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Abstract—With the rapid development of digital devices, how
to transmit information among different devices with multimedia
carrier has drawn much attention from the research community.
This paper focuses on the important user scenario “screen-to-
camera information transmission”. Along this direction, image
coding based techniques have been shown to be the most
popular and effective way in the past decades. However after
careful study, we find none of existing methods can satisfy the
four important properties simultaneously, i.e., high transparency,
high embedding efficiency, strong transmission robustness and
high adaptability to device types. It is mainly because these
properties are contradictory with each other. So in this paper, we
propose an screen-to-camera image code dubbed “TERA” with
Transparency, Efficiency, Robustness and Adaptability, which
makes it possible to circumvent the contradiction among the
above four properties for the first time. Generally, it adopts the
color decomposition principle to ensure the visual quality and
the superposition-based scheme to ensure embedding efficiency.
And BCH-coding-based information arrangement and a power-
ful attention-guided information decoding network are further
designed to guarantee the robustness and adaptability. Through
extensive experiments, the superiority and broad applications of
our method are demonstrated.

Index terms—Screen-to-camera Image Code, Transparency,
Efficiency, Robustness, Adaptability, Color Decomposition,
Attention-guided

I. INTRODUCTION

In recent decades, digital devices have been developed
rapidly and become more and more common, such as personal
computers, mobile phones and AR/VR devices. With these
devices, information computation and transmission turn to
be more efficient and convenient. But due to the existence
of physical gap and some real application requirements, in-
formation transmission among different devices is also very
necessary and has drawn much attention from the research
community. Typical examples include screen-shooting resilient
watermarking for IP protection [1]–[3], screen-to-camera com-
munication [4], [5]. In this paper, we focus on the specific
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Fig. 1: The schematic diagram of the proposed “TERA” code.
When alternate displaying two embedded frames on the screen
with no less than 60Hz, the human vision system cannot
observe any visual difference, but the embedded message (e.g.
website) can be extracted out in camera.

user application scenario “screen-to-camera information trans-
mission”, which refers to information transmission channel
between screen and camera. The screen is the sender and the
camera is the receiver. The information displayed on the screen
can be received by camera capturing with the camera and
post-processing operations. Therefore, the hardware isolated
information transmission from screen to camera is realized.
This is a classical and challenging research problem, and many
different types of methods [4], [6]–[10] have been proposed in
the past decades. Among them, image coding based techniques
[11]–[17] have shown to be the most popular and effective
way. They often represent target information with some well-
designed patterns and embed these patterns into the host frame
image, which is further scanned by the end user to decode the
hidden information back.

As the common understanding, a perfect screen-to-camera
image code should satisfy four properties: great transparency,
high embedding efficiency, transmission robustness and high
adaptability to device types. For transparency, it is to ensure
that the encoding process should keep the original visual
quality of the host image as much as possible so that human
observers cannot even notice it. And for embedding efficiency,
it aims to reduce the computation burden in the screen devices
side because of their limited computation ability. Different
from the first two requirements which are often imposed on
the screen side, the last two is to make sure the information
embedded in the camera-captured image can be correctly
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extracted out at the decoder side no matter which types of
camera or screen are used.

However, after careful study, we find none of existing
methods [18]–[22] can satisfy the above four properties simul-
taneously. This is because of the inherent contradiction among
these four properties. In more details, if we want to ensure the
transparency of the hidden message, the embedding strength
should be as weak as possible, which will inevitably result
in the decrease of robustness and adaptability. Meanwhile,
if we want to improve the robustness, besides enhancing
the embedding strength, it is also necessary to consider the
texture or the content of the image itself for designing better
embedding strategy. But such an operation will incur higher
calculation cost. So basically, satisfying these four properties
at the same time is challenging.

To address this limitation, we propose a novel screen-
to-camera image code scheme dubbed as “TERA” with
Transparency, Efficiency, Robustness and Adaptability. To the
best of our knowledge, it is the first image coding based
method that can circumvent the above contradiction problem
and meet all the aforementioned requirements.

Generally, to meet the requirements of transparency, we
analyze the features of human vision system (HVS) and utilize
the observation [4], [5] that the HVS will fuse two images into
one if they are refreshed in a high frequency (no less than 60
Hz), and this fresh rate is satisfied in modern screen devices.
As a result, we design a new color decomposition based
encoding scheme that encodes the information into a single
host frame by creating two complementary frames. Thus, by
alternately displaying two complementary frames, what can be
seen in human eyes is the composition of these two frames,
that is, the original image, so as to achieve high transparency.
But unlike HVS, the shutter speed of modern cameras is much
higher and will instead capture the decomposed frame that
contains information. In this way, it theoretically guarantees
the visual quality observed by human beings and remains
capable of transmitting information to camera devices, as
shown in Figure 1.

As for the efficiency, we designed the superposition-based
scheme to significantly reduce the computation burden on
the embedding side, based on which, the message embedding
process is carried out in a short-time and content-independent
way.

The robustness and adaptability is satisfied with the de-
signed attention-guided extraction network. Although the cam-
era can effectively record the message information hidden
in the image, the potential information loss (e.g. light dis-
tortion, moiré distortion and the masking effect of shutter)
in the screen-to-camera process will cause enough trouble
in extracting the message. To address such problems, we
dedicatedly design the BCH-coding-based information ar-
rangement scheme and leverage a new powerful attention-
guided extracting network. By setting enough training datasets
and designing suitable network architecture, the accurately
extraction which reflects the robustness and adaptability can
be greatly guaranteed.

To summarize, the main contributions of this paper are
threefold as below:

• We propose a novel image coding scheme “TERA”
for screen-to-camera information transmission, based on
which a complete system is further constructed. Besides,
such code can simultaneously satisfy the four key prop-
erties of the image coding based scheme.

• We design a high-efficiency superposition-based embed-
ding scheme by BCH-coding-based arrangement and a
new powerful attention-guided extraction network for
super extraction robustness and adaptability.

