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Abstract—Currently, selection-channel-aware (SCA) steganal-
ysis is the most successful technique for detecting steganog-
raphy. It estimates the modification probabilities to improve
its performance. How to counter SCA steganalysis is one of
the most challenging works in steganography. In this paper,
we propose ensemble steganography which introduces random
cost functions to disturb the estimation of the modification
probabilities of cover elements. The experimental results imply
that ensemble steganography improves the performance of HILL
and UNIWARD in countering SCA steganalysis and the security
of ensemble steganography increases with the number of cost
functions and the differences among them.

I. INTRODUCTION

Steganography is a technique of hiding information into

ordinary digital media while drawing minimal suspicion [1]

[2]. It is challenging to design steganographic algorithms for

various cover sources due to the lack of accurate models.

Currently, minimizing the distortion between the cover and

the corresponding stego object is the most successful approach

for designing content adaptive steganography. By assigning

a cost to each modified cover element (e.g., pixel in the

spatial image) the distortion is obtained, and the messages are

embedded with practical codes such as Syndrome-trellis codes

(STCs) [3] while minimizing the sum of distortions caused by

all the modifications.

HUGO (highly undetectable stego) [4] is the first method

based on the framework of minimal distortion steganography.

In HUGO, the cost of modifying a pixel is defined as the

changes of SPAM (subtractive pixel adjacency matrix) features

[5] that the modification causes. And higher costs are applied

to those pixels which cause more deviation in the feature

vector. This design of cost function makes the modification

of HUGO clustered in textural areas. However, steganalyzers

with higher dimensions, such as SRM (spatial rich models)

[6], can make HUGO be vulnerable.

In SRM, various filters are utilized to generate the predicted

residuals, so it overcomes the diversity of cover sources

and further exploits the correlations among pixels. Therefore,

steganography should elaborate its definition of smooth or

textural areas. One pixel should be assigned high cost if it

can be predicted in as long as one direction (e.g.in smooth

areas and at clean edges) and low if it is unpredictable in

every direction (in textural areas). With this insight, Hulob

and Fridrich proposed WOW [7] by which the pixels that are

more predictable by a bank of directional filters are assigned

high costs. By this way, HUGO is improved by WOW under

the detection of SRM [6]. UNIWARD (universal wavelet

relative distortion) [8] bears similar performance to WOW

while simplifies the cost function of WOW and generalizes it

to be more suitable for embedding in an arbitrary domain, the

spatial domain and DCT domain included. However, WOW

and UNIWARD assign some pixels in textural areas, which

may be suitable for carrying data, with high costs. So Li et

al. proposed the method HILL [9]. In HILL, the low costs of

pixels in textural areas are spread to their neighborhood by

a low-pass filter, which avoid pixels with high cost values in

textural areas and improves WOW.

Apparently, the modification probabilities and the embed-

ding locations are closely related to the cost functions of

the state-of-the-art adaptive steganographic methods. Based

on this logic, steganalysis follows up. Tang et al. proposed

an adaptive steganalytic scheme [10] (called tSRM) for the

method WOW, which narrows down the possible embedding

areas for a given suspicious image and extract features only

from such areas. Because tSRM only targets at WOW, Tomas

Denemark et al. proposed selection-channel-aware (SCA) rich

model (called maxSRM) [11]. MaxSRM improves tSRM by

forming the co-occurrence matrices that the maximum es-

timated modification probability of neighboring pixels as a

weight. The similar idea is applied in meanSRM [12], which
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utilize the mean estimated modification probability of a group

of pixels as a weight coefficient. Recently, Denemark and

Fridrich proposed an improving SCA steganalysis feature [13],

which use the residuals in SRM instead of co-occurrence

matrices.

