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Abstract

Neural networks are vulnerable to adversarial examples,

which poses a threat to their application in security sensi-

tive systems. We propose a Denoiser and UPsampler Net-

work (DUP-Net) structure as defenses for 3D adversarial

point cloud classification, where the two modules recon-

struct surface smoothness by dropping or adding points.

In this paper, statistical outlier removal (SOR) and a data-

driven upsampling network are considered as denoiser and

upsampler respectively. Compared with baseline defenses,

DUP-Net has three advantages. First, with DUP-Net as a

defense, the target model is more robust to white-box ad-

versarial attacks. Second, the statistical outlier removal

provides added robustness since it is a non-differentiable

denoising operation. Third, the upsampler network can be

trained on a small dataset and defends well against adver-

sarial attacks generated from other point cloud datasets. We

conduct various experiments to validate that DUP-Net is

very effective as defense in practice. Our best defense elim-

inates 83.8% of C&W and l2 loss based attack (point shift-

ing), 50.0% of C&W and Hausdorff distance loss based at-

tack (point adding) and 9.0% of saliency map based attack

(point dropping) under 200 dropped points on PointNet.

1. Introduction

Deep Learning has shown superior performance on sev-

eral categories of machine learning problems, especially

classification task. These Deep Neural Networks (DNN)

learn models from large training data to efficiently classify

unseen samples with high accuracy. However, recent works

have demonstrated that DNNs are vulnerable to adversar-

ial examples, which are maliciously created by adding im-

perceptible perturbations to the original input by attackers.

Adversarially perturbed examples have been deployed to at-

tack image classification service [18], speech recognition

system [5] and autonomous driving system [34].
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Heretofore, numerous algorithms have been proposed to

generate adversarial examples for 2D images. When model

parameters are known, a paradigm called white-box attacks

includes methods based on calculating the gradient of the

network, such as FGSM [9], IGSM [10] and JSMA [23],

and based on solving optimization problems, such as L-

BFGS [29], Deepfool [21] and Carlini & Wagner (C&W)

attack [3]. In the scenario where access to the model is not

available, called black-box attacks.

Since the robustness of DNNs to adversarial examples

is a critical feature, defenses that target to increase robust-

ness against adversarial example are urgently considered

and can be classified into three main categories: input trans-

formations [7, 19, 20], adversarial training [29] and gradi-

ent masking [22, 41]. In addition to defense, detection of

adversarial examples before they are fed into the networks

is another approach to resist attacks, such as MagNet [20]

and steganalysis based detection [17].

The popularity of 3D sensors such as LiDAR and RGBD

cameras draws many research concerns with 3D vision. An

increasing number of accessible data motivates data-driven

deep learning methods practical to be used in many areas,

including autopilot [24, 43], robotics [12, 6] and graph-

ics [35, 13, 31]. In particular, point cloud is one of the

most natural data structures to represent the 3D geome-

try. After the difficult problem of irregular data format was

addressed by DeepSets [40], PointNet [4] and its vari-

ants [26, 32], point cloud data can be directly processed

by DNNs, and has become a promising data structure for

3D computer vision tasks. Hua et al. [11] propose a point-

wise convolution operator that can output features at each

point, which can offer competitive accuracy while being

easy to implement. Yang et al. [36] construct losses based

on mesh shape and texture to generate adversarial examples,

which aim to project the optimized “adversarial meshes”

to 2D with a photorealistic renderer, and still able to mis-

lead different DNNs. Xiang et al. [34] attack point clouds

built upon C&W loss and point cloud-specific perturbation

metric with high success rate. Zheng et al. [42] propose

a malicious point-dropping method to generate adversarial
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point clouds based on learning a saliency map for a whole

point cloud, which assigns each point a score reflecting its

contribution to the model-recognition loss. Liu et al. [16]

propose several iterative gradient based attack methods and

input restoration based defenses. Yang et al. [37] propose

point-detach strategy utilizing the critical point property to

attack neural network based classification system, and in-

troduce several perturbation defenses.

