
LECTURE 12: GEODESICS AS SELF-PARALLEL CURVES
(ON MANIFOLDS WITH CONNECTION)

Now we turn to the next topic in this course: geodesic, which is a generalization
of the notion of straight line in the Euclidean space. As we know, a line in Rm is both
a curve “with constant direction”, and a curve that “minimize distances between
any two points on it”. As a result, we will have two ways to define geodesics on
Riemannian manifolds, which, as we will see, are equivalent. On the other hand, for
the first method (i.e. regard geodesics as curves “with constant directions”), what we need is
the existence of a covariant derivative instead of a Riemannian metric structure, and
as a result, it works for any smooth manifold with a linear connection. So today we
will introduce the first method, i.e., focus on “non-metric properties” of geodesics.

1. Geodesics on manifolds with linear connections

¶ Geodesics for manifolds with linear connections.

Let M be a smooth manifold. To define a geodesic as a “curve with constant
direction”, what we need is a structure that can be used to compare tangent vectors
at different points along a curve, i.e. a parallel transport, or equivalently, a linear
connection. So we let ∇ be a linear connection on M . Now suppose γ : [a, b] → M
is a smooth curve in M . Then “γ is a geodesic” means that the tangent vector field
γ̇ is “unchanged” along γ(under parallel transport), i.e. is covariantly constant along γ:

Definition 1.1. We say γ is a geodesic if γ̇ is parallel along γ, i.e.

∇γ̇(t)γ̇ = 0, ∀t.

In local coordinates, if we write γ(t) = (x1(t), · · · , xm(t)), then

γ̇(t) = dγ(
d

dt
) = ẋi(t)∂i.

Now suppose X = X i∂i is a smooth vector field near γ [If X is only defined on γ, then we

need to extend it to a smooth vector field in a neighborhood of γ. By locality of ∇, the extension

will not affect the computation below]. If we denote f i(t) = X i(γ(t)), then

∇γ̇(t)X
i = γ̇(t)X i =

d

dt
(X i ◦ γ) = ḟ i(t)

[i.e. the covariant derivative of any function along γ is its t-derivative] and thus

(∇γ̇X)|γ(t) = (γ̇(t)X i)∂i + Γk
ijẋ

i(t)f j(t)∂k = ḟk(t)∂k + Γk
ijẋ

i(t)f j(t)∂k.

As a result, the condition ∇γ̇X = 0, i.e. “X is parallel along γ” becomes

ḟk(t) + Γk
ij(γ(t))ẋ

i(t)f j(t) = 0, ∀k.
1



2LECTURE 12: GEODESICS AS SELF-PARALLEL CURVES (ON MANIFOLDS WITH CONNECTION)

Apply this to the vector field X = γ̇, we see γ is a geodesic if and only if locally
its coordinate functions satisfy the following system of second order ODEs

(1) ẍk(t) + ẋi(t)ẋj(t)Γk
ij = 0, 1 ≤ k ≤ m.

Remark. A natural question is:

Question: is a re-parametrization of a geodesics still a geodesic?

Suppose γ is a geodesic and γ̇ ̸= 0(otherwise γ is constant), and γ̃(s) = γ(t(s)) is a
regular re-parametrization of γ, then

∇ ˙̃γ(s)
˙̃γ(s) = ∇ ˙̃γ(s)(t

′(s)γ̇(t(s)))

= γ̇(t(s)) + (t′(s))2∇γ̇(t(s))γ̇(t(s)) = t′′(s)γ̇(t(s)).

So γ̃ is also a geodesic if and only if t′′(s) = 0, i.e. t(s) = as+ b for some constants
a and b. So the answer to the above question is:

Answer: A re-parametrization of a geodesics is still a geodesic if and
only if the re-parametrization is linear.

¶ Basic examples.

Example. Let M = Rm, equipped with standard linear connection ∇ such that
∇XY = X(Y j)∂j, or equivalently, Γ

k
ij = 0. Let γ be any curve and X be a vector

field. Then for X to be parallel along γ, we need ḟk(t) = 0 for all k, i.e. if and only
if X i’s are constants on γ [so X is a constant vector field in Rm along γ in the usual sense].

In particular, the geodesic equations in Rm above become

ẍk(t) = 0, 1 ≤ k ≤ m.

