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What is chaos? Chaos (‘keios)

1 The disordered formless matter  supposed to
have existed before the ordered universe.
2. Complete disorder, utter confusion.

3. (Math.) Stochastic behavior occurring in a deterministic
system. (1986 Royal Society in London.) (“Lawless behavior
governed entirely by law")

4. Sensitive dependence on initial condition.



Birth of modern dynamics, chaos theory

1887 King Oscar |l of Sweden offered a prize of 2,500 crowns for an
answer to a fundamental question in astronomy:

Is the Solar System Stable?

= H Poincare submitted a paper of 270 pages long entitled "On the
Problem of Three Bodies and the Equations of Dynamics”, in which he
showed that an analytic solution was not possible, even to the simpler
problem of only three gravitating bodies, one of which had a mass too

small to affect the motion of the other two.

(After Poincare was declared the winner, it was discovered that there
was an important error in his proof. The award was made, after the error

was corrected.

In 1892, Poincare made the following observation after studying the 3-

B
body problem: (excerpted from ~~Chance")



In reaching the conclusion quoted above,
Poincare discovered deterministic chaos.
However, his discovery was overshadowed
by the discoveries of quantum mechanics
and relativity. Poincare's discovery was
ignored by mainstream physics until 1960's.



What Chaos Theory tells us?

Simple systems can exhibit complex behavior.

(Complexity theory tells us that complex system can
exhibit simple ‘emergent’ behavior.)



We discuss here time-independent Hamiltonians, while the general
results are usually also valid for time-dependent Hamiltonian systems,

with suitable modifications.

Integrable system:

In an integrable system, there exists a set of f independent analytical
single-valued constants of motion f;, which are in involution, i.e., their
Poisson brackets with each other must vanish [f;,f]=0.



For an integrable system, the time-independent Hamilton-Jacobi
equation is usually separable into f independent equations and it is
possible to introduce the action-angle variables.

Motion in an integrable system is regular, in other words, periodic or
guasi-periodic.

Quasi-periodic: periodic in projection to each dimension, but the ratio of
frequencies of the motion in the related dimension is incommensurable.

Integrable systems are rare and non-generic.

But they can be used as a starting point in the study of more general
systems.



We have the following picture in action-angle variables:

(1) A trajectory in phase space lies in a subspace characterized by the
values of the actions I, with | being constants of motion.

(2) Such a subspace is given a name tOrus (f-dimensional) and
points on a given torus are labeled by the angle variables. When
f=2, it has the shape as shown below, which is the surface of a
“doughnut”,
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Nearly-integrable systems:
H=H,+ ¢ H;

where H, is an integrable system and ¢ is a small quantity.

This system is not far from an integrable system, therefore, we can
make use of what we know about the integrable system.

In particular, the action-angle variables of the integrable system can
be used as a set of canonical variables in describing the system H.

H(I.0) = Hy(I)+€eHy(1.0)



Since a nearly-integrable system has a small perturbation, we can
use perturbation theory in the analytical approach.

As we know, the point is to find out a new set of canonical variables,
so that the new Hamiltonian is approximately a function of the new
momentum only, then the new momentum are nearly constants of
motion and the system can be solved approximately.

By the canonical perturbation theory discussed at the end of part Il, we
know that this can be done, when it is possible to introduce a
generating function in the following way
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It is seen that such a generating function does not exist, when

dH(1)

m-w(I)=0  where (I) = -

That is, we have the famous problem of small denominators.

Let us take f=2, as an example. Then, this equation means that
the winding number p is rational, p=r/s.

Since the frequencies are functions of I, when | changes continuously,
there is always some | for which the winding number is rational.

The problem becomes serious, when the canonical momenta | are not
really constants of motion.



We learn two things from the above analysis by the simple canonical
perturbation theory:

(1) Take f=2 as an example. Motions in the system H, which are close
to a torus with rational winding number in the system H,, called rational
torus, may be more complicated than those close to irrational torus with
irrational winding numbers.

(2) The simple perturbation theory we developed is not enough for a
rigorous approach to the problem and a more advanced perturbation
theory is needed.

The first problem will be addressed by Poincare-Birkhoff theorem, and
the second by the celebrated KAM theorem.



The problem is whether it is possible to find new Hamiltonian
satisfying K=K(I’) locally for some values of winding numbers, so that
for such winding numbers, the tori are just distorted, but not destroyed.

The answer is yes and is given by KAM theorem. For simplicity, let
us first discuss f=2 case.

