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Abstract

Image matting is a fundamental and challenging prob-
lem in computer vision and graphics. Most existing matting
methods leverage a user-supplied trimap as an auxiliary in-
put to produce good alpha matte. However, obtaining high-
quality trimap itself is arduous, thus restricting the applica-
tion of these methods. Recently, some trimap-free methods
have emerged, however, the matting quality is still far be-
hind the trimap-based methods. The main reason is that,
without the trimap guidance in some cases, the target net-
work is ambiguous about which is the foreground target.
In fact, choosing the foreground is a subjective procedure
and depends on the user’s intention. To this end, this pa-
per proposes an improved deep image matting framework
which is trimap-free and only needs several user click inter-
actions to eliminate the ambiguity. Moreover, we introduce
a new uncertainty estimation module that can predict which
parts need polishing and a following local refinement mod-
ule. Based on the computation budget, users can choose
how many local parts to improve with the uncertainty guid-
ance. Quantitative and qualitative results show that our
method performs better than existing trimap-free methods
and comparably to state-of-the-art trimap-based methods
with minimal user effort.

1. Introduction
Image matting refers to the task of precisely separating

the foreground object from the background and accurately
estimating the per-pixel opacity near the boundary. It has
been studied by academic and industrial communities for
many years. Typical applications include image editing,
† Corresponding Author.
The demo of our real-time user interactive matting system can be find at
https://youtu.be/pAXydeN-LpQ.

film production and virtual background for video confer-
encing. Given an input image I , it can be formulated as a
mathematical optimization problem as follows:

Ii = αiFi + (1− αi)Bi, (1)

where αi ∈ [0, 1] denotes the opacity of the foreground
object at pixel i. It can be observed that, for each pixel,
this problem needs to solve 7 unknown values from only 3
known values. Therefore, it is a highly ill-posed problem.

To address this problem, many classical algorithms [2,
21, 8, 35, 37, 5] have been proposed by leveraging a well-
defined trimap to constrain the solution space. The trimap
divides the image into three types of areas: foreground,
background, and transition regions. Then the matting task
is then simplified as the problem of estimating the unknown
values only in the transition region. Based on this simpli-
fication, such trimap-based methods [23, 16, 4] can usually
achieve very good performance. However, drawing a suit-
able trimap itself is very tedious and time-consuming. For
some complex cases, it will even cost more than 10 min-
utes. Therefore, it is not that friendly, especially to non-
professional users.

With the development of deep learning, some studies[6,
41, 30] that do not require the trimap input emerge recently.
However, their performance is still far behind the trimap-
based methods. The main reason is that, without the trimap
guidance in some cases, deep networks become ambiguous
about which is the foreground target to process. To allevi-
ate the ambiguity, a large-scale matting dataset of a certain
target category (e.g., portrait) is often required for training.
But this solution is not scalable and expensive. More im-
portantly, it will totally fail if the users want to choose some
new categories that do not appear in the training set. In our
understanding, choosing the foreground is subjective and
thus some user hint is unavoidable. And the key challenge
is how to minimize the user effort in the interactions.

To overcome the aforementioned limitations, we propose
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a novel matting approach that considers both performance
and user-friendliness, by introducing user clicks into the
matting network. To make the network adaptive to any user
clicks, we simulate user clicks during training by adding
random points into the foreground and background respec-
tively. Compared with trimap-based schemes, our method
only requires a few user clicks as hints to indicate the fore-
ground and background but can achieve comparable perfor-
mance. And in most cases which has no foreground am-
biguity problem, ours even does not need any user clicks.
When compared to trimap-free methods, our method does
not suffer from the ambiguity problem and performs much
better. More importantly, it is easy to extend to any unseen
category by adding only a few user clicks.

Besides, we further introduce a new uncertainty estima-
tion module and a corresponding uncertainty-guided local
refinement network. Parallel to the main alpha matte esti-
mation branch, the uncertainty estimation branch can pre-
dict which parts need further refinement. Based on the
computation budget, the users can choose how many lo-
cal parts to improve with the uncertainty guidance. Com-
pared to some existing methods that use an extra network
for global refinement, this manner is more flexible and effi-
cient by avoiding some redundant computation for the well-
predicted regions. To the best of our knowledge, we are the
first that introduces uncertainty in deep image matting.