Adversarial examples do well in 3D point cloud classi-

fication, and probably cause inconvenient issues even se-

curity problems. Consequently, research on defense of 3D

point cloud adversarial example is in urgent need. Based

on the above reasoning, in this paper, we propose a defense

method against adversarial point cloud by training a De-

noiser and UPsampler Network (DUP-Net) to mitigate ad-

versarial effects. As far as we know, this is the first work

that demonstrates the effectiveness of point-dropping and

point-adding operations at inference time on mitigating ad-

versarial effects on the 3D dataset, e.g., ModelNet40. We

summarize the key contributions of our work as follows:

• We present two new defense modules to mitigate ad-

versarial point clouds, which have better performance

compared with baseline methods.

• The nondifferentiability property of denoise layer, sta-

tistical outlier removal, is utilized to defend the adver-

sarial white-box attacks.

• The upsampler network can be trained on a small

dataset and defends well against adversarial attacks

generated from other point cloud datasets.

We conduct comprehensive experiments to test the ef-

fectiveness of our defense method against point shift-

ing/dropping/adding attacks from [34, 39]. The results in

Section 4 demonstrate that the proposed DUP-Net can sig-

nificantly mitigate adversarial effects.

2. Related Work

2.1. Point Clouds and PointNet

A point cloud is a set of points which are sampled from

object surfaces. Consider a 3D point cloud with n points,

denoted by X = {xi|i = 1, 2, ..., n}, where each point xi
is a vector of its xyz coordinates. PointNet [25] and its

variants [26] proposed by Qi et al. exploit a single sym-

metric function, max pooling, to reduce the unordered and

dimensionality-flexible input data to a fixed-length global

feature vector and enable end-to-end neural network learn-

ing. They demonstrate the robustness of PointNet and intro-

duce the concept of critical points and upper bounds. The

points sets laying between critical points and upper bounds

yield the same global features, and thus PointNet is robust

to missing points and random perturbation.

2.2. Existing methods for adversarial attacks

Point Shifting. Xiang et al. [34] propose C&W frame-

work [3] based unnoticeable adversarial point clouds by

point perturbation. C&W is an optimization-based attack

that combines a differentiable surrogate for the classifica-

tion accuracy of the model. It generates adversarial exam-

ples by solving the following optimization problem:

min
δ

D(X,X + δ) + c · f(X + δ)

s.t. X + δ ∈ [0, 1]n
(1)

This attack seeks for the solution of both acquiring the

smallest perturbation D and impelling the network to clas-

sify the adversarial example incorrectly. For an untargeted

attack, f(X) is the loss function to measure the distance be-

tween the input and the adversarial object, as defined by:

f(X) = max(Z(X)true − max
i 6=true

{Z(X)i},−κ) (2)

where κ denotes a margin for regulating model transferabil-

ity and perturbation degree, and Z(X) is the logit vector.

Xiang et al. shift existing points negligibly and adopt dif-

ferent perturbation metrics D(X,X′) (lp norm, Hausdorff

distance and Chamfer measurement), where X′ stands for

adversarial point cloud. Liu et al. [16] extend fast/iterative

gradient method by constraining the perturbation magnitude

onto the surface of an epsilon ball in different dimensions.

Point Adding. Xiang et al. [34] also propose points

adding based attacks with C&W and Hausdorff/Chamfer

measurements. Because directly adding points to the un-

constrained 3D space is infeasible due to the large search

space, they propose an initialize-and-shift method to find

appropriate position for each added point. Besides, for ad-

versarial clusters, they minimize the radius of the generated

cluster to make it attached to the surface of original object.

Yang et al. [37] develop a variant of one-pixel attack [28]

using pointwise gradient method to only update the attached

points without changing the original point cloud.

Point Dropping. For any point cloud X, Qi et al. [25]

prove that there exists a subset C ⊆ X, namely criti-

cal subset, which determines all the max pooled features

max
xi∈X
{h(xi)}, and thus the output of PointNet, which is only

applicable to network structures similar to γ ◦max
xi∈X
{h(xi)}.