The theorem was proved by Arnold (1961, 1962), for analvtic H; (all deriv-
atives existing), following a conjecture by Komogorov (1954), and by Moser
(1962) for a sufficient number of continuons derivatives. It provides the basis
for the existence of invariants in nonlinear coupled systems. The theorem is
generally called the KAM theorem in recognition of their work.



KAM proved that, in the system H=H,+ ¢ H,, torus of H, satisfying the
following condition is only distorted,
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for all integer r and s, where p is the winding number and K is a constant
depending on ¢ . K<<1, unless the perturbation is strong.

That is, if the winding number p is far enough from any rational number,
then, the torus is just distorted, but not destroyed.

The technique used by KAM is to introduce an optimized perturbation
theory, other than the canonical perturbation theory we discussed.

The relation between the two perturbation theories is somewhat similar to
that between the two rational number approaches to an irrational number
discussed at the end of this Lecture, i.e., a direct decimal-truncation
approach and the approach using continued fractions.



10.2.1 Superconvergent method,

which plays a fundamental role in the proof of KAM theorem.
In the perturbation theory we discussed, the Hamiltonian
H=H,+ ¢ H,

can be transformed by successive canonical transformations that
are chosen to increase the order of perturbation by one power in
every step. Letting H,, be the untransformed part of the Hamiltonian
after the nth transformation,

Kolmogorov showed that successive canonical transformations
may be chosen such that the order of the perturbation is increased
by the square of the preceding one for each step

€ H1—> e 2H2—> e 4H3_>... e k(n)Hn’ with k(n):2n_1

This type of convergence is called superconvergence, or sometimes,
guadratic convergence.



Tori with rational winding numbers and their structure

Historical remark:

Poincaré had stated his theorem in Sur un théoreme de
géomeétrie in 1912 but could only give a proof in certain special

cases.

Birkhoff finally completed the proof.



Poincare-Birkhoff Theorem

* The points where T5C, and C, intersect are fixed
points of the map T*® (or periodic points of T with
period s).

e Since the area under the two curves must be the
same, the curves must intersect (except in the
trivial case where T* 1s the identity).

* There must be an even number of fixed points.

e We will see that half of the fixed points are stable
(elliptic) and half are unstable (hyperbolic).



Poincare’s method is to set further, e.g., q,=0 and dqg,/dt > O, and
study the change of (q1,pl) at discretized time.

The method is called Poincare surface of section (PSOS).

a, dg,/dt > 0
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Since C , is the curve for which there is no winding, the winding direction
IS to the left below it and to the right above it.

This leads to an alternating series of stable and
unstable fixed points.



Combining the above results, we have the following complicated
structure in PSOS, with self-similarity, as perturbation increases.

------ rational tori



4.1 Lyapunov exponent

------- as a characterization of chaos

Lyapunov exponents play an important role in the theory of both Hamil-
tonian and dissipative dynamical systems, They provide a computable, quan-
titative measure of the degree of stochasticity for a trajectory. In addition,
there is a close link between the Lyvapunov exponents and other measures of
randomness such as the Kolmogorov entropy and the capacity.

Roughly speaking, the Lvapunov exponents of a given trajectory charac-
terize the mean exponential rate of divergence of trajectories surrounding it.



Historical remark:

Characterization of the stochasticity of a phase space trajectory in terms
of the divergence of nearby trajectories was introduced by Henon and Heiles
(1964), and further studied by Zaslavsky and Chirikov (1972), Froeschle and
Scheidecker (1973), and Ford (1975).

The theorv of Lyapunov exponents (Lvapunov 1907) was applied to char-
acterize stochastic trajectories by Oseledec (1968). The connection between
the Lyapunov exponents and the exponential divergence was given by Benet-
tin et al (1976) and by Pesin (1977), who also estabilished the connection to
Komogorov entropy. The precedure for computing the Lvapunov exponents
was developed by Benettin et al (1980).



The purpose is to study the divergence of nearby trajectories.

Let us consider a flow x(t) in a M-dimensional phase space, which is
generated by an autonomous first-order system, like the Hamilton’s
equations in a time-independent Hamiltonian system.

Consider a trajectory in M-dimensional phase space and a nearby trajec-
tory with mitial conditions xy and x5 + Axg. respectively, as shown inthe
figure.