• Extensive experiments have been conducted with dif-
ferent capturing settings, such as different distances,
degrees, and camera types, which demonstrated the su-
perior performance over existing state-of-the-art methods.
Several potential applications are also tried which demon-
strate the potential commercial value of this system.

II. RELATED WORK

For screen-to-camera information transmission, classic
methods include traditional communication techniques like
cable and wireless transmission, and image coding based
schemes. In some specific scenarios, the former way is often
more stable and reliable by using some very strict communi-
cation agreements or rules. However, this type of methods
is often not that flexible. With the development of smart
mobile phones, image coding based scheme becomes more and
more popular in recent years. Though the underlying working
principles of existing methods are very similar, they can still
be roughly categorized into three different types based on their
different goals. The detailed advantages and disadvantages are
summarized in Table I.

Traditional Image Code. The first one is traditional 2D
codes like barcode or QR code [11]–[14], which encode
‘0/1’ bits into specific patterns. Since the main goal of such
methods is to achieve stronger robustness, their visual quality
is relatively low. There also exist some works [13], [15]–[17],
[23] that focus on beautifying 2D code by taking the image as
the background. Liu et al. [23] propose a Watson’s DCT-based
perceptual model based perceptual shaping algorithm to en-
code the message. By modulating the information into patterns
with different angles, the encoding process is realized. Chen
et al. propose three other aesthetic 2D barcodes: PiCode [15],
RA Code [16], RU Code [17]. In PiCode [15], they express
0 and 1 by using two templates: inner-dark/outer-bright and
inner-bright/outer-dark. In the extracting side, they perform
a 2D matched filter to demodulate the message. In RA Code
[16], based on the analysis of frequency spectrum, they design
another template to express information, which can greatly
guarantee the robustness of decoding. In RU Code [16], they
list a series of guidelines to guide the modulation, embedding
and extraction. But there is a common problem with these
algorithms, that is, they cannot balance the robustness and
invisibility well, so some obvious visual distortion can still be
observed.

Screen-to-camera Communication. To achieve higher in-
formation transmission capacity and real-time communication,
screen-to-camera communication schemes [4], [7], [8], [24],
[25] are another important type of methods. Since they are
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also based on the properties of HVS, their visual quality is
often great. But they highly depend on the strict collaboration
between screen and camera. More strictly, high-end screen
and camera devices are often needed because of the frequency
requirement, otherwise flickering artifacts will appear.

The main differences of the proposed scheme compared
with screen-to-camera communication algorithms are: 1) we
care more about the transmission robustness in different shoot-
ing conditions. Since in screen-to-camera communication, the
sender and the receiver always cooperatively work in pairs,
the only transmission distortion occurred resulted from the
channel of the fixed the sender and the receiver. However,
as for image code, the decoder equipment may not be fixed
so decoding process may occur on different shooting condi-
tions. As a result, ensuring the transmission accuracy with
various shooting conditions is more important. 2) we lift
the restrictions on the equipment. To satisfy the extraction
accuracy, high intensity modification is needed in the tradi-
tional screen-to-camera communication schemes. Meanwhile,
to cover the visual distortion, high fresh rate screen and the
corresponding receiver are required. So traditional screen-
to-camera communication schemes always rely on special
equipment. However, the commonly used screen nowadays can
support 60Hz display, which is enough to realize non-visual-
distortion under low embedding intensity. So as long as we can
ensure the extraction accuracy with low embedding intensity,
such restrictions will be lifted. And we have developed a
powerful extraction network with adversarial training in multi-
conditions, based on which, the proposed scheme can achieve
better extraction performance.

Screen-shooting Resilient Watermarking. The last typical
type of method is screen-shooting resilient watermarking. It
does not require high information capability but cares more
about quality and robustness. By analyzing the features of the
image itself, they often hide information into the texture or
color components of an image with handcraft algorithms [19]–
[22] or deep learning networks [?], [18], [26], [27]. Works
[19]–[21] propose to use a set of templates to represent ‘0/1’
bit and embed them with an HVS mask in the host image to
represent the message. At the extracting side, they use a fixed
filter to pre-process and then extract the message by template
matching. Zhu et al. [18] propose an auto-encoder like data
hiding networks. By joint training the encoder, decoder and the
noise layer, resistance to image processing attacks (e.g. JPEG
compression, cropping, filtering) can be achieved. Based on
the architecture proposed by [18] on Tancik et al., [27] propose
a method to simulate the distortions of camera-shooting pro-
cess to obtain screen-shooting resistance. Since such methods
should greatly balance the robustness and transparency, their
embedding efficiency is not that high. Besides, due to their
implementation principle, transparency and robustness are still
contradictory with each other to some extent. Therefore, to
ensure good robustness, their visual quality is also not good
enough. Compared with all the above methods, our paper is
the first than can satisfy all the four properties.

TABLE I: The comparison of different algorithms in four
respects: Transparency, Embedding efficiency, Robustness and
Adaptability. Compared with the other three type of schemes,
the proposed method can satisfy all the requirements.

Algorithms 2D Code Screen-camera Screen-shooting Resilient Proposed
Communications Watermarking

Transparency × X × X

Efficiency X X × X

Robustness X × X X

Adaptability X × X X

III. METHOD

The framework of the whole system is shown in Figure
2. Firstly, we encode the message sequence with BCH [28]
and CRC [29], and then apply the Latin square designing
(LSD) arrangement rules on the encoded message to generate
the message matrix to be embedded. And according to the
message matrix, two complementary message templates are
generated and further superimposed onto the host image to
realize the embedding process. After that, by alternatively
displaying the two embedded images with no less than 60 Hz,
the complete invisibility of visual distortion can be realized.
Then the image on the screen is captured by cameras to
conduct the extracting process. At the extraction side, we first
perform perspective correction on the captured image and then
feed the corrected image into an attention-guided extraction
network to recover the message matrix. After that, the BCH
decoding and CRC error detection will be carried out on
the extracted message matrix. If no CRC error is detected,
the final message sequence will be extracted. Otherwise, we
will recombine the sequence according to the arrangement
rule and apply the same decoding process on it. The whole
extraction process will be finished until no error is detected or
all combinations are tried.