Visually, C usually distributes evenly along the skeleton of

X. In this sense, dropping points in C can also generate ad-

versarial point clouds. Zheng et al. [42] propose point drop-

ping based attack by first constructing the saliency map:

si = −r
α
i ri

∂L

∂ri
, (3)

where rαi
∂L
∂ri

= (xi−xc) ·gi (inner product), xc is the cloud

center and gi is the gradient under orthogonal coordinates
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Figure 1: The pipeline of our DUP-Net defense method. The input point cloud is first denoised by a statistical outlier

removal layer and then upsampled by a pretrained upsampling neural network. The preprocessed point cloud is then fed into

the classification neural network.

gi = ∇xiL(X, y;θ), and α is a rescaling hyperparameter.

Points with n/T lowest si are dropped, and the operation

are iterative executed for T loops. Yang et al. [37] develop

a point-detach strategy similar to [42], which utilizes the

critical point property to iteratively detach the most impor-

tant point to confuse the attacked network.

2.3. Existing Methods for defenses

Adversarial Training. Adversarial training [9, 15, 30]

is one of the most investigated defenses against adversar-

ial attacks, which augment the training set with adversarial

examples to increase the model’s robustness against a spe-

cific attack. Adversarial training improves the classification

accuracy of the target model on adversarial examples.

Simple Random Sampling. In statistics, a simple ran-

dom sampling, or shortly SRS, is a subset of individuals

chosen from a larger set, where each sample is chosen ran-

domly with the same probability. For X containing n points,

we randomly sample r (r < n) points from X by

Pi(X) = {1x|x ∈ X,1x ∼ Ber(0.5)}, (4)

where x is sampled from Bernoulli(0.5) distribution to in-

dicate the existence of point x in the post-sampled set.

As described in [37], Gaussian noising and quantifica-

tion are another two basic defenses for point clouds, which

are similar to defenses for image adversarial examples.

3. Defenses against Adversarial Point Cloud

The goal of defense on 3D point clouds is to build a

network that is robust to adversarial examples, i.e., it can

classify adversarial point clouds correctly with little perfor-

mance loss on clean point clouds. Formally, given a clas-

sification model f and an input X̃, which may either be an

original input X, or an adversarial input X′, the goal of a

defense method is to either augment data to train a robust

f ′ such that f ′(X̃) = f(X), or transform X̃ by a transfor-

mation T such that f(T (X̃)) = f(X).

Towards this goal, we propose a method formed by a

denoiser and an upsampler, as shown in Figure 1, which

adds an outlier-removal layer and an upsampling network

to the front of the classification networks, to realize net-

work robustness. These layers are designed in the context of

point cloud classification on ModelNet40 [33] dataset and

are used in conjunction with a trained classifier f . The de-

fense function is denoted as D : X′ → X̂, where X̂ denotes

the denoised and upsampled point cloud. Inspired from up-

sampling network for generating a denser and uniform set

of points [39], we define the loss function as

L(X, X̂) = Lrec(X, X̂) + βLrep(X, X̂) + γ‖θ‖22, (5)

where Lrec is the reconstruction loss and Lrep the repulsion

loss. θ indicates the network parameters, β balances the

reconstruction loss and repulsion loss, and γ denotes the

multiplier of weight decay.

3.1. Statistical Outlier Removal (SOR)

Since there exists outliers in raw point cloud data pro-

duced by 3D scanners, Rusu et al. [27] propose statis-

tical outlier removal method (SOR for short) which cor-

rects these irregularities by computing the mean µ and stan-

dard deviation σ of nearest neighbor distances, and trim the

points which fall outside the µ±α · σ, where α depends on

the size of the analyzed neighborhood.

We use k-nearest neighbors (kNN) for outlier removal.

