统计物理基础的近期进展、以及小 量子系统的统计性质

王文阁

中国科学技术大学,近代物理系

概述

- (1) 经典统计力学基础与混沌现象
- (2) 量子统计基础研究中遇到的问题
- (3) 对微正则系综适用性的一个新理解
- (4) 从微正则系综到正则系综
- (5) 热化——系统的趋平衡过程与ETH
- (6) 非极弱耦合下小量子系统的统计描述

复杂程度

经典统计力学基础与混沌现象

经典统计物理的等几率原理:

具有一定能量的孤立系统, 其统计性质由微正则系综描述。

微正则系综:系统以同样的几率处于其能量面上的每个态。

实验根据:该原理的预言与热力学一致,且其对涨落的预言也与实验结果一致。

理论论证与依据: —— 动力学系统的混沌性质(波尔兹曼—分子混沌)。

平衡态——遍历性 (ergodic)

扩散过程——混合性 (mixing)

热传导——混沌性(chaotic)

Ergodicity: A system is said to be **ergodic**, if the time average of an arbitrary function f(q,p) with almost every possible initial states is equal to the average over (energy surface in) phase space.

$$\langle f \rangle_t = \lim_{T \to \infty} \frac{1}{T} \int_0^T f(q, p) dt$$
$$\langle f \rangle_{ps} = \int_{\mathcal{M}} f(q, p) d\mu$$

Where $d\mu$ is the invariant measure in the phase space.

The meaning of ergodicity is that almost every trajectory explores all the possible regions (on the energy surface) in phase space, with a weight proportional to d μ .

对平衡态的描述(长时间一致的行为)

—— 对应动力学系统的遍历性(ergodicity)

Mixing: One may use the following picture to illustrate the concept of mixing

Imagine the dispersion of a drop of ink in a glass of water, or the following procedure.

- (a) Take a shaker that consists of 20% rum and 80% cola, with the part of rum representing the initial distribution of the considered initial states as "incompressible fluid" in phase space.
- (b) Shaking the shaker for a time long enough, then, every part of the shaker (of macroscopic scale), however small, will contain "approximately" 20% rum, representing that every part of the phase space contains 20% of the trajectories at time t.

Mathematical expression

An area preserving map **M** of a compact region S is _____ mixing on S, if given any two subsets σ and σ' of S, where σ and σ' have positive Lebesgue measure $(\mu_L(\sigma) > 0, \mu_L(\sigma') > 0)$, then,

$$\frac{\mu_L(\sigma)}{\mu_L(S)} = \lim_{m \to \infty} \frac{\mu_L[\sigma' \cap \mathbf{M}^m(\sigma)]}{\mu_L(\sigma')}$$

Mixing implies ergodicity, but, the converse is not true.

对扩散过程的描述——需要混合性(mixing)性质(Krylov)

K-systems have invariant sets with positive KS (Krylov, Kolmogorov, Sinai) entropy.

It has been proved that KS entropy is the summation of positive Lyapunov exponents.

$$h_k = \sum_{\sigma_i > 0} \sigma_i$$

Therefore, a K-system has positive Lyapunov exponent.

When we speak of a chaotic system, we usually mean a K-system.

We mention that σ_1 is not usually the same constant for all stochastic regions; distinct, isolated regions of stochasticity generally have different values of σ_1 .

正常热传导,满足傅里叶定律。

其机制——通常与系统动力学运动的混沌性(chaotic)有关。

(注: 言"通常",是因为存在反例。)

A C-system, also called Anosov-system, is one which is chaotic and is hyperbolic at every point in the phase space (not just on the invariant set).

A Bernoulli system is a system which can be represented as a symbolic dynamics consisting of a full shift on a finite number of symbols.

- (2) 量子统计力学基础研究中
- ——希尔伯特空间的性质所带来新问题

- (1) 非简并情况下,一个能级仅对应一个状态,因此,无法谈论能量面上的各态遍历。
- (2) 系综的数学描述为密度矩阵,为算子,在任何基矢上有对角与非对角元。

能量本征态

量子系统的描述: 大系统 = 子系统+环境

微正则描述: $\rho_{\text{mic}} = \Sigma_{\eta} | \mathsf{E}^{\mathsf{T}}_{\eta} > < \mathsf{E}^{\mathsf{T}}_{\eta} |, \quad | \mathsf{E}^{\mathsf{T}}_{\eta} > \in \mathcal{H}_{\delta E}$

 $\mathcal{H}_{\delta E}$: 能量在 $[E, E + \delta E]$ 内的大系统能量本征态所张子空间.