The inevitable loophole of the state-of-the-art adaptive

steganographic algorithms has been exploited by steganalyzers

using various kinds of SCA steganalysis features. However,

please note that some minimal-distortion steganographic meth-

ods define cost functions in completely different ways, which

leads to very different costs and modification probabilities

to the same pixel. According to the experimental result, the

performance of maxSRM will face a significant decrease when

using a different modification probability matrix. So In this

paper, we proposed a novel scheme of steganography which

randomly assigns the cost of pixels to disturb the estimation of

modification probability of maxSRM steganalyzers. We divide

the cover image into blocks of the same size. Then a cost

function, which is called pre-allocating function, will be uti-

lized to allocating message bits among those blocks. However,

the modification locations inside a block is determined by a

cost function randomly taken from a group of steganography

methods. We call such methods disturbing functions. The

scheme described above is called ensemble steganography.

According to the experimental results, when suitable param-

eters are chosen (such as pre-allocating function, disturbing

functions and block size), we find this technique can help

improve recent additive distortion steganography methods to

resist SCA steganalyzers.

The rest of this paper is organized as follows. After in-

troducing notations and the framework of minimal distor-

tion steganography in Section II, in Section III, we propose

ensemble steganography which creates random modification

probability maps. Results of comparative experiments are

elaborated in Section IV to demonstrate the effectiveness of

the proposed scheme. Conclusion and future work are given

in Section V.

II. PRELIMINARIES

A. Notations

In this paper, matrices, vectors and sets are written in bold

face, and the entropy function is denoted H(π1, ..., πk) for∑k
i=1 πi = 1.

The cover (and the corresponding stego) sequence is de-

noted by X = (x1, x2, ..., xn), where signal xi is an

integer, such as the gray value of a pixel. The embedding

operation on xi is formulated by the range Ii. An embedding

operation is called binary if and ternary if for all i. For

example, the ±1 embedding operation is ternary embedding

with Ii = {xi − 1, xi, xi + 1}.
B. Minimal Additive Distortion Steganography

In the model established in [3], the cover X is assumed

to be fixed, so the distortion introduced by changing X to

Y = (y1, y2, ..., yn) can be simply denoted as D(X,Y ) =
D(Y ). Assume that the embedding algorithm changes X to

Y ∈ Y with probability π(Y ) = P (Y = Y ) which is called

the modification probability, and thus the sender can send to

up to Hk(π) bits of message on average with distortion Eπ(D)
such that

H(π) = −
∑
Y ∈Y

π(Y ) log (π(Y)) , (1)

Eπ(D) =
∑
Y ∈Y

π(Y )D(Y ). (2)

For a given message length L, the sender wants to mini-

mize the average distortion, which can be formulated as the

following optimization problems:

min
π

Eπ(D), (3)

subject to H(π) = L. (4)

Following the maximum entropy principle, the optimal has

a Gibbs distribution [3]:

πλ(Y ) =
1

Z(λ)
exp(−D(Y )), (5)

where Z(λ) is normalizing factor such that

Z(λ) =
∑
Y∈Y

exp(−D(Y)). (6)

The scalar parameter λ > 0 can be determined by the payload

constraint (4). In fact, as proven in [14], the entropy in (4)

is monotonically decreasing in λ, thus for a given L in the

feasible region, λ can be quickly determined by binary search.

In particular, if the embedding operations on xi’s are

mutually independent, the distortion introduced by changing

X to Y can be thought to be additive, and are measured by

D(Y ) =
∑n

i=1 ρi(yi), where ρi(yi) ∈ R
∗ is the cost of chang-

ing the ith cover element xi to yi(yi ∈ Ii, i = 1, 2, ..., n). In

this case, the optimal π is given by

πi(yi) =
exp(−λρi(yi))∑

yi∈Ii
exp(−λρi(yi)) , i = 1, 2, ..., n. (7)

When varying λ ∈ (0,∞), we can derive a relation between

H(π) and Eπ(D), which is called the rate-distortion bound
[14]. Practical coding methods work under this bound.