To demonstrate the effectiveness of our method, we
conduct extensive experiments on both synthetic and real
datasets and show superior performance. Ablation analysis
also justifies its flexibility and adaptability to new categories
unseen in the training set. For better application, a real-time
user interactive system is provided.

To summarize, our contributions are three-fold as below:

• We present the first attempt that introduces user click
interaction into the image matting task. It can effec-
tively eliminate the ambiguity and boost the matting
performance with minimal user effort. In this sense, it
can be seen as a new matting scheme between trimap-
based and trimap-free methods.

• We introduce a novel uncertainty estimation module
and a corresponding uncertainty-guided local refine-
ment network. By using the uncertainty map as hints,
the network can perform automatic local refinement
to produce more precise details and remove undesired
blurring artifacts.

• The experimental results show our method performs
considerably better than trimap-free approaches and
comparably to state-of-the-art trimap-based methods.
Besides, a real-time user interactive system is built.

2. Related Work

Natural Image Matting. Existing image matting algo-
rithms can be broadly categorized into two types: tradi-
tional prior-based and learning-based. Besides an input im-
age, both types of algorithms may take some auxiliary in-
puts, including scribbles [36], trimaps[8] or accumulated
trimaps[38] to improve matting quality.

For traditional prior-based methods, they can be fur-
ther divided into color sampling-based methods and alpha
propagation-based methods. Based on the local smooth-
ness assumption of image statistics, sampling-based meth-
ods [8, 10, 12, 13] usually first model the foreground and
background color distributions then solve Equation (1) to
get the target opacity. Compared to sampling-based meth-
ods, propagation-based methods [2, 7, 22, 33] can poten-
tially avoid the matte discontinuities issue. In detail, by
utilizing the affinities between neighboring pixels, they pro-
pose to propagate the alpha values from known regions into
unknown ones.

In recent years, deep learning-based algorithms have
shown superior performance in image matting tasks.
With the synthetic image matting dataset Deep Image
Matting[37], many data-driven works have been proposed.
For example, Cai et al. [4] decouple the matting task into
two sub-tasks: trimap adaptation and alpha estimation. In-
spired by traditional sample-based methods, Tang et al. [34]
propose to first estimate the foreground and background
color before estimating the alpha matte. Inspired by the
affinity-based method and the successes of contextual at-
tention in inpainting, GCA-matting[23] introduces a guided
contextual attention module into the network and achieves
state-of-the-art performance. However, all these methods
are trimap-based and need laborious trimap acquisition.

More recently, some trimap-free methods [41, 25]
emerge. LF-Matting [41] proposes a two-stage matting
framework and generates trimap implicitly through the first
stage. And in BoostingNet[25], Liu et al. aim to strengthen
the matting performance specifically for humans through
utilizing both coarse and fine annotations. But due to the
lack of the trimap prior, these trimap-free methods suffer
from the ambiguity problem or cannot extend to new cate-
gories unseen during training. Therefore, their performance
is still worse than trimap-based methods. Inspired by the in-
teractive colorization work[40], our method innovatively in-
troduces the click-based interaction into the image matting
task, which resolves both ambiguity and generality issues
with very minimal user effort. Besides, we are the first that
introduces the uncertainty-guided local refinement mecha-
nism, which is more flexible and efficient than global refine-
ment used in previous methods.
Uncertainty Estimation in DNNs. Uncertainty estimation
is important for evaluating the robustness of deep learning
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models in computer vision. It is especially useful in some
security-sensitive application scenarios because it can tell
the users how confident deep models make the final pre-
diction. Generally, existing uncertainty estimation methods
used in DNNs can be grouped into two classes: sampling-
based and sampling-free approaches. Typical sample-based
methods include Monte Carlo dropout[11], Bayesian neural
networks[26, 32], and Bootstrapped ensembles[20]. They
often rely on multiple evaluations for the same input to ob-
tain the uncertainty and bootstrapped ensembles also need
to store several sets of weights. Compared to sampling-
based methods, sampling-free methods [20, 17, 27] directly
model the prediction target as a Gaussian or Laplacian dis-
tribution rather than a deterministic value, then optimize the
distribution parameters with a bayesian-like formulation. In
this paper, we adopt a sampling-free manner in the uncer-
tainty estimation module due to its simplicity.