The solution to the system are linear functions, i.e. xk(t) = akt + bk for some
constants ak, bk. As a consequence, γ is a geodesic if and only if it is the straight
line in the direction a⃗ = ⟨a1, · · · , am⟩ that passes the point (b1, · · · , bm).
Example. Consider M = Sm the m-sphere, equipped with the Levi-Civita connec-
tion. For any p ∈ Sm, regarded as a unit vector p = u⃗ ∈ Rm+1, and for any unit
tangent vector w⃗ ∈ TpS

m, we let

γ(t) = (cos t) u⃗+ (sin t) w⃗.

be the great circle in Sm passing p in the direction of w⃗. Since the Levi-Civita
connection on Sm is given by ∇XY = ∇XY + ⟨X, Y ⟩n⃗, where ∇ is the Levi-Civita

connection for Rm+1, i.e. with Γ
k
ij = 0. So

∇γ̇ γ̇ = ∇γ̇ γ̇ + ⟨γ̇, γ̇⟩n⃗ = γ̈ + n⃗.

But at the point γ(t), one has n⃗ = γ(t), and γ̈(t) = −γ(t). So we get

∇γ̇ γ̇ = 0.

In other words, any great circle on Sm is a geodesic. [By uniqueness below, up to linear

re-parametrizations they are essentially the only geodesics on Sm]
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¶ The existence, uniqueness and smoothness.

To find a geodesic is equivalent to solve the system of second order ODEs (1).
By introducing yi = ẋi, we may convert it to a system of first order ODEs (with
more variables and more equations){

ẋk = yk,

ẏk = −Γk
ijy

iyj,
1 ≤ k ≤ m.

So suppose we want to find a geodesic with γ(t0) = p = (p1, · · · , pm) and γ̇(t0) =
Xp = X i∂i ∈ TpM , then we need to solve the above system with initial condition
x(t0) = (x1(t0), · · · , xm(t0)) = p, y(t0) = (y1(t0), · · · , ym(t0)) = Xp. According to
the fundamental theorem for systems of first order ODEs,

• Existence: For any t0 ∈ R and any (p,Xp) ∈ TM , there is an open interval
I ∋ t0 and open set U ∋ (p,Xp) so that for any (q,Xq) ∈ U , the system has a
smooth solution γq,Xq(t) in t ∈ I with initial condition x(t0) = q, y(t0) = Xq.

• Smooth dependence: The solution above, viewed as a map Υ(t, q,Xq) =
γq,Xq(t), is a smooth map from I × U to M .

• Uniqueness: If (x1, y1) is a solution of the system on an interval I1 ∋ t0,
(x2, y2) is a solution of the system on an interval I2 ∋ t0, both with the initial
condition (p,Xp) at t0, then (x1, y1) = (x2, y2) on I1 ∩ I2.

As a consequence, we conclude

Theorem 1.2. For any p ∈ M and any Xp ∈ TpM , there exists an ε > 0 and a
unique geodesic γ = γp,Xp defined for |t| < ε such that γ(0) = p and γ̇(0) = Xp.
Moreover, the map γ(t; p,Xp) = γp,Xp(t) depends smoothly on (t, p,Xp).

Note that by uniqueness, for any (p,Xp) ∈ TM , there is a
:::::::::
maximal interval

Jp,Xp ⊂ R on which a geodesic γ with γ(0) = p and γ̇(0) = Xp exists. Note that by
the “linear re-parametrization remark” above,

Jp,tXp =
1

t
Jp,Xp .

If Jp,Xp = R for all (p,Xp) ∈ TM , then we say (M,∇) is geodesically complete.

Remark. The dependence of the maximal interval J on the initial data (p,Xp) is
not continuous: for example, one can consider in the punctured plane R2 −{(0, 0)}.
Then the geodesic starting at (−1, 0) in the direction ⟨1, 0⟩ has maximal existence
interval (−∞, 1), while the geodesic starting at (−1, 0) in any other direction has
maximal existence interval R.

It is not hard to see that if M is compact, then it must be geodesically complete.
We will see later that for Riemannian manifolds, (M, g) is geodesically complete if
and only if as a metric space, (M, dist) is complete.
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2. The exponential map and normal coordinates

¶ The exponential map.