Specifically, the kNN point set of each point xi of point

cloud X is defined as knn(xi, k). Then the average distance
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di that each point xi has to its kNN is denoted by

di =
1

k

∑

xj∈knn(xi,k)

‖xi − xj‖2, i = 1, . . . , n. (6)

The mean and standard deviation of all these distances

are computed to determine a distance threshold:

d̄ =
1

n

n
∑

i

di, i = 1, . . . , n, (7)

σ =

√

√

√

√

1

n

n
∑

i

(di − d̄i)2. (8)

We trim the points which fall outside the µ ± α · σ, and

the manicured point set X′ is acquired by

X′ = {xi|di < d̄+ α · σ}. (9)

We explore the relationships between outliers and adver-

sarial points to explain why SOR is effective for defending

C&W based attacks. Despite that the attackers successfully

fool the classification network, there is always a certain per-

centage of points that inevitably become abnormal points

and are then captured and dropped by SOR. C&W attack

makes some points off the manifold of point cloud surface,

and such outliers mostly mislead the classification perfor-

mance. Therefore, the more outliers removed by prepro-

cessing layer, the better the defense ability against adversar-

ial examples. Here, we denote the percentage of adversarial

points in the removed point set by

p =
|Xadv ∩ (X− X′)|

|X| − |X′|
, (10)

where Xadv is the set of adversarial points which is defined

differently w.r.t. diverse adversarial distortion constraints.

For a l2 loss, Xadv is defined by

Xadv = {x′
i|‖xi − x′i‖2 > T (X,X′, ǫ)}, (11)

where x′
i ∈ X′ and T (X,X′, ǫ) is the threshold of l2 norm of

each paired points controlled by ǫ the ratio of points that are

considered as adversarial points. For Hausdorff or Chamfer

based loss, Xadv is defined by

Xadv = {x′
i|min

m∈X
‖m− x′i‖2 > T (X,X′, ǫ)}, (12)

where x′i ∈ X′ and T (X,X′, ǫ) is the threshold of Haus-

dorff/Chamfer distance between each point from X′ and

point set X controlled by ǫ.
By Equation (10), we acquire the percentage of adversar-

ial points p of SOR and SRS methods, and denote them by

pSOR and pSRS respectively. It is expected that pSOR > pSRS
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Figure 2: Comparison of pSOR and pSRS under l2 and Haus-

dorff loss based targeted adversarial examples on PointNet

network, respectively. The ratio ǫ is set with 0.04.

Figure 3: The network architecture of point cloud upsam-

pling network (PU-Net).

since SOR scheme recognizes outliers as adversarial points

in a statistical pattern rather than random guess as SRS does.

We choose 300 point clouds as test examples to verify the

above inference, as shown in Figure 2. Most of pSOR of

point clouds are larger than pSRS, implying that SOR drops

more adversarial points than SRS. Thus SOR has a better

ability of defense against adversarial point clouds than SRS.

3.2. Upsampling Network

Our goal is to defend a classification model f against

the perturbed point clouds generated by an adversary. Our

approach is motivated by the manifold assumption [44],

which postulates that natural images or point clouds lie on

low-dimensional manifolds. The perturbed point clouds are

known to lie off the low-dimensional manifold of natural

point clouds, which is approximated by deep networks. We
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Algorithm 1 Denoise and upsample points as defense

Input: Point cloud X, nearest neighbor number k, outlier

truncation parameter α and network parameter θ

Output: Prediction label l

1: Initialize X′ = ∅

2: Compute the average distance di that each point xi has

to its nearest k neighbors by Equation (6)

3: Compute the mean d̄ and standard deviation σ of all

these distances by Equation (7) and (8)

4: for i← 0 to n do

5: if the average distance di < d̄+ α · σ then

6: X′ = X′ ∪ xi (xi ∈ X)

7: The upsampled point clouds X̂ is generated by feeding

X′ into upsampling network

8: X̂ is fed into classification network f(X̂), and it outputs

the prediction label l
9: return Prediction label l

propose to use point cloud upsampling to remap off-the-

manifold adversarial samples on to the natural manifold to

reconstruct surface. In this manner, robustness against ad-

versarial perturbations is achieved by enhancing the visual

quality of point clouds. This approach offers significant ad-

vantages over other defense mechanisms that truncate criti-

cal information to achieve robustness.

