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(After Poincare was declared the winner, it was discovered that there 
was an important error in his proof. The award was made, after the error 
was corrected. 







1 Nearly-integrable system

Integrable system: 

In an integrable system, there exists a set of f independent analytical 
single-valued constants of motion fi , which are in involution, i.e., their 
Poisson brackets with each other must vanish [fi ,fj ]=0.

We discuss here time-independent Hamiltonians, while the general  
results are usually also valid for time-dependent Hamiltonian systems, 
with suitable modifications.  

I. Chaos in Hamiltonian system

Integrable system
Application of perturbation theory to perturbed system
KAM theorem 
Poincare-Birkhoff theorem
Homoclinic and Heteroclinic points
General properties of chaos



For an integrable system, the time-independent Hamilton-Jacobi 
equation is usually separable into f independent equations and it is 
possible to introduce the action-angle variables. 

Motion in an integrable system is regular, in other words, periodic or 
quasi-periodic. 

Quasi-periodic: periodic in projection to each dimension, but the ratio of 
frequencies of the motion in the related dimension is incommensurable. 

Integrable systems are rare and non-generic. 

But they can be used as a starting point in the study of more general 
systems. 



We have the following picture in action-angle variables:

(1) A trajectory in phase space lies in a subspace characterized by the 
values of the actions I, with I being constants of motion.

(2) Such a subspace is given a name torus (f-dimensional) and 
points on a given torus are labeled by the angle variables. When 
f=2, it has the shape as shown below, which is the surface of a 
“doughnut”,

Winding number

p=ω1 /ω2



Nearly-integrable systems: 

H=H0 +εH1

where H0 is an integrable system and ε is a small quantity. 

This system is not far from an integrable system, therefore, we can 
make use of what we know about the integrable system. 

In particular, the action-angle variables of the integrable system can 
be used as a set of canonical variables in describing the system H. 



Since a nearly-integrable system has a small perturbation, we can 
use perturbation theory in the analytical approach. 

As we know, the point is to find out a new set of canonical variables, 
so that the new Hamiltonian is approximately a function of the new 
momentum only, then the new momentum are nearly constants of 
motion and the system can be solved approximately.  

By the canonical perturbation theory discussed at the end of part II, we 
know that this can be done, when it is possible to introduce a 
generating function in the following way



It is seen that such a generating function does not exist, when 

=0      where

That is, we have the famous problem of small denominators.

Let us take f=2, as an example. Then, this equation means that 
the winding number p is rational, p=r/s. 

Since the frequencies are functions of I, when I changes continuously, 
there is always some I for which the winding number is rational.

The problem becomes serious, when the canonical momenta I are not 
really constants of motion. 



We learn two things from the above analysis by the simple canonical 
perturbation theory:

(1) Take f=2 as an example. Motions in the system H, which are close 
to a torus with rational winding number in the system H0 , called rational 
torus, may be more complicated than those close to irrational torus with 
irrational winding numbers. 

(2) The simple perturbation theory we developed is not enough for a 
rigorous approach to the problem and a more advanced perturbation 
theory is needed. 

The first problem will be addressed by Poincare-Birkhoff theorem, and 
the second by the celebrated KAM theorem. 



2 KAM theorem: irrational winding numbers

The problem is whether it is possible to find new Hamiltonian 
satisfying K=K(I’) locally for some values of winding numbers, so that 
for such winding numbers, the tori are just distorted, but not destroyed.

The answer is yes and is given by KAM theorem. For simplicity, let 
us first discuss f=2 case. 



That is, if the winding number p is far enough from any rational number, 
then, the torus is just distorted, but not destroyed. 

The technique used by KAM is to introduce an optimized perturbation 
theory, other than the canonical perturbation theory we discussed. 

The relation between the two perturbation theories is somewhat similar to 
that between the two rational number approaches to an irrational number 
discussed at the end of this Lecture, i.e., a direct decimal-truncation 
approach and the approach using continued fractions. 

KAM proved that, in the system H=H0 +εH1 , torus of H0 satisfying the 
following condition is only distorted, 

for all integer r and s, where p is the winding number and K is a constant 
depending on ε. K<<1, unless the perturbation is strong. 



10.2.1 Superconvergent  method,

which plays a fundamental role in the proof of KAM theorem.