Let M be a smooth manifold endowed with a linear connection ∇. Consider

E = {(p,Xp) | γp,Xp(t) is defined on an interval containing [0, 1]}.
[So by definition E = TM if and only if (M, g) is geodesically complete.]

By existence and smoothness above, for any (p,Xp) ∈ TM there is ε0 > 0 and an
open neighborhood U of (p,Xp) so that for any (q,Xq) ∈ U , the maximal existence
interval Jq,Xq of γq,Xq contains the interval (−ε0, ε0). As a result,

Jq,ε0Xq/2 ⊃ (−2, 2),

So E contains a neighborhood of the zero section M in TM . Note that E ∩ TpM is
always a star-like subset in TpM for any p.

Definition 2.1. The exponential map is defined to be

exp : E → M, (p,Xp) 7→ expp(Xp) := γp,Xp(1).

Example. For (Rm, g0), we can identify each TpRm with Rm. Then expp(Xp) = p+Xp.

Example. For (S1, dθ ⊗ dθ), we can identify TeS
1 with R1. Then expe(Xp) = eiXp .

Remark. Let M = G be a Lie group, endowed with the Levi-Civita connection of the
bi-invariant metric on G, then expe coincides with the exponential map exp : g → G
in Lie theory. In particular, if G is a matrix Lie group, then

expe(A) = I + A+
A2

2!
+ · · ·+ Ak

k!
+ · · · .

The smoothness of Υ(t; p,Xp) implies that the exponential map is smooth. In
particular, for each p ∈ M , the map

expp : TpM ∩ E → M

is smooth. By definition expp maps 0 ∈ TpM to p ∈ M . As in Lie theory we also
have the following useful lemma:

Lemma 2.2. For any p ∈ M , if we identify T0(TpM) with TpM , then

(d expp)0 = Id|TpM : TpM → TpM.

Proof. for any Xp ∈ T0(TpM) = TpM ,

(d expp)0(Xp) =
d

dt

∣∣∣∣
t=0

expp(tXp) =
d

dt

∣∣∣∣
t=0

γ(1; p, tXp) =
d

dt

∣∣∣∣
t=0

γ(t; p,Xp) = Xp.

□

So by the inverse function theorem, we immediately get

Corollary 2.3. For any p ∈ M , there exists a neighborhood V of 0 in TpM and a
neighborhood U of p in M so that expp : V → U is a diffeomorphism.
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¶ Normal neighborhoods and normal coordinates.

So for any p ∈ M , there exists a neighborhood U ⊂ M of p and a neighborhood

Ṽ ⊂ TpM of 0 so that the exponential map expp : Ṽ → U is a diffeomorphism. By

::::::
fixing

::
a

:::::
basis

:::::
{ei}:::

of
:::::
TpM , we may identify Ṽ with an open subset V of Rm, and as

a result, the triple (exp−1
p , U, V ) form a local chart of M near p.

Definition 2.4. If Ṽ is star-like, then we call U a normal neighborhood of p, call
the local chart (exp−1

p , U, V ) a normal chart on M , and call the coordinate system

{U ;x1, · · · , xm} a normal coordinate system centered at p.

By definition, the normal coordinate system centered at p has the nice charac-
terizing property that any geodesic starting at p is given in such coordinates by

γ : x(t) = (tv1, tv2, · · · , tvm),
where (v1, · · · , vm) is the direction of the geodesics. Moreover, we have

Lemma 2.5. Let {U ;x1, · · · , xm} be a normal coordinate system centered at p. Then
for all v⃗ ∈ Rm and all 1 ≤ k ≤ m, Γk

ij(p)v
ivj = 0. [In particular, if the linear connection

∇ is torsion free, then Γk
ij(p) = 0 for all i, j, k.]

Proof. Put the parametric equation x(t) = (tv1, tv2, · · · , tvm). of a geodesic into the
geodesic equation, we get for 1 ≤ k ≤ m,

0 = ẍk(t) + Γk
ij(γ(t))ẋ

i(t)ẋj(t) = Γk
ij(γ(t))v

ivj.

Letting t = 0, we get Γk
ij(p)v

ivj = 0 for all v⃗ and for any 1 ≤ k ≤ m. □

¶ Normal convex neighborhoods.

We may go a lot further.