Since these perturbations are generally missing critical

points from skeletons from point clouds, we use a point

cloud upsampling network that output a denser point cloud

that follows the underlying surface of the target object while

being uniform in distribution. The network considered in

this work is the Point Cloud Upsampling Network (PU-

Net) [39], which learns geometry semantics of point-based

patches from 3D models, and the architecture is illustrated

in Figure 3. To address the uncertain presence of the varying

part, the minimizer of Chamfer distance (CD) distributes

some points outside the main body at the correct locations;

while the minimizer of Earth Mover’s distance (EMD) is

considerably distorted [8]. We also try EMD [8] loss to ob-

serve the defense performance:

Lrec = D(X, X̂) =
1

‖X̂‖0

∑

x′∈X̂

min
x∈X
‖x− x′‖22. (13)

The total loss function combines the reconstruction loss

Lrec and repulsion loss Lrep proposed in [8]. In contrast,

we use a simple upsampling method [2], which interpolates

points at vertices of a Voronoi diagram for comparative trial.

In summary, we have given a formal definition of the

proposed defense in Algorithm 1.

4. Experiments

4.1. Experimental Setup

Dataset. We utilize ModelNet40 [33] datasets to test

our proposed DUP-Net, which contains 12,311 CAD mod-

els from 40 object categories, where 9,843 objects are used

for training and the other 2,468 for testing. As done by

Qi et al., before generating adversarial point clouds us-

ing [39, 34] methods, first uniformly sample 1,024 points

from the surface of each object and rescale them into a unit

cube. We also use Visionair dataset collected by [39] for

training DUP-Net, which contains 60 different models from

the Visionair repository [1], ranging from smooth non-rigid

and steep rigid objects.

Networks and Implementation Details. We use Point-

Net [25] and PointNet++ [26] as targeted classification net-

works and train the models using default settings. To train

the proposed DUP-Net, for ModelNet40, the upsampled

point number is 2048 and the upsampling rate is 2; for Vi-

sionair dataset, the number is 4096 and upsampling rate is

4. Each input sample has n = 1024 points for both train-

ing procedures. The balancing weights β and γ are set as

0.01 and 10−5, respectively. The implementation is based

on TensorFlow. For the optimization, we train the network

for 120 epochs using the Adam [14] algorithm with a mini-

batch size of 28 and a learning rate of 0.001.

Attacks Evaluations. The attackers first generate adver-

sarial examples using the untargeted/targeted models and

then evaluate the classification accuracy of these generated

adversarial examples on the target and defense models. Low

accuracy of the untargeted/targeted model indicates that the

attack is successful, and high accuracy of the defense model

indicates that the defense is effective.

4.2. Ablation Study

Our proposed defense first deploys the SOR layer, which

aims to minimize the effect of outlier points perturbations,

followed by an upsampling network to selectively intro-

duce missing points into a point cloud and recover off-the-

manifold attacked point clouds.

SOR as Defense. We compare the detection accuracy

and attack success rate of targeted attacks of proposed SOR

defense with baseline SRS for C&W and shifting [34] based

attacks and dropping [42] based attacks on PointNet. Gaus-

sian noising and quantification are not considered as de-

fense because they will degrade accuracy of clean samples.

As shown in Figure 4a, for SRS baseline, as dropped

points increases, the attack success rate drops dramatically,

and the accuracy gradually increases with its maximum

65.1%; for clean examples, the accuracy is monotonically

decreasing. The tendency of three curves can be explained:

the attacks search the entire point cloud space for adver-

sarial perturbations without considering the location of the
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Figure 4: (a) SRS defense performance of clean and targeted adversarial point clouds on PointNet using C&W and shifting

loss; (b) SOR defense performance of clean and targeted adversarial point clouds on PointNet using C&W and shifting loss

under α = 1.1; (c) Defense performance of adversarial point clouds on PointNet with or without defense.