A. Message Matrix Generation

In the process of screen-to-camera, there may be various
distortions such as moiré, light and shutter distortion, and
different distortions will influence the image content from
different aspects. For example, Moiré and light distortion will
incur the information loss in one local continuous area, so
embedding the complete information unit multiple times is
necessary. As for the shutter distortion resulting from the
mismatch between the display frequency and the camera
shutter speed, it will cause the image captured by the camera
to be the fusion of two consecutive frames and the message
feature of some rows or columns may disappear. Therefore, we
need to ensure that there is complete watermark information
in the remaining columns or rows. To achieve that, we should
repeatedly embed the whole message matrix into one host
image many times so that even if a small region is distorted,
the message can still be extracted in the remaining region.

Based on the above analysis and to meet the requirements
of the robustness, we design a robust message generation
scheme as shown in Figure 3. Specifically, given the original
information sequence, we first generate a sequence m of length
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Fig. 2: The framework of the whole process. It consists of two main parts: the embedding process and the extracting process.
The left part indicates the message arrangement as well as the message embedding part. After embedding the message, the
embedded frames are alternatively displayed with no less than 60Hz on the screen. Then after capturing the image and
performing perspective correction, the corrected image is fed into the extraction network in the right part, which consist of an
enhancing sub-network, an attention sub-network, and a regression sub-network to realize the accurate extracting.

Fig. 3: The specific Latin square designing (LSD) arrangement
of the message matrix. The message is first encoded with
BCH & CRC coding, then the encoded message is zero
padding and reshaping into size a × a. Then one complete
message matrix is uniformly divided into four parts and further
repeated four times according to the LSD arrangement, as
shown on the top-right part.

Fig. 4: The influence of various distortions. The moiré pattern
distortion and light distortion will influence a continuous
region of the image where the shutter distortion will cause
two frame fusion and lead to the loss of some line information.
But with the message arrangement, the whole information can
always be combined from the clean region.

l with the error detection and correction ability by using
CRC and BCH coding. Then we resize m into a matrix with
size of a × a (zeroing the part of a × a − l). After that, to
repeatedly embedded the message, we uniformly divide the
matrix into 4 parts, M1,M2,M3 and M4, and perform the
LSD arrangement in Figure 3 to generate the final message
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matrix to be embedded M .
The advantage of LSD arrangement is that it successfully

disperses the whole watermark unit in the image, so that even
after the moiré distortion, light distortion, and shutter distor-
tion, there is a high probability that at least one completely
clean watermark unit can be extracted, as shown in Figure 4.
The corresponding advantages can be found in Section IV-D1.

Need to note that any combination of M1,M2,M3,M4

will contain one complete message, so ideally M contain 4
complete message to avoid potential local information loss.

B. Superposition-based Message Embedding

In order to enable online message matrix embedding in
a high refreshing frequency, the embedding efficiency is the
key consideration. Different with existing methods [21], [22]
that need detailed texture analysis to find the suitable hiding
position, we adopt an extremely efficient superposition based
scheme instead. Specifically, we use an image block of size
b × b to represent 1 bit message, so the whole template
is generated by concatenating all the blocks according to
the message matrix. Formally, the image bit block can be
generated by Eq. 1:

PB(x, y) =

{
1− D(x,y)

b/4 , if D(x, y) ≤ b/4
0, else

(1)

where
D(x, y) =

√
(x− b/2)2 + (y − b/2)2 (2)

(x, y) indicates the pixel coordinates of the image block.
Considering the human vision system is less sensitive to
the red&blue components than the green component and
the aforementioned color decomposition principle, we hide
the information into these two components and create two
complementary templates (+,−):

P±[r, g, b] = [1± PB , Iori, 1∓ PB ] (3)

where Iori indicates the G-channel of the original image
blocks. The generation rules of the whole message template
are illustrated as Eq. 4

B±(i, j) =

{
P∓, if M(i, j) = 0

P±, else
(4)

where (i, j) indicates the coordinates of information matrix
M . After all the message are embedded, we can generate two
templates, denoted by B+ and B−. So the embedded image
can be generated by Eq. 5

I ′± = (1− α)× I + α×B± (5)

where α indicates the embedding intensity. The two sym-
metrically embedded images I ′± are shown in Figure 5. To
realize the transparency, we have to alternately display two
symmetric images with no less than 60 Hz, so that human
eyes can only see one still image in the screen, but the
camera can effectively capture the embedding artifacts, thus
the transparency in human eyes and recordable in camera can
be both achieved.

Fig. 5: One example of original image and its corresponding
symmetrically embedded images. The left image is the host
image, the middle and right image are the embedded image
I ′+ and I ′−.

It’s worth noting that alternatively displaying two frames to
realize visual distortion free have been widely used in the pre-
vious fusion-based screen-to-camera communication schemes.
Nevertheless, due to the limitation of decoding ability, the
traditional screen-to-camera communication schemes require
higher embedding intensity, so in order to compensate for
the visual distortion caused by high embedding intensity, the
algorithm requires a higher refresh rate. However, the proposed
deep-learning-based decoder greatly improves the decoding
performance, which liberates the embedding intensity lim-
itation and meanwhile reduces the requirements of display
frequency.

We also add the locating border (e.g. DataMatrix) around
the image for synchronization so that we can correct the
perspective distortions according to the border after camera
capturing.