3. Proposed Method

3.1. Motivation

As mentioned before, both trimap-based and trimap-free
methods have their advantages and disadvantages. Specif-
ically, trimap-based methods can achieve state-of-the-art
performance, but they need users to supply a well-drawn
trimap to indicate the foreground, background and tran-
sition regions. Empirically, by using advanced commer-
cial systems like Photoshop, even a professional user still
needs several minutes to draw a suitable trimap. By con-
trast, trimap-free methods do not require any user prior but
their performance is significantly worse. This is because,
without the prior, such methods are often ambiguous about
which are the target foreground objects, especially in some
complex cases. To address the ambiguity issue, one typical
solution would be collecting a large scale labeled dataset for
one interested category so that the network can rely on the
semantics to identify the foreground. However, this solu-
tion is not scalable enough because data labeling is expen-
sive and it cannot extend to unseen categories, like the “surf
board” in the first case of Figure 6. Besides, even for one
specific category, it still cannot satisfy users’ needs in some
cases. For example, in the second case of Figure 6, users
may only want to keep one of the target portraits.

Based on the above analysis, we can conclude that: 1)
The user prior is a very important hint to reduce the ambigu-
ity for image matting and extend to unseen new categories.
2) Trimap is a very strong prior, but its acquisition is too
time-consuming. This motivates us to refind one simpler
user prior which is enough to identify the foreground object
with minimal effort. To determine the prior type, let us re-
call some typical scenarios happening around us everyday.
For example, imagine we are buying coffee in Starbucks,
and we have a menu and want to order one specific coffee

type. Apart from directly saying the coffee name, the most
popular interaction way is simply using the finger to point
the picture/name on the menu. Inspired by this natural in-
teraction manner, we present the first attempt that uses the
simple user clicks as the matting prior in this paper.

Besides, as demonstrated in many previous works [37,
41], an extra refinement stage can further improve the mat-
ting quality. They directly do it by feeding the first-stage
matting result together with the original image into the sec-
ond refinement stage, which we call “global refinement”.
In this paper, we argue such a “global refinement” scheme
is neither effective nor flexible. Therefore, we further intro-
duce a new uncertainty estimation module that can automat-
ically predict which local parts need more polishing. With
the uncertainty guidance and computation budget, users can
flexibly choose which and how many parts to improve.

By combining these two motivations together, we pro-
pose a new matting framework as shown in Figure 1. It
consists of two key components: interactive matting with
user clicks and uncertainty-guided local refinement. The
detailed design will be elaborated in the following sections
respectively.

3.2. Interactive Matting with User Clicks

Similar to the trimap based matting, besides the origi-
nal RGB image I , we concatenate another one-channel hint
heatmap U as the prior input. When the users add a fore-
ground click point, we fill the values within radius r around
the click point as 1 in U . Conversely, if a background point
is clicked, the corresponding values will be filled with −1.
All the unspecified values will be filled with 0.
Matting Network. We design the interactive matting net-
work based on the U-Net architecture[29], which is widely
adopted in existing image matting methods[34, 23] and
other image processing tasks [14, 39]. Specifically, in the
encoder part, one stride-1 convolution layer and two stride-
2 convolution layers are first used, then a total of 13 resid-
ual blocks consisting of four stages (3,4,4,2) are inserted.
In the last three stages, the input resolution will be down-
sampled by 2 every time. Symmetrically, the decoder has
10 residual blocks consisting of four stages, followed by
one stride- 12 convolution layer and one stride-1 convolu-
tion layer. All convolutional layers are followed by batch
normalization[18] and ReLU except the last output layer.
Please refer to the supplementary materials for more net-
work details.
Simulating User Click Interactions. To make the matting
network adapt its behavior to the user clicks, one challenge
is collecting such type of training data. This is not only ex-
pensive, but also comes with a chicken and egg problem,
because the user interaction often depends on the matting
output itself. To circumvent this problem, we propose to
train the matting network with simulated user interactions.
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Figure 1. Top: the overview of our newly proposed real-time interactive matting framework. Rather than relying on the strong trimap prior,
only several user clicks are needed to specify the desired foreground and background. Bottom: the detailed architecture consists of two
key components: the interactive matting network and the uncertainty-guided local refinement module.

