LECTURE 14: EXISTENCE OF SHORTEST GEODESICS

By using ODEs (or equivalently, vector fields on tangent or cotangent bundles),
we have proved local existence of geodesics as well as the local length-minimizing
property. In what follows we turn to global aspects of geodesics.

1. LENGTH MINIMIZING CURVES ON COMPACT RIEMANNIAN MANIFOLDS

€ Length minimizing curves are geodesics.

Last time we showed that near any point p, there is a neighborhood U so that for
any two points qi, g2 € U, there is a unique normal geodesics v in U that connects
¢1 and g, and more over, v is the only shortest curve connecting ¢; and ¢;. As a
consequence, one gets

Proposition 1.1. Let p,q be two points on (M,g). If v : [0,1] = M is a piecewise
smooth curve that connects p = v(0) and ¢ = y(I) and is parametrized by arc-length
[so I = Length(y)], and if | = d(p,q), then v is smooth and is a geodesics.

Proof. First note that by definition of the Riemannian distance function d, there is
no piecewise smooth curve connecting p and ¢ of length less than .

By compactness of v([0,1]), there is € > 0 so that any ¢;,t, € [0,] with |t; —
ta] < e, there is a unique arc-length parametrized length-minimizing curve -, 4,
connecting 7(t1) and () which is a normal geodesic. If v, 4, 7 V|t1,10], then v, 4,
is strictly shorter than |, 4,), and we may replace |y, 1, by V4,4, to get a piecewise
smooth curve which is shorter than v, a contradiction. So for any t1,, € [0,] with
[t — ta] < €, V|j 45 Is smooth and satisfies the geodesic equation. It follows that v
is smooth and satisfies the geodesic equation on the whole [0, []. O

So the shortest curve between any two points on a connected Riemannian man-
ifold must be a geodesic. Here are two natural subsequent questions:

Question 1: Given p,q € M, does there exist a smooth curve of
length d(p, q) between p and ¢ [which then becomes a shortest geodesic]?
Question 2: Given p,q € M, is the length-minimizing curve the
only geodesics connecting p and ¢?

By studying very simple examples, it is quite obvious that the answers to both
questions are NO. However, as usual a simple “no” is not a satisfied answer. In the
next couple lectures we will give more in-depth answer to these two questions. For
example, under which condition the answer to Question 1 is yes? For Question

2, how does a geodesic change from length minimizing to non-minimizing?
1
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€ Length minimizing curves on compact Riemannian manifolds.

For the remaining of this lecture, we focus on Question 1, or more generally,
on conditions for the existence of various “global shortest geodesics” So let’s start
with a simple counterexample to Question 1:

Example. Let M = R?\ {0} be the punctured plane, equipped with the standard
Euclidean flat metric. Then there is no smooth curve of length 2 connecting the
points (—1,0) and (1,0).

One can easily find the issue in this example: there are many curves of length
2 + ¢ connecting (—1,0) and (1,0), but their “limit curve” does not exist as a curve
in M because of the puncture. In fact, this is always the case for those examples that
Question 1 has answer “NO”: Given any connected Riemannian manifold (M, g)
and any p,q € M, by definition there exist piecewise smooth curves 7. of length no
more than d(p,q) + . By using the technique in the proof of Proposition 1.1 one
can even assume these curves to be “piecewise geodesics” [i.e. piecewise smooth with
each piece a geodesic]. But these curves cannot converge to a piecewise smooth curve
in M: If they converge (in the uniform convergence topology) to a piecewise smooth
curve in M, then by the lower semi-continuity of the length functional [c.f. Problem 1
in PSet 1], the limit curve must has length d(p, ¢) and thus by Proposition 1.1, must
be a shortest geodesic connecting p and q.

Now suppose M is compact. As one can imagine, in this case such a sequence
will converge, and thus give us a YES to Question 1. The key observation is:

Lemma 1.2. Let~; : [0,1] — M be a family of piecewise smooth curve parametrized
with constant speed [i.e. with |¥;(t)] = Length(v;) at all smooth points t of vi], such that
Length(v;) < L for some constant L, then the family {v;} is equicontinuous.

Proof. For any x¢ € [0,1] and any € > 0, if we take 0 = = , then for |z — x| < 0,
d(f}/@(x)afyl(‘r())) = ’1: - xO’Length(VZ) <g, VZ,
and the conclusion follows. O

Now we prove

Theorem 1.3. If (M, g) is a compact connected Riemannian manifold, then for any
p,q on M, there is a geodesic of length d(p,q) connecting p and q.