对于子系统的正则描述: $\rho_{\text{can}} = Z^{-1}e^{-\beta H^S}$

An approach proposed by Schrodinger:

Relating $\,\rho_{\,\,\text{can}}$ to the reduced density matrix $\,\,\rho_{\,\,}^{\,\,\text{s}}$ of the system S, which is weakly coupled to a huge environment.

$$\rho$$
 S=Tr $_{\mathcal{C}}\rho$ mic

(3) 对微正则系综适用性的一个新理解:

就描述子系统的性质而言,大系统微正则系综的预言,与其(希尔伯特空间的)能量壳子空间 $\mathcal{H}_{\delta E}$ 中大多数矢量的预言基本一样。

S.Popescu, A.J.Short, and A.Winter, Nature Physics **2**, 754 (2006).

ARTICLES

Entanglement and the foundations of statistical mechanics

SANDU POPESCU^{1,2}, ANTHONY J. SHORT^{1*} AND ANDREAS WINTER³

$$\rho$$
 S=Tr $_{\mathcal{C}}\rho$ mic

主要结果:

$$\rho^S \simeq \rho_{\delta E}^S$$

$$\rho_{\delta E}^{S} = \text{Tr}_{\mathcal{E}} |\Psi_{\text{tv}}^{\delta E}\rangle \langle \Psi_{\text{tv}}^{\delta E}|$$

 $|\Psi_{\mathrm{ty}}^{\delta E}\rangle$ 是 $\mathcal{H}_{\delta E}$ 中的一个典型态矢量。

$$|\Psi_{\mathrm{ty}}^{\delta E}\rangle = \mathcal{N}_{\delta E}^{-1} \sum_{\eta \in \Gamma_{\delta E}} C_{\eta} |E_{\eta}^{\mathcal{T}}\rangle$$

 $|E_{\eta}^{\mathcal{T}}\rangle$ 为大系统能量本征态。 C_{η} 为高斯无规数。

所用数学性质: Levy引理

Figure 2 Bounding deviations from the average using Levy's lemma. Levy's lemma¹⁴ is a result in high-dimensional geometry, which states that for almost all points ϕ on a hypersphere of dimension d (where $d\gg 1$) and area $V[\{\phi\}]$, and all functions f that do not vary too rapidly ($|\nabla f|\leq 1$), $f(\phi)$ is approximately equal to its mean value $\langle f\rangle$. The diagram shows the case d=2, in which the hypersphere corresponds to the surface of a normal sphere. The shaded region corresponds to the maximum area $V[\{\phi|f(\phi)-\langle f\rangle\geq\epsilon\}]$ in which f is ϵ greater than average. Although this area is relatively large for d=2, when d becomes large, the relative size of this region compared with the entire hypersphere becomes exponentially small. Specifically, Levy's lemma states that $V[\{\phi|f(\phi)-\langle f\rangle\geq\epsilon\}]/V[\{\phi\}]\leq 4\exp(-(1/9\pi^3)(d+1)\epsilon^2)$.

Levy's lemma: Let $f: \mathbb{S} \to \mathbb{R}$ be a real-valued function on a (D-1)-dimensional Euclidean sphere \mathbb{S} (embedded in a D-dimensional Euclidean space), with $\lambda = \sup_{x_1,x_2} |f(x_1) - f(x_2)|/|x_1 - x_2|$, then, for a uniformly random point $x \in \mathbb{S}$,

$$\Pr_{x}\{f(x) > \langle f \rangle + \epsilon\} \le 2\exp[-D\epsilon^{2}/(9\pi^{3}\lambda^{2})], \quad (16)$$

where Pr means probability and $\langle f \rangle$ is the average of f over the sphere. Thus, $|f(x) - \langle f \rangle| \lesssim a\lambda D^{-1/2}$ for a typical point x, where a is a number determined by the accuracy required.