Theorem 2.6 (Whitehead). For any smooth manifold M with a linear connection,
any p has a neighborhood U such that U is a normal neighborhood for any q ∈ U .

Let’s explain the meaning before we prove the theorem. For any q, q′ ∈ U , since
U is a normal neighborhood of q, there is a vector Xq→q′ ∈ TqM so that

γq,q′(t) := expq(tXq→q′)

is a geodesic from q = γ(0) to q′ = γ(1) that lies entirely in U . Such an open set is
called a convex normal neighborhood of p. So Whitehead theorem claims that any
p admits a normal convex neighborhood. As a consequence, we can prove

Corollary 2.7. Any smooth manifold M admits a good covering.

Proof. Endow with M a linear connection ∇. Then by Whitehead theorem, each
p ∈ M admits a normal convex neighborhood Up. Because each normal convex
neighborhood is contractible [since it is diffeomorphic to a star-like subset in a vector space],
and because arbitrary intersection of normal convex neighborhoods is still a normal
convex neighborhood, they form a good covering of M . □
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¶ Proof of Whitehead theorem.

Proof. Step 1: There is a neighborhood U of p such that for any q ∈ U , there is a
normal chart (exp−1

q , Uq, Vq) with Uq ⊃ U .

Take a neighborhoods U1 of p ∈ M and a neighborhood Ũ1 of (p, 0) ∈ TM over
U1 [i.e. π(Ũ1) = U1, where π : TM → M is the bundle projection] such that for each q ∈ U1,

• Ũ1 is fiberwise star-like, i.e. Vq = Ũ1 ∩ TqM is star-like in TqM ,
• the exponential map expq : Vq → Uq is a diffeomorphism.

Consider the map

Ψ : Ũ1 → M ×M, (q,Xq) 7→ (q, expq(Xq)).

The Jacobian of Ψ at (p, 0) is

(
I 0
I I

)
. So Ψ is a local diffeomorphism, i.e. it

maps a smaller neighborhood U1 ⊂ Ũ1 diffeomorphically onto a neighborhood of
(p, p) in M ×M . In particular, one may find a neighborhood U of p in M so that
U × U ⊂ Ψ(U1). By construction, Ψ−1(U × U) ∩ TqM ⊂ U1 ∩ TqM ⊂ Vq and thus

U ⊂ expq(Ψ
−1(U × U) ∩ TqM) ⊂ Uq.

Step 2: U can be chosen to be normal with respect to any q ∈ U .

We fix a normal normal chart (φ,U0, V0) centered at p, with normal coordinates
x1, · · · , xm, where for simplicity we denote φ = exp−1

p . Apply Lemma 2.5 and shrink

U0 if necessary, we may assume that the matrix
(
δij −

∑
k Γ

k
ijx

k
)
is “positive” at

each point in U0, i.e. such that
(
δij −

∑
k Γ

k
ijx

k
)
vivj ≥ 0 for all v⃗ ∈ Rm and all

q ∈ U0. We may assume Uq we get in Step 1 are all inside U0.

Now we endow TpM with any inner product, and shrink U we get in Step 1 so
that φ(U) is a ball of radius δ. By Step 1, for any q, q′ ∈ U , there is a vector Xq→q′ ∈
TqM with expq(X

q′
q ) = q′. Since Vq is star-like, the curve γq,q′(t) := expq(tX

q′
q ) is

a geodesic from q = γ(0) to q′ = γ(1) that lies in Uq. It remains to prove that
γq,q′(t)(0 ≤ t ≤ 1) lies in U .

Since the geodesic γq,q′ lies in U0, we work on its parametric equations xi = xi(t).
Consider the function f(t) =

∑
i(x

i(t))2. Then

f̈(t) = 2
∑
i

[
(ẋk(t))2 + ẍk(t)xk(t)

]
= 2

∑
k

[
(ẋk(t))2 − Γk

ijẋ
i(t)ẋj(t)xk(t)

]
= 2

[
δij −

∑
k

Γk
ijx

k(t)
]
γ(t)

ẋi(t)ẋj(t) ≥ 0.

As a consequence, f is convex and thus f(t) ≤ max{f(0), f(1)} for 0 ≤ t ≤ 1. Since
q, q′ ∈ U , we have f(0), f(1) ≤ δ2. So the geodesic γq,q′ is inside U . □