Models Target [4]
Defense

(SRS)

Defense (SOR)

(ours)

Defense (PU-Net)

(ours)

Defense (DUP-Net)

(ours)

Clean point cloud 88.3% 83.0% 86.5% 87.5% 86.3%

Adv (C&W + l2 loss) [34] 0.7% 64.7% 81.4% 23.9% 84.5%

Adv (C&W + Hausdorff loss) [34] 12.7% 58.8% 59.8% 17.6% 62.7%

Adv (C&W + Chamfer loss) [34] 11.8% 59.5% 59.1% 18.0% 61.4%

Adv (C&W + 3 clusters) [34] 0.7% 92.0% - - 87.6%

Adv (C&W + 3 objects) [34] 2.7% 92.4% - - 68.4%

Adv (dropping 50 points) [42] 75.5% 68.1% 71.3% 76.1% 73.9%

Adv (dropping 100 points) [42] 63.2% 56.4% 60.0% 67.7% 64.3%

Adv (dropping 150 points) [42] 50.4% 45.0% 48.6% 57.7% 54.4%

Adv (dropping 200 points) [42] 39.1% 35.1% 36.8% 48.1% 43.7%

Table 1: Classification accuracy under the white-box attack on PointNet. For the SRS defense model, number of random

dropped points is 500 and for SOR defense model, k = 2 and α = 1.1 are set as hyperparameters.

Models CW l2 CW Hausd Drop 200

Target [26] 0% 28.1% 56.4%

Defense (SRS) 66.7% 51.7% 47.3%

Defense (DUP-Net) 75.7% 54.1% 61.9%

Table 2: Comparison of classification accuracy using SRS and

proposed DUP-Net under PointNet++ network.

point cloud content, which is contrary to the classification

models that pay attention to object shapes [38]. Therefore,

dropping a few points with SRS erases the artifact bothered

by adversarial perturbation, which promotes defense of ad-

versarial point clouds. The structure of point cloud is still

preserved with a few points dropped; when more random

sampled points are dropped, the shape of the point cloud

deteriorates and thus the classification accuracy degrades.

As shown in Figure 4b, the SOR operation comprises

two influential factors, k the number of neighbor points

and α the percentage of points that are regarded as outliers.

When k = 0, the kNN point set only contains the point

itself, thus the statistical removal defense is noneffective;

when k ≥ 1, the defense works. When k = 2 and α = 1.1,

the accuracy of clean point clouds and adversarial examples

are 86.5% and 81.4% respectively. Compared to SRS de-

fense with its best accuracy of adversarial examples 65.1%,

SOR has a substantial increase of 16.3% on performance.

Similar results can be obtained on defenses of untargeted

attacks and Hausdorff loss based attacks.

For the vanilla attack scenario, the attackers are not

aware of the points-removal layer, and directly use the orig-

inal networks as the target model to generate adversarial ex-

amples. For reading convenience, we coin a new acronym

“adv” standing for “adversarial point clouds” in tables. As

shown in Table 1, the points-removal layer can mitigate the

adversarial effects on C&W methods significantly. As for
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Networks Task
Shifting

(l2) [34]

Adding

(Hausdorff) [34]

Adding

(Chamfer) [34]

Dropping 100

points [42]

Dropping 200

points [42]

PointNet [25] Target 0.7% 12.7% 11.8% 63.2% 39.1%

PointNet++ [26]

Target 89.5% 52.9% 51.0% 82.4% 75.6%

Defense (SRS) 82.9% 59.6% 58.3% 70.3% 54.5%

Defense (DUP-Net) 84.3% 48.3% 48.5% 75.2% 67.3%

DGCNN [32]

Target 91.2% 51.4% 50.8% 75.5% 67.9%

Defense (SRS) 68.2% 38.2% 37.1% 72.2% 54.9%

Defense (DUP-Net) 40.7% 25.5% 26.7% 32.0% 26.7%

Table 3: Black-box attacks and defenses: accuracy of targeted C&W and shifting and adding based adversarial point clouds

and saliency map and points dropping based adversarial point clouds generated from PointNet on other classification net-

works [26, 32, 11] with or without defense.

l2 metric, SOR has the best performance with 81.4% accu-

racy. For Hausdorff and Chamfer loss metrics, SOR and

SRS have similar results with lower accuracy.

To validate whether differentiable point removal layer is

able to simulate non-differentiable layer, We train the mod-

ified PointNet with dropping probability p = 0.5 before

the max pooling layer, and conduct white-box attacks. The

classification accuracy of C&W l2, C&W Hausdorff and

drop 200 attacks are 0%, 0% and 54.5%, respectively, which

implies that the differentiable random point removal cannot

simulate non-differentiate layer well.