In detail, during training, we randomly sample a total of m
click points with radius r on the foreground and background
regions for each image, wherem is drawn from a geometric
distribution with p = 1

6 and r = 15. A concern with this
simulated user interaction may be the potential domain gap
issue. However, from experimental results, we empirically
find it works very well. Our observation is that, when pro-
viding such user hint points during training, the networks
will prefer to leverage them for better convergence and per-
formance but these hints indeed help.

Loss Functions. To train the matting network, we adopt
two types of loss functions in the image and gradient space
respectively:

Lalpha = Lreg + Lgrad. (2)

For the image space regression loss Lreg , it adopts the `1
loss in semi-transparent regions T and `2 loss in foreground
and background regions S = {F,B}.

Lreg =
1

|T |
∑
i∈T

|αi
p − αi

g|+
1

|S |
∑
j∈S

(αj
p − αj

g)
2, (3)

where αp and αg indicate the predicted and ground-truth al-
pha values, and |x| denotes the element number of x. The
gradient loss Lgrad is defined as `1 loss on the spatial gra-
dient between predicted and ground-truth alpha mattes:

Lgrad =
1

|I|
∑
i∈Ω

| 5 (αi
p)−5(αi

g)|, (4)

where 5(x) represents the gradient magnitude of x. As
shown in previous methods[30, 34], Lgrad can encourage
the network to produce sharper matting results.

3.3. Uncertainty-guided Refinement

Uncertainty Estimation Module. To accomplish uncer-
tainty estimation for the predicted alpha matte αp, we add
another similar decoder upon the encoder of the matting net-
work. And we further model alpha matte prediction as a
parametric distribution (p(α|I, U ;D)) learning problem on
the whole training set D. Here we adopt the classical uni-
variate Laplace distribution by default:

f(x|µ, σ) = 1

2σ
e−
|x−µ|
σ , (5)

In our task, µ is just the target alpha matte αp output from
the matting network, and σ is just the uncertainty predic-
tion σp output from the uncertainty estimation decoder.
To optimize the uncertainty decoder, we use negative log-
likelihood minimizing from the probabilistic perspective.

Lue = − log p(α|I, U ;D) =
1

|N |
∑
I∈D

(log σp+
|x− αp|
σp

),

(6)
where N is the total image number of D. During training,
the above equation can be directly optimized on the training
set by regarding the ground truth alpha matte as x. And
larger σp indicates that the network is more uncertain about
the output value of matting network.
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Local Refinement Network. After getting the uncertainty
map, we can know where the alpha matting network is not
confident and optimize corresponding local parts. In de-
tail, we will crop small k × k (k = 64 by default) image
patches and the corresponding alpha matte patches for each
local part, and then feed them into a small refinement net-
work to get the refined alpha mattes. For the detailed net-
work structure, we simply design a fully convolutional net-
work without downsampling layers. Specifically, besides
the two convolutional layers at the beginning and the end,
four residual blocks are inserted in the middle part. Since
k is often much smaller than the original image size, the
computation cost for each local part is smaller. Our method
effectively avoids the redundant computation of regions that
do not need polishing.
Loss Functions. Since most pixels in the cropped al-
pha matte patch are already predicted correctly, only a few
”hard” pixels need significant refinement. To make the net-
work pay more attention to those ”hard” pixels, we adopt
a simplified hard-sample mining objective function Lrefine

as follows:

Lrefine =
1

|C |
∑
i∈C

|αi
p − αi

g|+ λ
1

|H |
∑
j∈H

|αj
p − αj

g|, (7)

where C represents the whole pixel set and H denotes
”hard” pixel set whose error to corresponding ground truth
ranks in the top 20% of the entire patch. λ denotes the
weight that emphasizes the hard samples and set as 1 by
default.