Proof. Let v; be a sequence of piecewise smooth curves with
1
%0 =p, %) =g  Length(y) <d(p,q) + -,

parametrized with “constant speed”. By Lemma 1.2, {7;} is equicontinuous. It is
also pointwise precompact since M is a compact metric space. Applying Arzela-
Ascoli theorem we know 7; has a subsequence that converges to a continuous map
v :[0,1] — M. To get a piecewise smooth curve out of vy, we fix gy < inj(M, g), and
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fix N such tha't % < m. Split each ~; i'nto N pieces, %j = %h#%y Then 717
converges to 7/ = 7|[% i) Denote p; = v(%). Then
d(p,q)

d(p;, pj+1) < liminf Length(v]) < < &o.
1—00

N

Let 7 be the piecewise geodesic obtained by connecting each p; to p;;1 by the shortest
geodesic (which exists since gy < inj(M, g)). Since by definition py = p, py = q and

Length(%) = d(pj, pj+1) < d(p, q),
J

=

Il
o

we conclude from Proposition 1.1 that 7 is the shortest geodesic from p to ¢ (whose
length is d(p, q)). O

€ Length minimizing curves in given path-homotopy class.

With a little bit more work, one can find geodesics between p and ¢ that are not
absolutely length minimizing, but only “relatively length minimizing”:

Theorem 1.4. Let (M, g) be a compact connected Riemannian manifold, and p,q
are two points in M. Then in each path-homotopy class of curves v with ~(0) =
p,v(1) = q, there is a length-minimizing curve and the curve is a geodesic.

Proof. Let Iy be the infimum of length of all piecewise smooth curves in the given
path homotopy class, which is positive (at least d(p,q)) since p # ¢q. Again take a
sequence of piecewise smooth curves ~; in the given path homotopy class so that
Length(vy;) < lp+ % By Arzela-Ascoli theorem as above, v; has a convergent subse-
quence whose limit is a continuous curve v. We take ¢ small so that each geodesic
ball B(p,2¢) is strongly convex (as in Whitehead theorem). Again we may divide
each 7; into N pieces, and let p; = ’y(%) Then we still have d(p;,pj+1) < €o. As
a result, 7|[%7%1 is path-homotopic to the shortest geodesic connecting p; to p;y1.
So if we let ¥ be the piecewise geodesic obtained by connecting each p; to p;.1 by
shortest geodesic, then 7 is path homotopic to v and has shortest length in the given
homotopy class. Finally by Proposition 1.1, each sufficiently small part in 4 must
be geodesic. So 7 is a geodesic. 0

Remark. 1t was proved by Serre in 1951 that in any compact Riemannian manifold,
there are infinitely many geodesics joining any pair of points. [Note that for the
sphere, the geodesics could contain a whole great circle which repeat many times]

€[ Length minimizing closed curves in given free homotopy class.
One may also apply the same argument to the case p = ¢, i.e. i.e. consider
closed curves with base point p. There are two issues:

(1) If the homotopy class is trivial, then “the shortest curve” is a single point
and thus is not interesting.
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(2) In each non-trivial homotopy class of curves with base point p, by the same
argument one gets:

Proposition 1.5. There is a shortest curve v : [0,1] — M with v(0) =
~v(1) = p in the given homotopy class with base point p, and it is a geodesic.

However, in general ~ is not smooth at the point p (i.e. 4(0) # 4(1)). Such
a curve is called a geodesic loop with base point p.

Note that although a geodesic loop 7 is a closed curve on M, it is not closed if
we take an “upstairs” point of view: the integral curve in S*M that corresponds to
v is not a closed curve in S*M. In applications those geodesics that are “not only
closed on M, but also closed on S*M7” are more important:

Definition 1.6. We say a geodesic 7 : [0, 1] — M is a closed geodesic if v(0) = (1)
and 7(0) = (1).

So closed geodesics are projections of closed integral curves in S*M to M, and
they can also be regarded as smooth maps v : S' — M that satisfies the geodesic
equation for all t € S'. Here are some simple examples:

e Any geodesic on S™ is a closed geodesic.

e On the standard cylinder S* x R, a geodesic is either a closed geodesic (“hor-
izontal circles”) or a non-self-intersecting geodesic that “goes to infinity” in
both direction. [Similar for the standard torus S x S'].

e For the one-sheet hyperboloid 2% + 3 — 22 = 1, there is a unique closed
geodesic (the circle with z = 0), and many geodesic loops based at points
not on the closed geodesic, as well as many “unbounded geodesics”.

As motivated by the last example, to get a closed geodesic one cannot use curves
in the “homotopy class with base point p” any more. Instead, one should look at
the free homotopy class of closed curves. By adjusting the proofs above, one has

Theorem 1.7. Let (M, g) be a compact connected Riemannian manifold which is
not simply connected. Then in each free homotopy class, there is a length-minimizing
curve and the curve is a geodesic.

Remark. The theorem fails for non-compact connected Riemannian manifold (even
if we add completeness assumption).

Remark. For compact simply-connected Riemannian manifold, one can also prove
the existence of a closed geodesic: It was proved by Birkhoff for Riemannian 2-
spheres (with any Riemannian metric), and later by Lusternik-Fet for any compact
simply connected Riemannian manifold. It was further proved by Gromoll-Meyer in
1971 that for simply connected closed manifolds whose cohomology ring H*(M; Q) is
not generated by a single element, there are always infinitely many closed geodesics.