C. Attention-guided Extraction Network

To extract the information from the captured image, we first
do perspective correction then feed the corrected image into
the following extraction network. In order to achieve higher
extracting accuracy to meet the demands of robustness and
adaptability, we design an attention-guided extraction network.
As shown in Figure 2, the whole network architecture consists
of four components: (1) The enhancing sub-network E with
parameters θE takes the distorted image Id ∈ R3∗H∗W as
input and generate the enhanced image IE ∈ R3∗H∗W ; (2)
The attention sub-network At with parameter θAt

receives IE
and calculate the attention map AIE ∈ R64∗H/4∗W/4of IE ;
(3) The regression sub-network is divided into 2 parts. The
regression sub-network-1 R1 with parameter θR1

takes IE as
input and generate the feature map F1 ∈ R64∗H/4∗W/4, which
has the same size as AIE , then AIE and F1 are multiplied
channel by channel to create the attention-based feature map
FA ∈ R64∗H/4∗W/4. The regression sub-network-2 R2 with
parameter θR2

recovers the message M ∈ {0, 1}a∗a; (4)
Provided with IE or embedded image Iem ∈ R3∗H∗W , the
adversary Ad with parameter θAd

evaluates the probability that
the enhanced image is the clean embedded image.

1) Enhancing sub-network.: Inspired by image restoration
tasks like JPEG deblocking, the proposed enhancing sub-
network aims to recover the distorted information back as
much as possible for following extracting. Since U-Net [30]
like architectures has demonstrated its power in many image-
to-image translation tasks, we adopt a U-Net like enhancing
sub-network shown in Figure 6.
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Fig. 6: The detail information of enhancing sub-network with the input size
512× 512× 3.

In details, three convolution blocks (conv-bn-relu-maxpool)
first progressively downsample the captured H × W image
Id ∈ R3∗H∗W to 64× 64 feature maps, then a global 16× 16
feature block is obtained by using an extra convolutional layer
and repeatedly concatenated to the 64 × 64 feature maps,
finally several convolutional blocks (upsample-conv-bn-relu)
upsample the 64×64 feature maps back to the original size to
get the final enhanced image IE ∈ R3∗H∗W with bit patterns.
To train this network in a fully supervised way, we synthesize
a lot of training samples by regarding the original embedded
images Iem ∈ R3∗H∗W as ground truth and the captured
images as input, the objective of enhancing sub-network is
to minimize the distance between Iem and IE by updating
parameters θE :

LE =MSE(Iem, IE) =MSE(Iem, E(θE , Id)) (6)

2) Attention sub-network.: Since the screen-to-camera pro-
cess will cause irreversible distortions on the image, even
after enhancing, the features of some regions still cannot be
extracted correctly. Therefore, such regions should be paid less
attention. Similarly, the potentially correct regions should be
paid much more attention instead. On the other hand, as the
‘0/1’ bits have different patterns, the attention network may
give the regression network some visual hints and differentiate
them with original texture patterns. To achieve this goal, we
design an auxiliary attention sub-network At as the guidance,
as shown in Figure. 7. Given the enhanced image IE , it will
output a soft feature-level guidance map AIE and multiply it
into the intermediate feature F1 of the following regression
sub-network-1. For the detailed network structure, it consists
of five residual blocks [31] where the second and fourth blocks
dowsample the feature maps by 1/2, so the size of final
attention map is 1/4 of the original size (A ∈ RH/4∗W/4).
Note that when combining the single-channel attention map
with the regression sub-network, we will expand it into the
same feature channel number AIE ∈ R64∗H/4∗W/4.

3) Regression sub-network.: The regression sub-network
aims to extract the final message matrix, and we divide it
into two parts so that it can collaborate with the attention sub-
network well, the specific architecture are shown in Figure. 7.
Given an enhanced image, the sub-network-1 R1 is respon-
sible to encode it into high-level intermediate features F1 ∈

Fig. 7: The detail information of attention sub-network and regression sub-
network with the input size 512× 512× 3.

R64∗H/4∗W/4, which are further enhanced by the attention
AIE ∈ R64∗H/4∗W/4 to generate F2 ∈ R64∗H/4∗W/4, which
is fed into the sub-network-2 R2 to decode the final message
matrix M ∈ {0, 1}a∗a. In details, the R1 is composed of three
convolution blocks (conv-bn-relu-maxpool) and two residual
blocks, and the encoded feature size is also 1/4 of the original
size with 64 channels. To achieve stronger extracting ability,
R2 is composed of seven residual blocks, which progressively
transform the attention-enhanced features into the message
matrix. The objective of Regression sub-network training is to
minimize the difference between M and the original message
matrix M ∈ {0, 1}a∗a by updating parameters θAt

, θR1
and

θR2
:

LR =MSE(Mo,M)

=MSE(Mo, R2(θR2 , R1(θR1 , IE), At(θAt , IE)))
(7)

4) Adversarial sub-network.: To better constraint the image
quality of the enhanced image, we ultilize the adversarial
network. The enhancing sub-network are trying to deceive the
adversary, so that the adversarial network cannot judge the
correct Iem from IE . To this end, LAd

loss is used to improve
the image quality of IE by updating θAd

:

LAd
= log(1−Ad(IE)) = log(1−Ad(E(θE , Id))) (8)

On the contrary, Ad should also make a correct binary clas-
sify from Iem from IE . Adversarial training is achieved by
minimizing the value function and updating parameters θAd

:

LAd
= log(1−Ad(θAd

, Iem)) + log(Ad(θAd
, E(Id))) (9)
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In this paper, we use the PatchGAN [32] as Ad by default.
5) Loss Function: Thanks to the differentiability of these

three sub-networks, they can be jointly trained end-to-end with
different objectives. Formally, the overall objective function
consists of three terms:

L = λ1LE + λ2LR + λ3LAd (10)

where λ1, λ2, λ3 are the loss weights to balance these three
terms and set as 10, 1, 0.001 respectively. It can be seen that we
have not used any explicit attention guidance for the attention
sub-network, but we find it can be automatically learned very
well jointly.