4. Experiments
In this section, we will first introduce some implemen-

tation details. Then we will evaluate the proposed method
on both the synthetic DIM dataset [37] and the real portrait
dataset. In addition to the comparison with existing mat-
ting methods, detailed ablation analysis is also provided to
justify the effects of different components and the special
advantages of our method.
Implementation Details. In order to avoid overfitting and
improve the generalization ability, we follow GCA-matting
[23] and apply different types of data augmentation onto the
input images and their corresponding ground truths. Typ-
ical augmentation operations include random affine trans-
formation, random cropping, resizing and flipping. Regard-
ing the training strategy, we first train the matting network
alone without the uncertainty estimation decoder. After the
matting network converges, we freeze it and then train the
uncertainty estimation decoder. Empirically, we find this
training strategy can significantly boost the training stabil-
ity. To train the refinement network, we first use the pre-
trained matting network to predict the alpha matte for the
whole training dataset, then compute the absolute prediction

Methods SAD MSE Grad Conn
CS-Matting 6.38 41.53 71.57 17.98
Closed-Form 7.01 45.37 80.10 24.72
KNN Matting 7.79 49.94 86.26 32.78
Shared Matting 6.55 41.77 85.41 69.02
Global Matting 7.09 43.92 78.29 25.12
DIM 1.93 4.18 14.20 18.92
CA-Matting 1.62 3.03 8.90 15.16
GCA-Matting 1.50 3.19 8.97 13.81
LF-Matting 3.47 11.69 22.50 35.74
No-Hints(Ours) 2.26 5.22 13.87 20.44
Hints-Train (Ours) 2.17 4.98 12.96 19.38
Hints-TrainTest(Ours) 1.68 3.06 7.57 14.17

Table 1. Quantitative comparison on the DIM dataset. The metrics
SAD, MSE, Grad and Conn are scaled by 102, 103, 105 and 103,
respectively. Except LF-Matting, all other methods are trimap-
based.

error and choose the most challenging patches as training
samples. For all the network training, the base learning rate
is set to 5×10−4 with the cosine learning rate scheduler[15].
By default, the matting network is trained for 150 epochs,
while the uncertainty estimation decoder and the refinement
network are trained for 75 epochs. The Adam optimizer is
used, with β1 and β2 set to 0.5 and 0.999 respectively.

4.1. Evaluation on the DIM dataset

As the standard matting dataset, DIM contains 43,100
synthetic images for training, which are derived from 431
unique foreground objects and 43,100 background images
randomly selected from the MS-COCO dataset[24]. For
testing, 50 independent foreground objects and each object
is combined with 20 background images from the PASCAL
VOC dataset[9] to obtain 1000 synthetic test images. For
quantitative evaluation, four popular evaluation metrics pro-
posed in [28] are adopted: the sum of absolute differences
(SAD), mean square error (MSE), the gradient (Grad) and
connectivity (Conn). For all the metrics, lower indicates
better. Empirically, compared to SAD and MSE, Grad and
Conn are more representative in terms of the visual quality.

Quantitative and qualitative comparison. We com-
pare our approach with many existing matting methods,
including traditional methods: CS-Matting[31], Closed-
Form[22], KNN Matting[7], Shared Matting[12], Global
Matting[13], and learning based methods : DIM[37], CA-
Matting[16], GCA-Matting[23] and LF-Matting[41]. Ex-
cept LF-Matting, all the remaining methods are trimap-
based. And due to the structural constraints of LF-Matting,
we keep the aspect ratio of all the test set images while re-
sizing their long sides to 800 pixels.