In this paper, we consider the case of ternary embedding

with the range Ii = {xi − 1, xi, xi + 1}. Usually, we assume

that +1 and −1 cause the same cost and thus define

ρi(xi − 1) = ρi(xi + 1) � ρi ∈ [0,+∞). (8)

And with Eq.(8), it can be assumed that{
πi(xi − 1) = πi(xi + 1) � τi ∈

[
0, 1

3

]
,

πi(xi) = 1− 2τi.
(9)

For additive distortion, simulating optimal embedding en-

ables us to test the security of a steganographic method,

but once the distortion function is properly defined, we can

replace the optimal embedding simulator with some off-the-

shelf coding methods such as STCs (Syndrome-Trellis Codes)

[3], which can approach the lower rate-distortion bound.
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(a) HILL (b) UNIWARD (c) WOW

Fig. 1. The modification probability maps of different cost functions. The brightness in (a) to (c) is scaled to [0,1], where 0 is the darkest (lowest probability)
and 1 is the brightest (highest probability).

TABLE I
USE DIFFERENT PROBABILITY MAPS TO EXTRACT FEATURES AND TRAIN

CLASSIFIER TO DETECT (PAYLOAD = 0.3BPP).

Probability map Cost function

HILL UNIWARD WOW

HILL .2628 ± .0022 .2931 ± .0033 .2612 ± .0048
UNIWARD .2671 ± .0020 .2350 ± .0021 .2064 ± .0017

WOW .2699 ± .0017 .2460 ± .0024 .1896 ± .0027

III. ENSEMBLE STEGANOGRAPHY

A. Motivation

Under the framework of minimal distortion steganography,

the major difference among current works is the design of

cost functions. According to Eq.(5), different cost assignment

will lead to different modification probability map. And Fig.1

shows visually how different the modification probability maps

of those cost functions are.

Estimating the modification probabilities is crucially impor-

tant for maxSRM steganalyzers. So we assume that disturbed

estimation of modification probabilities would lead to higher

testing error of steganalysis. To verify this assumption, we use

three state-of-the-art methods to create stego images while the

maxSRM steganalyzer uses these methods to generate esti-

mated modification probability maps. The results are shown

in Table I.

B. Proposed Method

According to the experimental results above, disturbing the

estimation of modification probability map by using different

cost functions can decrease the performance of maxSRM

steganalysis. So we propose to create such disturbance by

integrating several cost functions together, which are dis-

turbing functions. The proposed scheme is called ensemble

steganography. In ensemble steganography, we assume that the

cover X consists of n pixels and the message M consists of

l bits, and a function set including r cost functions such that

{f1, f2, ..., fr}. The procedure of ensemble steganography be

implemented in 4 steps, and the diagram is shown in Fig.2.

1) Divide the pixels of X into s blocks with the same size

q = n
s . By using the stego-key: k, randomly group these

blocks into r groups G1,G2, ...,Gr, such that each group

includes h blocks and the ith group is denoted as Gi =
{Bi,1, ...,Bi,h} (1 ≤ i ≤ r). Herein, h = s

r , and without

loss of generality, we assume both q = n
s and h = s

r are

integers.

2) Select a cost function f∗ to allocate message Mi with

length li to the block group Gi, (1 ≤ i ≤ r). The cost

function f∗ is called pre-allocating function. In this step,

with a specific cost function f∗, we pre-define costs

on all pixels. According to the costs and the message

length l, we can calculate the modification probability

of each pixel with Eq.(7). The pixels in Gi are denoted

as xi,1, xi,2, ..., xi,h, and the modification probability on

xi,j(1 ≤ j ≤ h) as {πi(xi − 1), πi(xi + 1)}, where

πi(xi − 1) and πi(xi + 1) are denoted as τi according

to Eq.(9). The message length allocated to Gi is

li =
h∑

j=1

2H(τi) +H(1− 2τi). (10)

3) For each group Gi(1 ≤ i ≤ r), define costs on pixels

of each block Gi with the ith cost function fi which

is called disturbing function, and then concatenate these

pixel blocks and embed the message Mi into the Gi with

STCs, which generate a series of stego blocks. Please note

that we pad the cover blocks with their neighboring pixels

to keep the correlations of costs defining in block edges

when define costs in blocks with fi.