6) Training Process: For better performance, the whole
network is trained in a supervised way. We firstly obtain
the image pairs of distorted image Id and original embedded
image Iem. Then Id is directly fed into the enhancing sub-
network to create the enhance image IE , which is further sent
to the attention sub-network and regression sub-network-I. The
output of the attention sub-network AIE and the output of the
regression sub-network-I F1 is blended to generated a high-
level intermediate features F2 and further fed into regression
sub-network-II to get the final extracted message matrix M .
And the loss function in Eq. (10) is applied to train the whole
network in an end-to-end way. It can be seen that we have
not used any explicit attention guidance for the attention sub-
network, but we find it can be automatically learned very well
jointly.

D. Message Decoding

After obtaining the extracted message matrix, we need to
combine one complete message unit for BCH decoding and
CRC error detection. Specifically, we try each possible combi-
nation of M1, M2, M3 and M4 according to the arrangement
rules and decode them. If no CRC error is detected, we believe
the correct message is extracted. If not, the next combination
will be continued. The whole decoding process ends when no
CRC error is detected or all combinations are tried.

IV. EXPERIMENT AND ANALYSIS

A. Implementation Details.

For bit sequence encoding, we use BCH(64,36) as the error
correction code (ECC), where 5 bit errors can be corrected
and the length of CRC bits is 7 bits. So the actual message
bits are 30 bits, and the message matrix size a is set as 8.
The size of the block that represents 1 bit message b is set
as 32. To train the extracting network, we randomly choose
1500 images from the COCO dataset [33] and scale them to
512 × 512 pixels. In this way, each image is embedded with
64 random bits. After displaying the embedded images on the
screen and capturing them randomly at 30-60cm and −30◦ −
30◦, we conduct perspective correction and crop the images
to generate the captured images with size 512× 512. For the
following experiments, the default monitor and mobile phone
we used are ‘AOC-G2770PF’ and ‘Huawei P30 Pro’. And the
test dataset is the classical USC-SIPI image dataset [34]. In
order to realize the alternately displaying, we have written a
script that can alternating display the specified image at the

current fresh rate of the monitor with C++ and python. It is
worth noting that we do not use the video format to achieve
the displaying operation. Because we find that when the image
is written into the video, the impact of video compression will
produce unnecessary artifacts, which greatly affect the visual
quality. And direct alternately displaying two images can avoid
the visual distortion.

TABLE II: The detailed configuration parameters when col-
lecting screen-shooting dataset.

Process Screen-shooting

Embedding Image source COCO
Image Size 512× 512 pixels

Parameters Embedding Intensity 0.05
Number of Images 1500

Camera Shooting
Device AOC-G2770PF, Huawei P30 Pro

Image Presentation 512× 512 pixels in resolution of 1920× 1080
Shooting Distance 30-60 cm

Parameters Horizontal Shooting Angle -30◦-30◦
Vertical Shooting Angle -30◦-30◦

B. Visual Quality Comparison

To measure the visual quality of the embedded image, we
perform a mean opinion score (MOS) test. Specifically, we
prepare 16 embedded images for each baseline method and
show them on the screen, then ask 30 users to assign a score
from 1 (bad quality) to 5 (excellent quality). From Table III,
we can easily find the MOS score of proposed method is
much better than that of other baseline methods. Since the
displayed frequency is twice bigger than the frequency human
eyes can be detected, the image human observers can see on
the screen is just same as the original image. In this sense,
our method can theoretically ensure the original visual quality
of the host image while other baseline methods will affect it
more or less. We further provide some visual results in Figure
8. And we can see that the visual quality of images generated
with 2D image-code methods is poor, because the purpose
of such methods is to generate a strong robust codeword for
message transmission, and they have low requirements for
visual quality. However, the visual quality of images generated
by screen-shooting resilient watermarking method is higher
than that of 2D image-code methods. So for fair comparison
in the following robustness test, we choose three algorithms
with MOS score greater than 4.

C. Robustness Test of The Proposed Method

1) Screen-shooting Test in Different Capture Conditions:
In real camera capturing scenarios, different shooting settings
may be used. Therefore, we evaluate the robustness of our
method under various conditions, including different shoot-
ing distances and angles. Specifically, the captured distance
ranges from [30,70]cm and the shooting angles ranges from
[−40◦, 40◦] horizontally or vertically. For fair comparison, the
bit error rate (BER) values shown in the following experiments
are the results without ECC correction. Since the ECC used in
the proposed scheme can correct 5 bits errors, when BER is
below 5/64 = 7.81%, the message can be lossless recovered.

As we can see in Table IV, compared with the baseline
methods [19]–[21], the bit error rate of the proposed method
is lower in all different distances. So we can conclude that
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Fig. 8: Four visual samples of different methods and zoom-in to see the details. Our method can theoretically guarantee the
original quality while baseline methods will affect it more or less.

TABLE III: The visual quality assessment of different schemes
with the mean opinion score (MOS) test, the bigger the score,
the better the visual distortion.

Algorithms PiCode [15] RACode [16] RUCode [17] SSRW [22] Nakamura [20]

MOS 2.27 2.39 2.53 3.06 4.21

Algorithms Pramila [19] Gugelmann [21] Stegastemp [27] Hidden [18] Proposed

MOS 4.01 4.25 3.88 2.90 4.92

TABLE IV: Bit error rates comparison of extracted message
with screen-shooting distance.

Distance(cm) Nakamura [20] Primila [19] Gugelmann [21] Proposed

30 16.40% 23.43% 22.56% 2.54%

40 14.75% 23.83% 27.24% 7.03%

50 17.81% 20.70% 32.22% 3.71%

60 18.44% 20.70% 27.05% 6.84%

70 19.50% 19.92% 30.96% 5.27%

under the same level of visual quality, the proposed algorithm
performs better. Besides, even in the distance of 70cm, which
is not appeared in the training set, it can realize high extraction
accuracy. So the changing of distance affects little on the
performance of the algorithm.

