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Ergodicity: A system is said to be ergodic, if the time average of
an arbitrary function f(qg,p) with almost every possible initial states is
equal to the average over (energy surface in) phase space.

{ ‘;' _TI—IE:T] fqp dt
()= j Fg,p)d
M

Where d v is the invariant measure in the phase space.

d-"L-“':-;.,-

The meaning of ergodicity is that almost every trajectory explores all
the possible regions (on the energy surface) in phase space, with a
weight proportionalto d 1 .
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Mixing: One may use the following picture to illustrate the concept of
mixing

Imagine the dispersion of a drop of ink in a glass of water,

or the following procedure.

(a) Take a shaker that consists of 20% rum and 80% cola, with the
part of rum representing the initial distribution of the considered
Initial states as “incompressible fluid” in phase space.

(b) Shaking the shaker for a time long enough, then, every part of
the shaker (of macroscopic scale), however small, will contain
“approximately” 20% rum, representing that every part of the
phase space contains 20% of the trajectories at time t.




Mathematical expression

_ An area preserving map M of a compact region S is
mixing on S, if given any two subsets o and o’ of S,
where o and ¢’ have positive Lebesgue measure (pr, (o) >

O?HL (OJ) > O):r then:

uilo’ "M (0)]

= lim

pr(S)  m—ee  pp(o’)




K-systems have invariant sets with positive KS (Krylov, Kolmogorov,
Sinai) entropy.

It has been proved that KS entropy is the summation of positive
Lyapunov exponents.

h;f — Z a;

a; >0

Therefore, a K-system has positive Lyapunov exponent.

When we speak of a chaotic system, we usually mean a K-system.

We mention that o , is not usually the same constant for all stochastic
regions; distinct, isolated regions of stochasticity generally have
different values of o ;.
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A C-system, also called Anosov-system, is one which is chaotic and

IS hyperbolic at every point in the phase space (not just on the invariant
set).

A Bernoulli system is a system which can be represented as a

symbolic dynamics consisting of a full shift on a finite number of
symbols.
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An approach proposed by Schrodinger:

Relating o _,, to the reduced density matrix o s of the system S, which is
weakly coupled to a huge environment.

PS=Tr 0 i
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Figure 2 Bounding deviations from the average using Levy’s lemma. Levy’s
lemma'™ is a result in high-dimensional geometry, which states that for almost all
points ¢» on a hypersphere of dimension ¢ (where d>> 1) and area V[{¢}], and all
functions £ that do not vary too rapidly (| V| < 1), fi¢b) is approximately equal fo its
mean value {f). The diagram shows the case d = 2, in which the hypersphere
corresponds to the surface of a normal sphere. The shaded region corresponds to
the maximum area V[{¢|fl¢) — () = €}] in which fis e greater than average.
Although this area is relatively large for d =2, when d becomes large, the relative
size of this region compared with the entire hypersphere becomes exponentially
small. Specifically, Levy’s lemma states that V[{¢|flp)— (f) = €}]/V[[#}] <

4 exp(—(1/97°)(d+1)€%).




Levy’'s lemma: Let f : S — R be a real-valued
function on a (D — 1)-dimensional Euclidean sphere S
(embedded in a D-dimensional Euclidean space), with
A= sup,, ., |[(r1) = f(x2)|/ , then, for a uni-
formly random point = € S,

Tl — €9

Pr,{f(z) > (f) + €} < 2exp[-De2/(97*A2)],  (16)

where Pr means probability and (f) is the average of f
over the sphere. Thus, |f(z) — () S aAD~Y/2 for a
typical point z, where a is a number determined by the
accuracy required.
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S.Goldstein, et al, Phys.Rev.Lett.
96, 050403 (2006).
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Canonical Typicality

Sheldon Goldstein,l’* Joel L. Lebowitz,l’* Roderich ’I‘l.lml.llka,2’¢ and Nino Zangh13’§

Consider a system S and a huge environment &
H=H"+H'+H®.

The interaction, described by H?, is assumed to be weak.
Normalized eigenstates of the self-Hamiltonian H* with
elgenenergies Eg are denoted by Eé) and normalized
eigenstates of the environment Hamiltonian H¢ with
elgenenergies E,f are denoted by Ef ).

To use typicality to derive useful results, 6 E should not be too small.
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a subspace in the Hilbert space of the environment
H(-f?)/ 2, which is spanned by |[E4> with energies lying in
Y

the region [E-E> , ,E-E> , + 6 E].

HA: s KT SHHilbert 25 [a] 4E 5 .

e
[ET >~EZET)

Ht, Hse ~ Ha




) NZ [ESY|DE), Real and imaginary
parts of C,, are

Gaussian random
where N is the normalization coefficient and numbers with mean

zero and variance 1/2
|BE) Z C;.|ES) with |ES ) € HLE).
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(5) #4k (thermalization) HLH|. R E L SETH

Deutsch and Srednicki independently proposed the third scenario,
which, following Srednicki, we call the “eigenstate thermalization hypo-
thesis (ETH)'*"’: the expectation value <‘P9,_|A|Y“g> of a few-body
observable A in an energy-E, eigenstate |¥,) of the hamiltonian of a
large, interacting many-body system equals the thermal (microcano-
nical in our case) average (A)icrocan( E,) Of A at the mean energy E,

(W, |AlP,)=(A E,)

>micmcan (

12. Deutsch, J. M. Quantum statistical mechanics in a closed system. Phys. Rev. A 43,
2046-2049 (1991).
13.  Srednicki, M. Chaos and quantum thermalization. Phys. Rev. E 50, 888-901

(1994).
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Thermalization and its mechanism for generic
isolated quantum systems

Marcos Rigol'?, Vanja Dunjko!? & Maxim Olshanii?

O—O—0O0—0 To study relaxation of an isolated quantum system, we considered
I I g the time evolution of five hard-core bosons with additional weak
nearest-neighbour repulsions, on a 21-site, two-dimensional lattice,
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A quantum Newton's cradle

Toshiya Kinoshita', Trevor Wenger' & David S. Weiss'
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Figure 3| The expanded momentum distribution, f(p,,), for three values
0y The curves are obtained by transversely tntegrating absorption
images like those in Fig, 2. The spatial position, z,is approximately
proportional to the expanded momentum, p. The vertical scale is
arbitrary, but consistent among the curves. a,y, = 4 by y, = 1; and
¢y, = 0.62. The highest (green) curve in cach setis the average of fip,,

from the first cycle, that is, from the images like those 1n Fig. 2. The lower
curves in each set are f(p ) taken at single times, £, after the atoms have

ephased: 3, 7 = 34ms, t= 157 (blue) and 307 (red); b, 7= 13 ms, t= 137

(blue) and 407 (red); and ¢, 7= 13ms, £ = 157 (blue) and 407 (red), The
changes in the distribution with time are attributable to known loss and
heating. (See Supplementary Information fora discussion of the fine spatial
structure 1n these curves,)
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where 7,5 = o if BY < Eg and a5 = [ if ES > Eg .
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What is an equilibrium state of a system S?
The canonical typicality approach suggests:

An equilibrium state of a subsystem is described by the reduced
density matrix given by a typical vector in an appropriate energy
eigen-subspace of the Hilbert space of the total system.

——unnecessary to consider an ensemble.
BF I F2: i 28 2R B8

How could we explain the fact that an equilibrium state behaves
like an attractor”?

Because, typical vectors give almost identical reduced density
matrices.
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Thank you!
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