4) Put back each stego block to the position of the corre-

sponding cover block and generate the stego image Y .

Furthermore, in practical scenario, the stego-key k, block

size q and group number r are shared between the sender

and the receiver beforehand, the same as STCs [3] generator

matrix H .

C. Pseudo-code Procedure

We provide the pseudo-code that describes implementation

of message embedding and extraction in Algorithm 1 and

Algorithm 2 respectively.
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Fig. 2. The diagram of the proposed scheme ensemble steganography

Algorithm 1 Ensemble Steganography Embedding

INPUT: A cover image X with n pixels, l bits of message

M determining the payload γ = l / n, a stego key with

value k to shuffle the random sequence of image blocks, the

number of groups and disturbing functions r.

OUTPUT: A stego image Y .

1: Divide the X into s blocks with the same size q = n
s ;

2: Randomly group image blocks into r groups

G1,G2, ...,Gr;

3: Utilize cost function f∗ to pre-define the cost of all the

pixels and allocate the message array Mi to each group

Gi with length li;
4: Use disturbing function fi(1 ≤ i ≤ r) to define costs on

pixels of each block in Gi respectively;

5: Embed the message array Mi into the cover group Gi

with STCs;

6: Reshape the cover group and put back the stego blocks to

generate the stego image Y .

Algorithm 2 Ensemble Steganography Extraction

INPUT: The received stego image Y , the stego-key k, the

block size q, the number of groups and disturbing functions

r.

OUTPUT: The extracted message M .

1: Divide the stego image into s blocks of the same size q,

and group them into r groups Gi according to the random

index array generated by the stego key k;

2: Extract the number of message bits li of each group Gi,

and extract the message Mi;

3: Concatenate the message arrays to get the message M .

TABLE II
STEGANALYSIS EXPERIMENTAL RESULTS OF DIFFERENT

PRE-ALLOCATING FUNCTIONS

Probability map Pre-allocating function

HILL UM-HILL UNIWARD

HILL .2698 ± .0028 .2670 ± .0023 .2714 ± .0036
UM-HILL .2679 ± .0020 .2661 ± .0039 .2686 ± .0026
UNIWARD .2576 ± .0023 .2523 ± .0024 .2495 ± .0027

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Setups

All experiments in this paper are carried out on BOSS-

base 1.01 [15] with the amount of 10,000 gray-scale images

with size 512 × 512 pixels. Furthermore, the steganalytic

experiments are conducted on a CPU cluster with 12 Xen

E5-2650 v4 CPU cards. The detectors are trained as bi-

nary classifiers using the FLD. The ensemble classifier by

default minimizes the total classification error probability

PE = minPFA

1
2 (PFA + PMD), where PFA and PMD are the

false-alarm probability and the missed-detection probability

respectively. The ultimate security is qualified by average error

rate PE by 10 times random 5000/5000 database splits, and

larger PE means stronger security. The detector is trained

using the SCA feature maxSRMd2 [11]. We use the optimal

embedding simulator as default for all algorithms in steganal-

ysis experiments.

Since the number of cost functions is quite limited, to

increase the number and diversity of cost functions, two

techniques of fluctuating costs which can be used for any cost

functions are introduced below.

1) Microscope Algorithm: Chen et al. proposed a method

[16] which aims at designing better cost functions by ex-

posing more details of texture of the cover image. In their

methods, a ”Microscope” which is unsharp masking (UM)

is utilized to highlight the details of the cover image, and

the enhanced image is called the auxiliary image on which

previous steganography methods are used to define cost. The

final cost will be get after the embedding distortion being

smoothed by a low-pass filter.

2) Game-theoretic Algorithm: Recently, Li el al. proposed

a new idea in [17], in which game theory has been taken into

consideration for designing cost function. The main idea of

[17] is utilize an existing adaptive steganographic method to

define a basic cost function, and then a bias function is defined

in the framework of game theory to adjust the distribution of

modification probabilities.