(a)

The separation changes with time, with a Euclidean norm (distance in
the phase space)

d(xg,t) = ||Ax(x, 1)



We now introduce the mean exponential rate
of divergence of two initially close trajectories

1 d(XU: t)

o(xp.w) = lim lim —1In
( 0 ) PR d.(x.[p_.,tn)_*ﬂt d(x{]:tﬂ)

The order of limitation is: First take d(X,,t;) to zero, then, take t to infinity.

[t can be shown that o exists and is finite. Furthermore, there is an M-
dimensional hasis {¢;} of w such that for any w, ¢ takes on one of the M

(possibly nondistinct) values
0i(Xp) = 0(X, €),
These are the Lyapunov (characteristic) exponents. Note that

they are functions of initial position in phase space. They can be ordered
by magnitude,



(Tl > (To 2 e 2 J'T”

The largest Lyapunov exponent o ; is the most important one.

The Lyapunov exponents are independent on the choice of metric for
the phase space (Oseledec, 1968).



4.2 Hierarchy of randomness (stochasticity)

Ergodic system
Mixing system
K-system

C-system

a B~ Wb PE

Bernoulli system



Ergodicity: A system is said to be ergodic, if the time average of
an arbitrary function f(qg,p) with almost every possible initial states is
equal to the average over (energy surface in) phase space.
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Where d v is the invariant measure in the phase space.

The meaning of ergodicity is that almost every trajectory explores all
the possible regions (on the energy surface) in phase space, with a
weight proportionalto d 1 .



Mixing: One may use the following picture to illustrate the concept of
mixing

(a) Take a shaker that consists of 20% rum and 80% cola, with the
part of rum representing the initial distribution of the considered
initial states as “incompressible fluid” in phase space.

(b) Shaking the shaker for a time long enough, then, every part of
the shaker (of macroscopic scale), however small, will contain
“approximately” 20% rum, representing that every part of the phase
space contains 20% of the trajectories at time t.

Or one may imagine the dispersion of a drop of ink in a glass of water.



Mathematical expression

An area preserving map M of a compact region S is
mixing on S, if given any two subsets o and o’ of S,
where o and o’ have positive Lebesgue measure (g (o) >
0, ptr,(0') > 0), then,

i fﬁ]k-‘{[.”l i
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Mixing implies ergodicity, but, the converse is not true.



K-systems have invariant sets with positive KS (Krylov, Kolmogorov,
Sinai) entropy.

It has been proved that KS entropy is the summation of positive
Lyapunov exponents.

hi, = Z oF

a; >0

Therefore, a K-system has positive Lyapunov exponent.
When we speak of a chaotic system, we usually mean a K-system.

We mention that ¢ , is not usually the same constant for all stochastic
regions; distinct, isolated regions of stochasticity generally have
different values of o ;.



A C-system, also called Anosov-system, is one which is chaotic and
IS hyperbolic at every point in the phase space (not just on the invariant
set).

A Bernoulli system is a system which can be represented as a
symbolic dynamics consisting of a full shift on a finite number of
symbols.
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1 Attractor and bifurcation

In a dissipative system with a N-dimensional phase space, phase
space volume may shrink to some stable, steady motion on a
surface with a dimension smaller than N.



Such a surface is usually called “attractor”.

We call a subset X of a phase space an attractor, if

e X is mvariant under the How

-

. 'Hllprﬂ is an (open) neighborhood around X that shrinks down to X
uder the flow.

e 1o part of X is transient.

e X cannot be decomposed into two nonoverlapping invariant pieces.

Basin of attraction



The “basin of attraction” of X is the set of states in phase space that approach
X as t = o0, Often there are a finite number of attractors Xy, -+, Xy for
an N-dimensional flow, although cases are known that have infinitely many
attractors. Except for a set of measure zero, all initial states lie in the basw
of one of the M attractors, (See Fig.).

- Basin of limit cycle _




Bifurcation

The real part of one or more of the eigenvalues may pass through zero at a

critical paramter value, leading to bifurcation phenomena.

We can shift the

origin of y¢ so that the bifurcation occurs at o = 0. If a single real eigenvalue
passes through zero, then the bifurcation is essentially one dimensional; 1.e.
the bifurcation can be found in one-dimensional flows or onk one-dimensional
manifolds embedded in higher dimensional flows.



Some types of bifurcation

Pitchfork Bifurcation

a0 A period one fixed point of the map becomes unstable and a pair
of stable fixed points of period two appear.

Tangent Bifurcation

a0 A stable and unstable fixed point approach each other and
disappear into the complex plane. This leads to so-called

“intermittency”

m Hopf Bifurcation

The transition from a point attractor to a limit cycle



Strange attractor
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