As shown in Table 1, our method (“Hints-TrainTest”)
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Figure 2. Visual comparison results on the DIM dataset.

outperforms all the traditional methods and trimap-free
methods significantly. Compared to trimap-based methods,
our results are superior to DIM but slightly worse than CA-
Matting and GCA-Matting. However, our method is much
more user-friendly to end-users. Specifically, on the DIM
test dataset, we try to manually draw the trimap for different
examples, it will take more than five minutes for each image
on average. By contrast, for our method, we only need to
add 0.56 user click point on average, which often just takes
several seconds. Besides, the average “0.56” point also in-
dicates that our method does not even need any user click
for some easy cases. Note that our results shown in Table
1 have not used any local refinement. We further provide
some qualitative comparison examples in Figure 2, whose
quality rank is consistent with the quantitative results.

Importance of User Clicks. To further demonstrate the
importance of interactive clicks, we conduct two baseline

experiments “No-Hints” and “Hints-Train”, and show the
results in Table 1. In the first baseline, the input is only
the original image without any hint prior both in training
and testing. And in the second baseline, we only train the
network with simulated user click hints but test without any
user click. By comparing the results of “No-Hints” and
“Hints-Train”, we can observe that adding user hints into
training itself can improve the network performance. It may
indicate that the existence of ambiguity will also affect the
network training but not just testing. By incorporating a few
user clicks during testing, the performance can be further
significantly boosted.

Quality of Uncertainty Estimation. In order to quanti-
tatively evaluate the uncertainty estimation accuracy, we
adopt the widely used Sparsification plots as [3, 19, 17]. In-
tuitively, Sparsification plots can reveal the degree to which
the estimated uncertainty coincides with the true error. As
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Figure 3. Sparsification plot of our method for uncertainty accu-
racy evaluation. “Oracle” means the lower boundary by using
ground truth error rank.

Methods SAD MSE Grad Conn Time
w/o Ref 8.69 0.0116 5.79 8.02 -
Global Ref 8.57 0.0117 5.81 7.89 45.00
Local Ref-4 8.60 0.0112 5.68 7.93 2.37
Local Ref-8 8.53 0.0110 5.61 7.87 4.57
Local Ref-16 8.42 0.0108 5.51 7.77 10.73
Local Ref-24 8.34 0.0107 5.45 7.71 20.42
Local Ref-32 8.29 0.0106 5.42 7.67 31.53

Table 2. Quantitative comparison results of refining different num-
ber of patches. Ref in the table is an abbreviation for refinement,
and we report the time cost in seconds. Obviously, our local re-
finement mechanism is more effective, efficient and flexible.

the reference, we also plot the optimal case (“Oracle”)
which represents the lower boundary by gradually removing
pixel errors ranked by MSE between predicted alpha matte
and the corresponding ground-truth. As shown in Figure 3,
the predicted uncertainty has a very close curve to “Ora-
cle”. By gradually removing the pixel ranked by the pre-
dicted uncertainty, the MSE monotonically decreases and
its slope becomes smaller. And removing 20% of the pixels
reduces the MSE by nearly 90%. Therefore, the estimated
uncertainty is a good indicator of the predicted alpha matte
quality and guides the users to polish the matting quality
based on their computation budget.
Importance of Uncertainty-guided Refinement. To jus-
tify the importance of uncertainty-guided local refinement,
we selectively refine the top−K local parts guided by the
uncertainty map. Since the main goal of the refinement
module is polishing the details of transition regions rather
than the pure foreground/background regions, we only com-
pute the metrics for transition regions on the DIM dataset
for better quantitative evaluation. As a reference, we also
give the results of global refinement with the same net-

Figure 4. Visual results before and after uncertainty-guided local
refinement. Left to right: original image, results without refine-
ment, results after refinement, ground-truth.

work structure. As shown in Table 2, by only refining eight
64 × 64 patches, the final alpha matte quality already sur-
passes the global refinement baseline. As we increase the
refinement part number, all four metrics decrease but with
a progressively slower rate, which double demonstrates the
accuracy of our estimated uncertainty. Some visual results
before and after refinement are shown in Figure 4. It can be
clearly seen that the local refinement part can significantly
improve the edge details and remove undesired blurring ar-
tifacts. Theoretically, the computation flops ratio between
one patch refinement and global refinement is k∗k

H∗W . There-
fore, if the local part number to refine is smaller than H∗W

k∗k ,
our local refinement mechanism is more efficient than the
global refinement mechanism. The quantitative time cost
comparison results are shown in the last column of Table 2.
Our local refinements with the different number of patches
are faster than the global refinement. Moreover, according
to the computation budget, users can customize the number
of local patches to be refined, which is not possible with
global refinement and shows our local refinement’s flexibil-
ity.

