space Hm with the hyperbolic metric

ghyperbolic =
1

(xm)2
(dx1 ⊗ dx1 + · · ·+ dxm ⊗ dxm).
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With the orthonormal frame {ei=xm∂i} and its dual co-frame {ωi= 1
xmdxi},

ωj ∧ θij = dωi = − 1

(xm)2
dxm ∧ dxi = −ωm ∧ ωi.

Observe that for the given co-frame {ω1, · · · , ωm},
θij = 0, (i, j < m) and θim = −θmi = −ωi (i < m)

is a solution and thus has to be the unique solution. So we get, for i, j < m,

Ωi
j = dθij + θik ∧ θkj = θim ∧ θmj = −ωi ∧ ωj

and for i < m
Ωi

m = dθim + θik ∧ θkm = −dωi = −ωi ∧ ωm.

It follows from Theorem 2.1 that the hyperbolic space has constant curvature −1.

¶ Proving the Bianchi identities.

We may also prove the Bianchi identities via moving frame. For the first Bianchi
identity, we just take exterior derivative:

0 = d2ωi = dωj ∧ θij − ωj ∧ dθij = ωk ∧ θjk ∧ θij − ωj ∧ (Ωi
j − θik ∧ θkj )

= −ωj ∧ Ωi
j

= −1

2
R i

klj ω
j ∧ ωk ∧ ωl,

= −1

2

∑
j<k<l

(
R i

klj +R i
ljk +R i

jkl

)
ωj ∧ ωk ∧ ωl.

As a consequence, we get for distinct k, l, j’s,

R i
klj +R i

ljk +R i
jkl = 0.

If two or three of k, l, j’s are the same, then the first Bianchi identity trivial.

Similarly by taking exterior derivative of Ω = dθ + θ ∧ θ we get

(9) dΩ = dθ ∧ θ − θ ∧ dθ = Ω ∧ θ − θ ∧ Ω.

One can prove that in local frames, together with the first Bianchi identity, the
expression above is equivalent to the second Bianchi identity. In fact we can give a
very quick proof of the sectional curvature version of Schur’s theorem via (9):

Alternative proof of Theorem 1.2(2) in Lecture 10.
Suppose (M, g) has sectional curvature K(Πp) = f(p) for some f ∈ C∞(M). By
Theorem 2.1, Ωi

j = f(p)ωi ∧ ωj. So

df ∧ ωi ∧ ωj + fdωi ∧ ωj − fωi ∧ dωj = dΩi
j = Ωi

k ∧ θkj − θik ∧ Ωk
j

= −fωi ∧ ωk ∧ θjk − fθik ∧ ωk ∧ ωj

= −fωi ∧ dωj + fdωi ∧ ωj.

It follows df ∧ωi∧ωj = 0 for all i, j, and, since m ≥ 3, df = 0, i.e. f is consant. □
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¶ Reading: Geometry of Riemannian submanifolds via moving frame.

Let (M, ḡ) be a Riemannian manifold of dimension m, and ι : S ↪→ M a smooth
submanifold of dimension s endowed with the submanifold metric g = ι∗ḡ. For
simplicity make the following index convention:

• 1 ≤ A,B, · · · ≤ m,
• 1 ≤ i, j, · · · ≤ s,
• s+ 1 ≤ α, β, · · · ≤ m

As usual we denote by NS the normal bundle of S in M .

We have three different ways to develop the Riemannian geometry of S. Here
we take the moving frame approach. So let’s start with a special local orthonormal
frame {ē1, · · · , ēm} of (M, ḡ) with the property that ēi = dι(ei) on S for 1 ≤ i ≤ s
and {e1, · · · , es} form a local orthonormal frame of S. Denote by {ω̄1, · · · , ω̄m} the
dual co-frame of {ē1, · · · , ēm}. Then by definition,

(10) ι∗ω̄α = 0.

Let θ̄AB the connection 1-forms of (M, ḡ) corresponding to the local frame {ēA}. Then
Cartan’s structural equations of M reads

θ̄AB + θ̄BA = 0 and dω̄A = ω̄B ∧ θ̄AB.

It follows that as 1-forms on S, ωi := ι∗ω̄i and θij := ι∗θ̄ij satisfy (here we used (10))

θij + θji = 0 and dωi = ωj ∧ θij.