(4) 从量子微正则系综到正则系综 (极弱耦合情况)

从量子微正则描述到正则描述推导中所遇到的困难。

经典情况(见诸教科书):

对子系统的描述 —— 系统处于各可能状态的几率。

从微正则描述到正则描述的推导 ——用到近似 $e^{S(E-E_i^{(S)})} \approx e^{S(E)-\beta E_i^{(S)}} \sim e^{-\beta E_i^{(S)}}$ 相当于假设环境的态密度局部地随能量按指数增长。

量子情况中出现的问题:

对子系统的描述——系统的约化密度矩阵。 ρ S=Tr $_{\mathcal{C}}$ ρ micro

推导中所遇到的问题——证明子系统的约化密度矩阵在系统能量本征基矢上为对角的。

PRL 96, 050403 (2006)

PHYSICAL REVIEW LETTERS

Canonical Typicality

Sheldon Goldstein, 1,* Joel L. Lebowitz, 1,† Roderich Tumulka, 2,‡ and Nino Zanghì 3,8

Consider a system S and a huge environment $\mathcal E$

$$H = H^S + H^I + H^{\mathcal{E}}.$$

The interaction, described by H^I , is assumed to be weak. Normalized eigenstates of the self-Hamiltonian H^S with eigenenergies E^S_{α} are denoted by $|E^S_{\alpha}\rangle$, and normalized eigenstates of the environment Hamiltonian $H^{\mathcal{E}}$ with eigenenergies $E^{\mathcal{E}}_i$ are denoted by $|E^{\mathcal{E}}_i\rangle$.

To use typicality to derive useful results, δ E should not be too small.

极弱互作用情况。

考虑子空间

$$\mathcal{H}_d = \bigoplus_{\alpha} |E_{\alpha}^S\rangle \otimes \mathcal{H}_{\alpha}^{(\mathcal{E})}$$

 $\mathcal{H}_{lpha}^{(\mathcal{E})}$

a subspace in the Hilbert space of the environment \mathcal{E} , which is spanned by $|E^{\mathcal{E}}|$ with energies lying in the region $[E-E^{S}_{\alpha},E-E^{S}_{\alpha}+\delta E]$.

其维数远大于S的Hilbert空间维数。

$$|\mathbf{E}^{\mathsf{T}}_{\mathsf{\eta}}> \approx |E_{\alpha}^{S}E_{i}^{\mathcal{E}}\rangle$$
 极弱耦合

因此,
$$\mathcal{H}_{\delta E} \simeq \mathcal{H}_d$$

\mathcal{H}_d 中的典型态矢量

$$|\Psi\rangle = \mathcal{N} \sum_{\alpha} |E_{\alpha}^{S}\rangle |\Phi_{\alpha}^{\mathcal{E}}\rangle,$$

where \mathcal{N} is the normalization coefficient and

$$|\Phi_{\alpha}^{\mathcal{E}}\rangle = \sum_{i} C_{j_{\alpha}} |E_{j_{\alpha}}^{\mathcal{E}}\rangle \text{ with } |E_{j_{\alpha}}^{\mathcal{E}}\rangle \in \mathcal{H}_{\alpha}^{(\mathcal{E})}.$$

Real and imaginary parts of $C_{j\alpha}$ are Gaussian random numbers with mean zero and variance 1/2

给出相应的约化密度矩阵 ho_d^S 。

Goldstein 等人工作的主要结果:

 \mathcal{H}_d 中的典型态矢量所给出的约化密度矩阵 ho_d^S

- (1) 在系统S的能量本征态基矢上为对角的,
- (2) 其对角元正比于 $\mathcal{H}_{\alpha}^{(\mathcal{E})}$ 子空间的维数。

假设环境的态密度局部地随能量按指数增长

 ρ_d^S 为正则分布

$$\rho^S \simeq \rho_{\delta E}^S \quad \iint \mathcal{H}_{\delta E} \simeq \mathcal{H}_d^{\dot{G}}$$

$$\rho_{\rm can} = Z^{-1} e^{-\beta H^S}$$

大系统微正则分布所给的ρS有正则分布形式。

更实际的弱互作用强度情况

大系统的Hilbert空间的维数,随系统大小按指数增加。

因此,未扰动(大)系统的近邻能级间距,随系统大小按指数减小。

(大系统的能量随系统大小最多按幂次增长)

固定强度的弱互作用下,当环境足够大, $|\mathbf{E}^{\mathsf{T}}_{\eta}\rangle \neq |E_{\alpha}^{S}E_{i}^{\mathcal{E}}\rangle$ $\mathcal{H}_{\delta E} \simeq \mathcal{H}_{d}$ 不再成立,Goldstein等人的推导不适用。