Table V shows the bit error rates of different algorithms at
different capture angles. It can be seen that, when captured
in the horizontal angle, the bit error rates of angle within
[−30◦, 30◦] are all less than 12%.But when the shooting angle
is beyond the training scope, the bit error rate becomes higher
than 14%. To make it more robust to larger shooting angles,
adding more corresponding training datasets is further needed.

It’s worth noting that in vertical shooting angle test, when
captured under the screen (“Down 15◦ − 45◦”), the bit error
rate is much bigger than that captured above the screen, the

TABLE V: Bit error rates comparison of extracted message
with different screen-shooting angles.

Angle Nakamura [20] Primila [19] Gugelmann [21] Proposed

Left 40◦ 19.63% 19.92% 35.84% 14.46%

Left 30◦ 16.31% 16.41% 31.64% 7.03%

Left 15◦ 15.44% 19.91% 24.51% 7.05%

Right 15◦ 13.88% 20.70% 23.63% 5.27%

Right 30◦ 15.83% 20.31% 31.05% 11.52%

Right 40◦ 22.27% 22.34% 34.18% 23.52%

Up 40◦ 16.11% 36.17% 33.69% 23.25%

Up 30◦ 13.58% 22.26% 33.40% 6.25%

Up 15◦ 20.52% 17.97% 26.07% 3.13%

Down 15◦ 16.50% 22.27% 24.51% 12.70%

Down 30◦ 16.80% 21.48% 29.79% 14.12%

Down 40◦ 26.22% 39.06% 32.32% 29.89%

reason can be explained that the luminous angle of the screen
is not the same for all directions. Shooting under the screen is
easy to cause a lot of color distortion, which leads to a large
image distortion even if shooting at a small angle, so the bit
error rate will be larger than that of shooting in the same angle
of other directions.

Besides, compared with the distance testing, the bit error
rate of the angle testing is less stable. This indicates that the
algorithm is sensitive to the changing of the shooting angle,
because compared to distance, the change of shooting angle
has a greater impact on camera shooting, which is reflected
in the image with much more distortion, thus affects the
extraction.

2) Adaptability to Different Devices.: As mentioned be-
fore, adaptability is a key consideration for applicability. To
evaluate it, we capture the embedded image with different

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on March 11,2021 at 06:00:25 UTC from IEEE Xplore.  Restrictions apply. 



1520-9210 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2021.3061801, IEEE
Transactions on Multimedia

9

TABLE VI: Bit error rates comparison of extracted message
with different screen shooting devices.

Screen
Phone Huawei P30 Pro iPhone 6s Mi 9 iPhone Xs Max

AOC-G2770PF 3.48% 0.79% 0.78% 4.17%

ViewSonic VA2261 5.47% 6.77% 8.85% 9.37%

Lenovo P22i 3.42% 4.16% 8.07% 2.60%

mobile phones (“Huawei P30 Pro”, “iPhone 6s”, “Mi 9” and
“iPhone Xs Max”) and different screens (“AOC-G2770PF”,
“ViewSonic VA2261” and “Lenovo P22i”) under the same
condition of “30cm, 0◦”. It can be seen from Table VI that
the proposed scheme can be applied to various devices and
the bit error rates of all devices are less than 10%. But since
the dataset is generated with “AOC-G2270PF” and “Huawei
P30 Pro”, we discussed the testing results from 2 aspects of
phone and screen: As for screen, we can see that compared
with the other two screens, the BER of “AOC-G2270PF” is a
little lower because the network is trained based on the dataset
generated from “AOC-G2270PF”. As for the phone, it can be
seen that the performance of “Huawei P30 Pro” maintains
comparable with different screens, however, the performance
of the other three phones varies a lot with different screens. So
based on the results in Table VI, we can draw the following
two conclusion:

1). The well-trained network can work not only with the
devices that are used for generating the training dataset, but
also with other phones and screens, which indicates the high
adaptability to different devices.

2). The BER with the devices which are used for generating
the dataset is lower than that with other devices, which means
using more diverse devices to generate training dataset is
potentially beneficial to realize higher accuracy.

TABLE VII: Bit error rates comparison of extracted mes-
sage with different mobile phone shutter speed and screen
frequency.

Shutter Speed (s) 1/30 1/60 1/100 1/200

Screen Frequency (60Hz) 31.25% 5.99% 2.87% 3.385%

Screen Frequency (144Hz) 29.17% 28.39% 7.46% 3.02%

3) Adaptability to Different Frequencies.: In Table VII,
we further provide the results for different combination of
screen and phone frequencies. We can find that faster shutter
speed will produce better extracting results. For example, when
displaying the embedded image in 60Hz, if the phone’s shutter
speed is less than 1/30s, the extraction bit error rate is less
than 6%, but when shooting with 1/30s shutter speed, the bit
error rate is higher than 30%. According to Nyquist–Shannon
sampling theorem, it is because the captured image will be
the fusion of the two displayed continuous frames and some
important information is missing in this condition. Similarly,
when the fresh frequency is 144Hz, the extraction can only
succeed with “1/100s” and “1/200s” shutter speed.

4) The Extraction Difference Between Video and Single-
image: The performance of two different extraction ways:

TABLE VIII: The BER of different extraction conditions with
“40-cm” captured image.

Conditions Single-Image 30fps Video 60fps Video

BER 7.03% 1.95% 1.56%

TABLE IX: The MOS value of different videos under different
fresh frequency.

Message Consistency

Fresh Frequency 60 Hz 100 Hz 120 Hz 144 Hz

MOS 1 1 1 1

Message Changing

Fresh Frequency 60 Hz 100 Hz 120 Hz 144 Hz

MOS 3 1.8 1.2 1

single image capturing and video recording are illustrated in
this section. Specifically, we capture the screen at “40” cm and
further record them for 1 second per image with 30 fps and
60 fps. Then we select 5 random frames of the recorded video
to extract the message. The minimum BER of the 5 images is
applied as the BER of each video extraction.