By uniqueness in Theorem 1.2, θij’s are the connection 1-forms on S associate with

the co-frame {ω1, · · · , ωm}. [This proves the remark on page 9 of Lecture 6.]

We may also study connection 1-forms with indices α’s. Using (10) twice we get

0 = dι∗ω̄α = ι∗ω̄A ∧ ι∗θ̄αA = ωi ∧ ι∗θ̄αi .

Thus by Lemma 1.1(1), there exist uniquely determined functions hα
ij such that

hα
ij = hα

ji and ι∗θ̄αi = hα
ijω

j.

Definition 2.2. We call the map II : Γ∞(TS)× Γ∞(TS) → Γ∞(NS) defined by

II(X, Y ) = hα
ijω

i(X)ωj(Y )ēα

the second fundamental form of (S, g) as a Riemannian submanifold of (M, ḡ).

Note that the fact hα
ij = hα

ji implies II(X, Y ) = II(Y,X). We may write

II = hα
ijω

i ⊗ ωj ⊗ ēα.

To see the formula above is independent of the choices of frames, let’s reveal the
true face of II(X, Y ) by expressing it in the invariant formulation. We will use ∇
and ∇ to denote the Levi-Civita connections for (M, ḡ) and (S, g) respectively. For
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X, Y ∈ Γ∞(TS), we denote X = dι(X) and Y = dι(Y ). Note that if X = X iei,
then X = X iēi. So on S we have

∇YX − dι(∇YX) = Y (X i)ēi +X iθ̄Ai (Y )ēA − dι
(
Y (X i)ei −X iθji (Y )ej

)
= X iθ̄αi (Y )ēα

= ωi(X)ι∗θ̄αi (Y )ēα

= hα
ijω

i(X)ωj(Y )ēα.

In other words, for any vector field X, Y tangent to S, we have

II(X, Y ) = ∇YX − dι(∇YX).

In view of the fact ∇YX is the tangential component of ∇YX, we conclude that
II(X, Y ) is really the

:::::::
normal

::::::::::::
component of ∇YX.

Example. According to the example on page 9-10 in Lecture 6, for the unit sphere
Sm viewed as a Riemannian submanifold of Rm+1, we have

II(X, Y ) = −⟨X, Y ⟩n⃗.

The second fundamental form is closely related to the curvature 2-form of (S, g):

If we pull back Ω
i

j = dθ̄ij + θ̄iA∧ θ̄Aj to S and compare with Ωi
j = dθij + θik ∧ θkj , we get

Ωi
j = ι∗Ω

i

j − ι∗θ̄iα ∧ ι∗θ̄αj = ι∗Ω
i

j +
∑
α

ι∗θ̄αi ∧ ι∗θ̄αj = ι∗Ω
i

j +
∑
α

hα
ikh

α
jlω

k ∧ ωl.

As a consequence,
Rijkl = Rijkl + (hα

ikh
α
jl − hα

ilh
α
jk),

which is known as Gauss equation.

Example. In the case S is a hypersurface in (M, g), i.e. has co-dimension 1, then
one may pair the second fundamental form with ēm and thus for each p ∈ S, regard
IIp as a symmetric quadratic form on TpS. With the help of the Riemannian metric,
one can convert this symmetric quadratic form into a symmetric operator on TpM ,
which is known as the shape operator. The eigenvalues of the shape operator are
known as the principal curvatures of S at p. Its trace and the determinant are
known as the mean curvature and the Gauss curvature of S at p.

In particular, if S is a 2-dimensional surface isometrically embedded in R3, the
only sectional curvature is R1212 = h11h22−h2

12, which is exactly the Gauss curvature
of S. As a consequence, we get Gauss Theorem Egregium: The Gauss curvature
[which is defined by the second fundamental form which is extrinsic] is in fact intrinsic [since
the sectional curvature depends only on the Riemannian metric and thus is intrinsic].

We say S is a totally geodesic submanifold if II = 0, i.e. hα
ij = 0 for all i, j, α.

From Gauss equation one gets [there is still an issue here that we will explain later]

Theorem 2.3. Let S be a totally geodesic 2-dimensional submanifold of M with
TpS = Πp. Then the sectional curvature K(Πp) of M is the Gauss curvature of S.