The steganographic method adopting the above two schemes

would be prefixed with ”UM” and ”bias” respectively, such as

UM-HILL, UM-UNIWARD, bias-HILL and bias-UNIWARD.

B. The Selection of Pre-allocating Function

In this experiment, HILL, UM-HILL and UNIWARD are

compared as pre-allocating function. The experiment is set up

in this way, at the side of the sender, the disturbing functions

are kept the same while the pre-allocating function is changed.
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Fig. 3. Testing error of maxSRMd2 with different block sizes.

At the side of the steganalyzer, for a steganographic method

with certain pre-allocating function, the three pre-allocating

functions will be used to generate the modification probability

maps of SCA and extract the features for training the binary

classifiers. And the payload is fixed with 0.3 bpp. Finally, we

compare the performances of the three pre-allocating functions

based on the testing errors of the three steganalyzers described

above.

According to the results shown in Table II, we found that

HILL is the optimal pre-allocating function of the proposed

method.

C. Determination of Block Size

In ensemble steganography, we want to introduce more

disturbance for maxSRM steganalyzers, which increases with

the number of blocks. However, with the block size decrease,

some cost defining rules will be violated. For instance, HILL

[9] applies the cost spreading rule, in which pixels spread the

costs to their neighborhood. However, in ensemble steganogra-

phy with small block size, most of the neighboring pixels are

defined by other cost functions. So there should be a balanced

point of these two impacts, so in this section, we set up the

experiment to optimize the value of block size. The block

sizes being tested are all exact divisions of 512 (the width and

height of spatial cover image in BOSSbase 1.01) to avoiding

impact of marginal blocks which have different sizes. And

without loss of generality, the pre-allocating function we use is

HILL and the disturbing functions are HILL and UNIWARD,

and both of HILL and UNIWARD are used to generate

modification probability maps of maxSRMd2 steganalysis.

According to Fig.3, the optimal block size should be 64.

D. The Selection of Disturbing Functions

After fixing the pre-allocating function and block size,

the disturbing functions should be considered. Four sets of

disturbing functions are tested. 1) HILL and UNIWARD; 2)

HILL group: HILL, UM-HILL and bias-HILL; 3) UNIWARD

group: UNIWARD, UM-UNIWARD and bias-UNIWARD; 4)

mixture group: HILL group and UNIWARD group. Every dis-

turbing function of each set is utilized to generate modification

probability maps for maxSRMd2 steganalyzer. And the results

are shown in Fig.4 and Fig.5.

According to the results shown in Fig.4 and Fig.5, we

found out that the combination HILL and UNIWARD has

the best overall performance, and mixture group is better than

HILL group and UNIWARD group. Please note that HILL and

UNIWARD have quite different modification probability maps

as the experimental results in Table I indicates. It provides the

reason why HILL and UNIWARD combination has the best

performance. Furthermore, by comparing the performance of

the mixture group with HILL group and UNIWARD group we

can draw a conclusion that the security of ensemble steganog-

raphy increases with the number of disturbing functions.

V. CONCLUSION

In this paper, we proposed ensemble steganography to

counter SCA steganalysis. According to the experimental

results, we found ensemble steganography can improve the

ability of most previous works in resisting SCA steganalysis.

Furthermore, with the increase of disturbing methods and dif-

ferences among disturbing functions, ensemble steganography

would have better steganalytic performances. So we believe

ensemble steganography is a valid strategy to counter SCA

steganalysis.

In the present paper, we only utilize two original stegano-

graphic methods as disturbance in spatial images with additive

distortion for ±1 embedding. In our future work, applying

ensemble steganography to JPEG image and utilizing more

steganographic methods which are based on non-additive

framework is an interesting direction. Furthermore, to create

more significant disturbances, looking for a low-dimensional

criterion which can fit the increase of testing error when using

disturbed maps is an challenging direction.
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