Table VIII illustrates the results of the message extraction
via different conditions. It can be seen that video recording
instead of image capturing can greatly improve the extraction
performance, the BER of the video recording extraction is
less than 2%. The reason is that the video recording process
can be regarded as a continuous capturing process. And one
single-image capturing process, the distortion caused by frame
changing may greatly influence the captured image. But in
video recording extraction, such influence can be reduced by
extracting many frames in the video, which appeared as a
spread spectrum correction. It is worth noting that theoreti-
cally, the message artifacts may not be recorded in 30fps video
since the fresh rate is 60Hz. However, we find it extractable
in practice. The main reason is that even if the sampling
frequency of the mobile phone is twice that of the monitor
in theory, but in practice, the monitor is not displayed in strict
accordance with 60Hz and so does the mobile phone recording,
which leads to that the information recorded by the mobile
phone is not equal to the superposition of two adjacent images,
so the mobile phone can still record message information.

5) The Results of Video Carrier: In this section, we mainly
show and discuss the result of video carrier in two aspects,
the visual quality and the extraction performance. Since in the
proposed method, the screen is constantly displaying images
at a refresh rate of 60Hz, so the carrier can be either an
image or a video. The video we used in this paper is “Big
Buck Bunny” [35], as shown in Figure 9. We embedded the
same and different message into each frame of the video and
display them with 60Hz, 100Hz, 120Hz and 144Hz. Then we
evaluate the visual quality of them with MOS and capture 10
images of the video in each fresh rate to evaluate the extraction
performance. The corresponding results are shown in Table IX
and Table X.

The visual quality of the embedded video is measured by
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Fig. 9: The generated I+ and I− of continues 8 frames in video “Big Buck Bunny”.

TABLE X: The extraction BER under different fresh fre-
quency.

Fresh frequency 60 Hz 100 Hz 120 Hz 144 Hz

BER 4.22% 7.97% 18.28% 28.44%

MOS test. Specifically, we prepare the “Big Buck Bunny”
video under the conditions of “message consistency” (each
frame of the video is embedded with the same message) and
“message changing” (each frame of the video is embedded
with different messages). Then we ask 30 volunteers to assign
a score from 1 (No Flicker) to 3 (Heavy Flicker). From Table
IX, it can be seen that when message is not changing with each
frame, the video will not flicker even under 60 Hz display, all
the volunteers are not able to sense the artifacts of the message
from the embedded video. However, if the message varies with
each frame, the flicker, that is, the artifacts of the message will
be observed with 60 Hz display, but with the fresh frequency
increase, the visual quality becomes better and better. So we
can conclude that the message changing is a very important
reason to cause visual distortion, since if the message changed
frame by frame, not only the content of the video, but also
the message artifacts will be different.

As for message extraction, the BER is shown in Table X.
Same as the conclusion in Section IV-C3, the message remains
extractable with 60 Hz and 100 Hz, but when facing 120 Hz
and 144 Hz, the mobile phone will not able to effectively
capture the artifacts due to the Nyquist–Shannon sampling
theorem, so the BER will be greatly increased in 120 Hz and
144 Hz.

In summary, to apply the proposed scheme into video
carrier, the message should remain unchanged frame to frame
in order to satisfy 60 Hz display. If the video is shown with
higher refresh frequency, the receiver should be adaptive to its
settings.

D. Ablation Study

1) Importance of Message Matrix Arrangement: To better
illustrate the importance of the proposed message matrix
arrangement, we compared the proposed message arrangement
with the other three arrangement shown in Figure. 10 in the
aspect of bit error rate. Note that one whole message consists
of M1,M2,M3,M4, so the bit error rate is calculated by
the M1,M2,M3,M4 combination with minimum error bits.

(a) Row: The whole message ma-
trix is reshaped row by row.

(b) Column: The whole message
matrix is reshaped column by col-
umn.

(c) Square: The whole message
matrix is reshaped square by
square.

(d) Scramble: The whole message
matrix is reshaped by the proposed
arrangement.

Fig. 10: The four different message matrix arrangement.

Specifically, we use the image captured from different distance
as the test image data. For each image, we divide the extracted
message matrix into 4 × 4 part, and then sum the error bits
corresponding to each part. Assuming that the message is
reshaped : (a) row by row; (b) column by column; (c) square
by square and (d) scrambling. We can calculate the bit error
rate of a whole message by counting each combinations of
M1,M2,M3,M4 and choosing the one with minimum error
bits. The results are shown in Table XI.

From Table XI we can see that in the distance of 30−60 cm,
the proposed message matrix arrangement maintains a lower
BER compared with other arrangements, where at 70 cm, the
minimum BER is obtained from the “Square” arrangement.

So in most cases, the proposed message matrix arrangement
can achieve better extraction performance. We summarize
the reason as: The scrambled watermark arrangement can
effectively make the complete information distributed in each
row, column and square region, so that the watermark can
maintain extractable as long as one row/column/square mes-
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TABLE XI: The BER of different message matrix arrangement
with different capture distance. “Row”, “Column”, “Square”
and “Scramble” indicate the different arrangement correspond-
ing to Figure 10.

Distance(cm) 30 40 50 60 70

Row 2.93% 8.98% 5.08% 7.03% 6.05%

Column 7.42% 9.18% 6.05% 7.81% 7.23%

Square 3.71% 7.62% 5.08% 7.62% 4.88%

Scramble 2.54% 7.03% 3.71% 6.84% 5.27%

Fig. 11: The pattern as well as the encoded image appearance
generated with [20], [21], [36] and the proposed scheme.

sage surviving from the screen-shooting process, which makes
the method more robust.

2) Experiments on Different Pattern: In this paper, we
propose to use the pattern that generated with Eq. 1 - Eq. 4 to
represent 1 bit message. But now there are many other pattern
generation schemes [20], [21], [36] proposed to express 1 bit
message, so in this section, we perform the experiments to
test different pattern expression schemes from two aspects of
visual quality and extraction accuracy.