Riera, Gogolin, and Eisert (PRL,108,080402 (2012))证明,互作用足够弱时,约化密度矩阵仍然为正则分布。

(5) 热化(thermalization)机制、系统的趋平衡过程与ETH

Deutsch and Srednicki independently proposed the third scenario, which, following Srednicki, we call the 'eigenstate thermalization hypothesis (ETH)'^{12,13}: the expectation value $\langle \Psi_{\alpha} | \hat{A} | \Psi_{\alpha} \rangle$ of a few-body observable \hat{A} in an energy- E_{α} eigenstate $|\Psi_{\alpha}\rangle$ of the hamiltonian of a large, interacting many-body system equals the thermal (microcanonical in our case) average $\langle A \rangle_{\text{microcan}}(E_{\alpha})$ of \hat{A} at the mean energy E_{α}

$$\langle \Psi_{\alpha} | \hat{A} | \Psi_{\alpha} \rangle = \langle A \rangle_{\text{microcan}} (E_{\alpha})$$

- 12. Deutsch, J. M. Quantum statistical mechanics in a closed system. *Phys. Rev. A* **43**, 2046–2049 (1991).
- 13. Srednicki, M. Chaos and quantum thermalization. *Phys. Rev. E* **50**, 888–901 (1994).

对ETH的理解:

若能量本征态可视为典型态,则ETH是Levy lemma的特例。

LETTERS

Thermalization and its mechanism for generic isolated quantum systems

Marcos Rigol^{1,2}, Vanja Dunjko^{1,2} & Maxim Olshanii²

To study relaxation of an isolated quantum system, we considered the time evolution of five hard-core bosons with additional weak nearest-neighbour repulsions, on a 21-site, two-dimensional lattice,

LETTERS

A quantum Newton's cradle

Toshiya Kinoshita¹, Trevor Wenger¹ & David S. Weiss¹

热化:几十年前即有人研究,近来受到很多关注。

——实验、数值 计算方面有许多 进展。

Figure 3 | **The expanded momentum distribution,** $f(p_{ex})$, **for three values** of γ_0 . The curves are obtained by transversely integrating absorption images like those in Fig. 2. The spatial position, z, is approximately proportional to the expanded momentum, p_{ex} . The vertical scale is arbitrary, but consistent among the curves. \mathbf{a} , $\gamma_0 = 4$; \mathbf{b} , $\gamma_0 = 1$; and \mathbf{c} , $\gamma_0 = 0.62$. The highest (green) curve in each set is the average of $f(p_{ex})$ from the first cycle, that is, from the images like those in Fig. 2. The lower curves in each set are $f(p_{ex})$ taken at single times, t, after the atoms have dephased: \mathbf{a} , $\tau = 34$ ms, $t = 15\tau$ (blue) and 30τ (red); \mathbf{b} , $\tau = 13$ ms, $t = 15\tau$ (blue) and 40τ (red); and \mathbf{c} , $\tau = 13$ ms, $t = 15\tau$ (blue) and $t = 15\tau$ (blue) and

$$\mathcal{H}_d = \bigoplus_{\alpha} |E_{\alpha}^S\rangle \otimes \mathcal{H}_{\alpha}^{(\mathcal{E})}$$

(6) 非极弱耦合下小量子系统的统计描述

回顾 前述 思路

$$\rho \stackrel{\mathsf{S}}{=} \mathsf{Tr}_{\mathcal{C}} \rho_{\mathsf{mic}} \approx \mathcal{H}_{\delta E}$$
中典型矢量所给约化密度矩阵 $\mathcal{H}_{\delta E} \simeq \mathcal{H}_{d}^{\dot{}}$

 \mathcal{H}_d 中典型矢量所给约化密度矩阵 $\approx \rho_{\rm can} = Z^{-1} e^{-\beta H^S}$

非极弱互作用下, $|\mathbf{E}^{\mathsf{T}}_{\eta}> \neq |E_{\alpha}^{S}E_{i}^{\mathcal{E}}\rangle$ $\mathcal{H}_{\delta E} \simeq \mathcal{H}_{d}$ 不再成立。

$$\mathcal{H}_d = \bigoplus_{\alpha} |E_{\alpha}^S\rangle \otimes \mathcal{H}_{\alpha}^{(\mathcal{E})}$$

我们的处理方法:

(i) 引入系统S的重整化的自哈密顿量,转动能量本征矢,使新的 \mathcal{H}_d 接近于 $\mathcal{H}_{\delta E}$

$$H^{SR} = H^{S0} + H_S^I, \quad H^{IR} = H^{I0} - H_S^I,$$

(ii)假设系统S仅与环境的很小部分有直接的相互作用。

具体手段:

减小H在 $|E_{\alpha}^{S}E_{i}^{\mathcal{E}}\rangle$ 基上的非对角元,使 $\mathcal{H}_{d}^{R} \doteq \mathcal{H}_{\delta E}$

基本结果:

系统S的统计描述为由重整化哈密顿量HSR所给出的正则描述。

$$H_S^I = \sum_{\alpha\beta} (H_S^I)_{\alpha\beta} |E_\alpha^S\rangle \langle E_\beta^S|,$$

$$(H_S^I)_{\alpha\beta} \simeq \langle H_{\alpha\beta}^{I0} \rangle_{\gamma_{\alpha\beta}}$$

where $\gamma_{\alpha\beta} = \alpha$ if $E_{\alpha}^{S} < E_{\beta}^{S}$ and $\gamma_{\alpha\beta} = \beta$ if $E_{\alpha}^{S} > E_{\beta}^{S}$.

 $\langle H_{\alpha\beta}^{I0} \rangle_{\alpha}$ 是 $H_{\alpha\beta}^{I} \equiv \langle E_{\alpha}^{S} | H^{I} | E_{\beta}^{S} \rangle$ 在子空间 $\mathcal{H}_{\alpha}^{(\mathcal{E})}$ 中的期待值的平均值。

特例: 互作用哈密顿量为直积形式 $H^{I0} = \epsilon K^{S} K^{A}$ (比如自旋情况)

$$\begin{split} \langle H_{\alpha\beta}^{I0} \rangle_{\gamma} &= \epsilon K_{\alpha\beta}^{S} \langle K^{A} \rangle_{\gamma} \\ H^{SR} &\approx H^{S0} + \epsilon \overline{K^{A}} K^{S} + \epsilon \sum_{\alpha\beta} \Delta K_{\alpha\beta}^{A} K_{\alpha\beta}^{S} \; |E_{\alpha}^{S} \rangle \langle E_{\beta}^{S}|, \end{split}$$

where $\overline{K^A}$ is the average of $\langle K^A \rangle_{\gamma}$ over γ and $\Delta K_{\alpha\beta}^A = \langle K^{\mathcal{E}} \rangle_{\gamma_{\alpha\beta}} - \overline{K^A}$.

- (1) ε足够小,得到通常的正则描述
- (2) $\langle K^A \rangle_{\gamma}$ 为常数,则 $\Delta K_{\alpha\beta}^A \simeq 0$

$$H^{SR} \approx H^{S0} + \epsilon \overline{K^A} K^S.$$

 $\overline{K^A}$ 相当于环境所产生的经典场。

例如在外磁场中的单自旋, $-\mu \mathbf{s} \cdot \mathbf{B}$ 一般被视为自哈密顿量的一部分

统计力学基础中未解决问题:

- (1) 趋平衡过程,即约化密度矩阵趋向于正则分布的过程。(热化)
- (2) 与环境有非极弱耦合情况下,系统的统计描述。
- (3) 局域平衡系统的微观描述。
- (4)远离平衡态的微观动力学描述。

(4) 启示、以及对平衡态性质(本质?)的一种新理解

What is an equilibrium state of a system S?

The canonical typicality approach suggests:

An equilibrium state of a subsystem is described by the reduced density matrix given by a typical vector in an appropriate energy eigen-subspace of the Hilbert space of the total system.

—unnecessary to consider an ensemble.

暂时摆脱系综框架

How could we explain the fact that an equilibrium state behaves like an ``attractor"?

Because, typical vectors give almost identical reduced density matrices.

启示

建立远离平衡态的普遍理论所遇到的关键难题之一:

如何将统计描述与动力学描述更协调、自然地统一起来?

前述理解:平衡态统计理论的成功,可能部分根植于高维线性空间中典型态的某些数学性质。

这为描述子系统非平衡态的性质预留了空间。

- (1) 大系统若处于非典型态 —— 有非平凡的动力学演化。
- (2) 若在某子空间中的分量有典型态的特征

—— 可部分应用统计描述。

该新思路在未来几(十几)年会有效推动对非平衡态的理解吗?

Thank you!