PU-Net as Defense. Here we investigate the indi-

vidual impact of PU-Net module towards defending ad-

versarial attacks. Since C&W based attack can be de-

fended by the proposed SOR layer, in this section we

only consider saliency point dropping based attack pro-

posed by Zheng et al. [42]. We perform extensive exper-

iments on three upsampler networks: pretrained PU-Net

model from [39] (Visonair-EMD), PU-Net with Chamfer

distance loss trained by Visonair (Visonair-CD) and PU-

Net with Earth Mover’s distance trained by ModelNet40

(ModelNet40-EMD), as shown in Figure 4c. The results

demonstrate that, upsampler network helps adversarial ex-

amples filling missing points that are critical for classifi-

cation, especially, when dropped number is 200, the de-

fense has nearly 9% increase. Besides, the upsampler net-

work can be trained on a small dataset and defends well

against adversarial attacks generated from other point cloud

datasets with fine generalization ability. We find that the

performance of the model trained by CD loss is similar with

that trained by EMD loss w.r.t. adversarial example defense,

which means that the selection of loss function does not

affect classification accuracy. SOR and SRS both deterio-

rate the defense performance, because the dropping attacks

visually damage the local shapes of point clouds, and the

SOR/SRS operation further amplifies the distortion.

We also compare PU-Net with a simple upsampling

method [2], which interpolates points at vertices of a

Voronoi diagram. Experiments show that PU-Net performs

much better than [2] by 8% when attacked by “Drop 200”.

4.3. Evaluation Results of DUPNet

The last column in Table 1 shows the overall de-

fense accuracy of proposed DUP-Net against different

attacks (C&W based points-shifting/points-adding/cluster-

adding/object-adding [34] and point-dropping [42]) on

PointNet. For clean point clouds, DUP-Net slightly re-

duce 2% detection accuracy; for C&W attacks, DUP-Net

performs better than baseline SRS, proposed SOR and pro-

posed PU-Net. The DUP-Net performs better than PU-Net,

implying that the outlier removing operation is effective

in promoting defense performance. For point-dropping at-

tacks, DUP-Net defense is slightly worse than PU-Net alone

but still better than baseline, which implies that large modi-

fications made by attackers cause some local shapes to dis-

appear to a large degree, and SOR defense further breaks

critical skeleton information. For C&W cluster and C&W

object attacks, our DUP-Net defense improves the accura-

cies to 87.6% and 68.4%; with SRS defense, the accuracies

are 92.0% and 92.4%. These results further demonstrate

our strong defense ability. Because DUP-Net removes out-

liers of the manifold surface and SRS equiprobably removes

points, for these two tasks, SRS performs better.

Overall, DUP-Net as a preprocessing network help en-

sure the robustness of neural network based classification

and resist attacks from adversarial point clouds. Besides,

DUP-Net is non-differentiable which makes attacker diffi-

cult to implement secondary adversarial attacks.

4.4. Generability of DUPNet

The transferability of targeted C&W based points-

shifting and points-adding attacks and saliency map based

points-dropping attack of PointNet on black-box classifica-

tion systems is shown in Table 3. Similar to [34], we test

the success rate of adversarial examples on PointNet++ and
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Figure 5: Visualization of point clouds. The fifth column is the 200 points dropping attack. Red circles denote outliers and

missing object parts. Enlarge to see details.

DGCNN. The result illustrates that C&W based adversar-

ial samples have limited transferability; while for points-

dropping attacks, they are more transferable to other net-

works. We find that for black-box defense, adding a de-

fense network (SRS layer or DUP-Net) before the classifi-

cation network deteriorates the classification accuracy, thus

our proposed defense scheme is only suitable for white-box

attack, and in such cases, the defense sides do not need the

preprocessing network. The results show that deploying

DUP-Net does not improve defense ability against black-

box attacks owning to the network structure dissimilarity.

In Table 2, we implement the experiments on Point-

Net++, which further shows our proposed DUP-Net can be

utilized for different target recognition models.