In the perturbation theory we discussed, the Hamiltonian 

H = H0 + εH1

can be transformed by successive canonical transformations that 
are chosen to increase the order of perturbation by one power in 
every step. Letting Hn be the untransformed part of the Hamiltonian 
after the nth transformation, 

εH1 →ε2H2 →ε3H3 →…εnHn

Kolmogorov showed that successive canonical transformations 
may be chosen such that the order of the perturbation is increased 
by the square of the preceding one for each step

εH1 →ε2H2 →ε4H3 →…εk(n)Hn ,   with k(n)=2n-1

This type of convergence is called superconvergence, or sometimes, 
quadratic convergence. 



3 Poincare-Birkhoff theorem

Tori with rational winding numbers and their structure

Birkhoff finally completed the proof. 

Historical remark:





Poincare’s method is to set further, e.g., q2 =0 and dq2 /dt > 0, and 
study the change of (q1,p1) at discretized time. 

The method is called Poincare surface of section (PSOS). 

q1

p1

q2
dq2 /dt > 0



Since Cε

 

is the curve for which there is no winding, the winding direction 
is to the left below it and to the right above it. 



Combining the above results, we have the following complicated 
structure in PSOS, with self-similarity, as perturbation increases. 



4 Some general properties of chaos

4.1 Lyapunov exponent

------- as a characterization of chaos



Historical remark: 



The purpose is to study the divergence of nearby trajectories. 

Let us consider a flow x(t) in a M-dimensional phase space, which is 
generated by an autonomous first-order system, like the Hamilton’s 
equations in a time-independent Hamiltonian system. 



The separation changes with time, with a Euclidean norm (distance in 
the phase space)



The order of limitation is: First take d(x0 ,t0 ) to zero, then, take t to infinity. 

These are the Lyapunov (characteristic) exponents. Note that 
they are functions of initial position in phase space.  They can be ordered 
by magnitude, 



The largest Lyapunov exponent σ1 is the most important one. 

The Lyapunov exponents are independent on the choice of metric for 
the phase space (Oseledec, 1968). 



4.2 Hierarchy of randomness (stochasticity) 

1. Ergodic system

2. Mixing system

3. K-system

4. C-system

5. Bernoulli system



Ergodicity: A system is said to be ergodic, if the time average of 
an arbitrary function f(q,p) with almost every possible initial states is 
equal to the average over (energy surface in) phase space. 

Where dμ is the invariant measure in the phase space.

The meaning of ergodicity is that almost every trajectory explores all 
the possible regions (on the energy surface) in phase space, with a 
weight proportional to dμ.



Mixing: One may use the following picture to illustrate the concept of 
mixing

(a) Take a shaker that consists of 20% rum and 80% cola, with the 
part of rum representing the initial distribution of the considered 
initial states as “incompressible fluid” in phase space. 

(b) Shaking the shaker for a time long enough, then, every part of 
the shaker (of macroscopic scale), however small, will contain 
“approximately” 20% rum, representing that every part of the phase 
space contains 20% of the trajectories at time t. 

Or one may imagine the dispersion of a drop of ink in a glass of water. 



Mathematical expression

Mixing implies ergodicity, but, the converse is not true. 



K-systems have invariant sets with positive KS (Krylov, Kolmogorov, 
Sinai) entropy. 

It has been proved that KS entropy is the summation of positive 
Lyapunov exponents. 

Therefore, a K-system has positive Lyapunov exponent.

When we speak of a chaotic system, we usually mean a K-system.

We mention that σ1 is not usually the same constant for all stochastic 
regions; distinct, isolated regions of stochasticity generally have  
different values of σ1 .



A C-system, also called Anosov-system, is one which is chaotic and 
is hyperbolic at every point in the phase space (not just on the invariant 
set). 

A Bernoulli system is a system which can be represented as a 
symbolic dynamics consisting of a full shift on a finite number of 
symbols. 



Ergodic system
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Bernoulli system
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II. Chaos in dissipative systems

Attractor 
Area contraction
Bifurcation
Fractal dimension

1 Attractor and bifurcation

In a dissipative system with a N-dimensional phase space, phase 
space volume may shrink to some stable, steady motion on a 
surface with a dimension smaller than N.



Such a surface is usually called “attractor”.

We call a subset X of a phase space an attractor, if

Basin of attraction





Bifurcation



Some types of bifurcation

■

 

Hopf Bifurcation
The transition from a point attractor to a limit cycle



Strange attractor
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