Specifically, we apply the pattern generation method in [20],
[21], [36] with the size of 32 × 32 pixels to compared with
the proposed method. The pattern appearance as well as the
encoded image are shown in Figure 11.

To better illustrate the difference between different schemes,
we have generated the image dataset and trained the corre-
sponding extraction network for each of them. The dataset
generation is conducted with the settings shown in Table II.
Then we perform the MOS test and extraction experiments on
each methods with the test dataset [34], the results are shown
in Table XII and Table XIII.

In detail, we invite 30 volunteers to score the visual qual-
ity of different methods from 1 (No Flicker) to 3 (Heavy
Flicker). From Table XII we can observe that the proposed
pattern generation scheme maintains the best visual quality
compared with other schemes. We believe the reason is that
the brightness of the proposed pattern gradually changes from

TABLE XII: The MOS test score of each schemes. The bigger
the score, the easier it is to sense the flicker.

Method Nakamura [20] Gugelmann [21] Fang [36] Proposed

MOS 1.5 2.1 1.2 1

TABLE XIII: The extraction BER of each schemes under
“30”cm screen shooting.

Method Nakamura [20] Gugelmann [21] Fang [36] Proposed

BER 3.71% 4.88% 1.13% 2.54%

the middle to the surrounding, while the brightness of the other
three schemes changes dramatically. Such a setting plays a role
of visual masking to a certain extent, so that the visual quality
is better.

From the aspect of extraction accuracy, we captured the
test images from “30”cm and extracted the captured images.
Surprisingly, we find that no matter what kind of pattern is, the
extraction network can effectively decode the message with a
low bit error rate, which indicates the powerful ability of the
proposed network.

In summary, when BER is within the error correction
capability, the key to choose pattern generation scheme is the
visual quality. From this point of view, the proposed method
maintains the best performance.

3) Importance of Each Sub-network.: Rather than just using
a single extracting network, our method consists of three sub-
networks. To demonstrate the importance of each sub-network,
we have conducted two ablation experiments with/without
the enhancing sub-network and attention sub-network. It can
be seen from Table XIV that incorporating the enhancing
network and the attention sub-network can bring about 0.6%
and 1.61% accuracy gain respectively. In Figure 12 and Figure
13, we further visualize the enhancing image and the attention

Fig. 12: The output image of the enhancing sub-network.
left: The original captured image. right: The corresponding
enhanced image.

Fig. 13: The output attention map of the attention sub-network.
left: The captured image. right: The corresponding attention
map.
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TABLE XIV: The extracting accuracy with/without the en-
hancing sub-network and attention sub-network. Compared
to the baseline “bs”, adding enhance network “enh” and
attention sub-network “att” can bring substantial performance
improvement.

Architecture bs bs + enh bs + enh + att

Accuracy 93.45% 94.05% 95.66%

(a) 2D Image Code. By capturing the image displayed on the screen, the detail
information (e.g. websites) can be extracted and loaded on the phone.

(b) Leak Tracking Watermark. The “TERA” code can be regarded as a watermark
with the message of device information, when the secret document is sneaky shot,
the leaked device can be located according to the message.

(c) Warning Watermark. By carefully designing the “TERA” code pattern, the
pattern can be regarded as a kind of sign to warn the behavior of sneak shot.

Fig. 14: The three typical applications of “TERA” Code.

maps of two examples. Figure 12 indicates that even if the
watermark signal is weak in the captured image, the enhancing
sub-network can effectively enlarge the watermark feature,
which appears as a more obvious pattern in the enhanced
image. While in Figure 13, it shows that, though it is hard
to see the bit pattern by human eyes, the attention network
can learn where the bit patterns are placed and pay different
attentions to each pattern.

V. APPLICATIONS

In this section, we will show three typical applications of
the proposed system as shown in Figure 14 , which further
demonstrate the broad applicability of our method.
2D image code. “TERA” code is similar to QR code and
can be used as a way to realize screen-to-camera message
transmission. But different from the traditional QR code, the
“TERA” code will not produce any visual distortion, thus
it is more attractive to users. When users scan or capture
the displayed image, the URL information can be extracted
and transferred to the mobile phone, so that a more detailed
introduction of the displayed image can be load.
Leak tracking watermark. “TERA” code can be regarded as
a kind of screen-shooting resilient watermarking algorithm. By
embedding the watermark (e.g. time or device information)
in confidential documents, when the confidential documents
displayed in the screen are leaked out by screen-shooting,
we can extract the hidden watermark from the captured
photos and recover the leaking information such as leaked
equipment, leaked time and employee identity, so as to realize
the accountability process.
Warning watermark for IP protection. “TERA” code can
also be used as a warning watermark that is only visible for
the camera. When embedding the warning logo on each frame
with high intensity and displaying them with an appropriate
frequency. The warning logo will be invisible to human eyes,
but for camera devices, the logo will appear instead. This can
play a warning role for IP protection in cinema or museum.

VI. CONCLUSION

In this paper, we design a new screen-to-camera image
code “TERA”. It is the first attempt that can satisfy the four
key properties simultaneously, i.e., great transparency, high
embedding efficiency, strong transmission robustness and high
adaptability to device types. It is mainly based on the inspira-
tion of human vision system’s property, dedicated message em-
bedding design and the powerful ability of a novel attention-
guided extracting network. Extensive experiments also demon-
strate the superiority of our method in both robustness test,
visual quality and adaptability. Besides, such methods can
be broadly used in many different applications such as 2D
image code, leak tracking watermark and warning watermark.
However, such algorithms are vulnerable to cropping attacks
since the locating process might be influenced by the crop
distortion, and moreover, the capacity of embeddable messages
is not high. So in the future, we will be committed to solving
these two main problems.
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