4.2. User Study

To evaluate the convenience of our click interaction, we
conducted a user study on the alphamatting.com benchmark
test dataset. We compare our approach with a representative
method of interaction using scribbles[36], which also sup-
ports trimaps as the auxiliary input. Our user study recruited
10 non-professional participants and provided them with a
short training session prior to the user study. Specifically,
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GCA-Matting Ours Scribbles
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Figure 5. Selected user study results on the alphamatting.com
benchmark test dataset. Since ground truths are not available,
we provide state-of-the-art trimap-based GCA-Matting results for
comparison. The last three columns show the input images
with user inputs, interaction time(in seconds), and results for our
method, scribble interaction and trimap interaction, respectively.

each user was taught how to use the two interactive systems
and how to identify the desired alpha matte of an image.

For click interaction and scribble interaction, each par-
ticipant was given eight test cases. In each test case, an im-
age from the alphamatting.com test dataset and a reference
alpha matte generated by trimap-based GCA-matting[23]
were given. The participant was tasked with using both
click-based and scribble-based interactive systems to gen-
erate an alpha matte that is better or comparable to the ref-
erence. The participant can iteratively refine input clicks
or scribbles until he or she was satisfied with the alpha
matte output. For trimap interaction, the test cases provided
to participants also contain trimaps from the alphamat-
ting.com test dataset. We counted the time of the entire
interaction process for completing each test case and then
calculated the average time among 10 participants and 8
test cases. The average time for the scribble interaction
to generate an alpha matte is 223 seconds and the trimap
interaction is 215 seconds. In contrast, our method takes
only 46 seconds, which is strong evidence that our click-
based interaction is more convenient and efficient than the
scribble-based or trimap-based ones.

We show example results from our user study in Fig-
ure 5, and the corresponding interaction time is also given.
It is clear to perceive that with just a few clicks, our method
can achieve comparable matting results to the state-of-the-
art trimap-based GCA-matting[23].

Input image with hints Result without hints Result with hints

Figure 6. Visual results on the real dataset. Despite only being
trained on the portrait images, our method can easily extend to un-
seen categories by only providing several user points. By clicking
some foreground objects as background, we can also keep only the
desired foreground.

4.3. Application on the Real Portrait Dataset

Besides the synthetic DIM dataset, we further apply
our method to real-world portrait images. Specifically, we
choose 205 human foreground images from the DIM dataset
and about 30k images from the human segmentation dataset
AISegment[1]. For the DIM dataset, we blend each fore-
ground image with 20 different background images from
the MS-COCO dataset, and for the AISegment dataset, we
generate pseudo matting labels by using the GCA-Matting
network. The trimaps are automatically generated by dilat-
ing&eroding the segmentation masks. And the uncertainty-
guided refinement network is only trained with the selected
DIM dataset. Since there is no ground truth for the real im-
ages, we only provide several visual results here. As shown
in Figure 6, despite only being trained on the portrait cate-
gory, our method supports matting the objects of new cate-
gories by specifying two points on the interested foreground
object in the first case. Similarly, it can also remove one
specific object with the training category by adding several
background points on it. This is a very important feature to
remedy existing purely data-driven learning methods.

5. Conclusion
In this paper, we propose a new deep image mat-

ting framework which supports user click based interac-
tion. Compared to trimap-based methods, our method can
achieve comparable performance but with much less user
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effort. And compared to trimap-free methods, the cheap
user click interaction can significantly eliminate the am-
biguity and support unseen categories. We also introduce
a new uncertainty-guided local refinement mechanism into
matting for the first time, which is more flexible and effec-
tive than existing global refinement mechanism.
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