4.5. Visualization

Figure 5 shows the details of clean point clouds, adver-

sarial point clouds and the denoised and upsampled point

clouds. From top to bottom the classes of point clouds are

“vase”, “car” and “flower pot”, respectively. It shows that

C&W attacks produce outliers that lie far away from the

manifold of points, while saliency map based attacks drop a

cluster of points. We denote the outliers and dropped clus-

ter by red circles. The SOR denoiser drops some outliers

to neutralize the attack success rates of adversarial point

clouds, and then PU-Net strengths the smoothness of local

region to assist the classification of models.

5. Conclusion

In this paper, we propose a denoiser and upsampler net-

work (DUP-Net) formed by a statistical outlier removal

(SOR) layer and a point cloud upsampling network (PU-

Net) to defend against 3D point cloud adversarial exam-

ples. We propose to use point cloud restoration techniques

to purify perturbed point clouds. As an initial step, we ap-

ply SOR to suppress any outlier based noise patterns and

formulate a non-differentiable layer that is difficult to by-

pass. The central component of our approach is the upsam-

pling operation, which enhances the point resolution while

simultaneously removing adversarial patterns similar to im-

age super-resolution operation. Our experiments show that

point cloud upsampling network alone is sufficient to rein-

state classifier beliefs towards correct categories; besides,

the statistical outlier removal step provides added robust-

ness since it is a non-differentiable denoising operation.
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[30] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian

Goodfellow, Dan Boneh, and Patrick McDaniel. Ensemble

1969



adversarial training: Attacks and defenses. arXiv preprint

arXiv:1705.07204, 2017.

[31] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei

Liu, and Yu-Gang Jiang. Pixel2mesh: Generating 3d mesh

models from single rgb images. In Proceedings of the Euro-

pean Conference on Computer Vision (ECCV), pages 52–67,

2018.

[32] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,

Michael M Bronstein, and Justin M Solomon. Dynamic

graph cnn for learning on point clouds. arXiv preprint

arXiv:1801.07829, 2018.

[33] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-

guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d

shapenets: A deep representation for volumetric shapes. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 1912–1920, 2015.

[34] Chong Xiang, Charles R Qi, and Bo Li. Generating 3d adver-

sarial point clouds. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 9136–

9144, 2019.

[35] Xinchen Yan, Jimei Yang, Ersin Yumer, Yijie Guo, and

Honglak Lee. Perspective transformer nets: Learning single-

view 3d object reconstruction without 3d supervision. In

Advances in Neural Information Processing Systems, pages

1696–1704, 2016.

[36] Dawei Yang, Chaowei Xiao, Bo Li, Jia Deng, and Mingyan

Liu. Realistic adversarial examples in 3d meshes. arXiv

preprint arXiv:1810.05206, 2018.

[37] Jiancheng Yang, Qiang Zhang, Rongyao Fang, Bingbing Ni,

Jinxian Liu, and Qi Tian. Adversarial attack and defense on

point sets. arXiv preprint arXiv:1902.10899, 2019.

[38] Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and

Hod Lipson. Understanding neural networks through deep

visualization. arXiv preprint arXiv:1506.06579, 2015.

[39] Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and

Pheng-Ann Heng. Pu-net: Point cloud upsampling network.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 2790–2799, 2018.

[40] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barn-

abas Poczos, Ruslan R Salakhutdinov, and Alexander J

Smola. Deep sets. In Advances in neural information pro-

cessing systems, pages 3391–3401, 2017.

[41] Stephan Zheng, Yang Song, Thomas Leung, and Ian Good-

fellow. Improving the robustness of deep neural networks via

stability training. In Proceedings of the ieee conference on

computer vision and pattern recognition, pages 4480–4488,

2016.

[42] Tianhang Zheng, Changyou Chen, Kui Ren, et al. Learning

saliency maps for adversarial point-cloud generation. arXiv

preprint arXiv:1812.01687, 2018.

[43] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning

for point cloud based 3d object detection. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 4490–4499, 2018.

[44] Xiaojin Zhu and Andrew B Goldberg. Introduction to semi-

supervised learning. Synthesis lectures on artificial intelli-

gence and machine learning, 3(1):1–130, 2009.

1970


