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(1) = FFH4% Quantum phase transition (QPT)
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Coleman and Schofield, Nature
433, 226 (2005).

Figure 2 Schematic illustration of a quantum critical point showing the phase
diagram (a) and the growth of droplets of quantum critical matter near the quantum
critical point (b). a, Schematic phase diagram near a quantum critical point.
Quantum critical points distort the fabric of the phase diagram creating a ‘V-shaped’
phase of quantum critical matter fanning out to finite temperatures from the
quantum critical point. b, As matter is tuned to quantum criticality, ever-larger
droplets of nascent order develop. On length-scales greater than these droplets,
electrons propagate as waves. Inside the droplet, the intense fluctuations radically
madify the motion of the electron, and may lead to it breaking up into its constituent
spin and charge components. Physics inside the V-shaped region of the phase
diagram (a) probes the interior of the quantum critical points (D), whereas the
physics in the normal metal (N) or antiferromagnet (&) reflects their exterior. If, as we
suspect, quantum critical matter is universal, then no information about the
microscopic nature of the material penetrates into the droplets. Making an analogy
with a black hole, the passage from non-critical, to critical quantum matter involves
crossing a ‘material event horizon'. Experiments that tune a material from the
normal metal past a quantum critical point force electrons through the ‘horizon” in
the phase diagram, into the interior of the quantum critical matter, from which they
ultimately re-emerge through a second horizon on the other side into a new universe
of magnetically ordered matter,
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Equilibrium and non-equilibrium regions

.
T: time of interest o | o |
_ _ equilibrium region equilibrium region
T,: relaxation time.
S D /
M Al ) A

Unitary dynamics should be considered

e=AN =N 0=XN =X, AA=X— X\, n=¢/AN.




Survival probability (SP): in the non-equilibrium region
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W)

by

0 t
Wo) = [0x): the GS of H(})

Survival probability

M(t) = |(Wo|e HO/R ) |




H.T.Quan et al., Phys.Rev.Lett. 96, 140604 (2006)
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(a) 0 0.0 Our problem:

What is the decaying law of SP at QPT
and whether it may reveal some
characteristic properties of QPT?




A type of QPT that allows a semiclassical approach

The ground level has E,
Infinite degeneracy at the
critical point

N

For example, due to avoided :
level crossings of infinite levels. ’ >

(1) Density of states at the ground level,
p(A)= c©owhen A = A .




For any fixed small value of | A - A’|, the overlap
|<0, |0, >|% usually decreases significantly when A’

approaches A .. ™

E = (0,|H(N)|0,) may be in a relatively “high” energy

region in the system H( A’).
a

The semiclassical theory may be applicable in the
study of the survival probabillity,

when A’ s sufficiently close to A .
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SP as a special case of quantum Loschmidt echo (Peres fidelity)

Quantum Loschmidt echo or (Peres) fidelity is a measure of
the stablility of quantum motion under small perturbation in
the Hamiltonian,

My (t) = |m(t)?
m(t) = (Wolexp(iH (N)t/h)exp(—iH(N)t/h)|Uy).

For sufficiently small ¢,

H(N)~ H(A) + €V, where V = %

11




m(t) is the overlap of the evolution of the same initial state under
two slightly different Hamiltonians.

Initial
state ™
M(t)




4

25 S 0 (1) B A R B

An initial wave function in a d-dimensional configuration
space, v ,(r,), propagated by the semiclassical Van
Vleck-Gutzwiller propagator,

Final
state
e FAH L
Yy . — Initial state
TR

\

K(r,t;h,t) =(r,t]n,t)=C > e*"" All classically
P permissible
trajectories 13
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where K. (r.ry:1)=2.K.(r,ry:1), with

Ss(l'al'ﬂ;f):fgdf’ﬁﬂ
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Consider an initial Gaussian wave packet centered at 1,
with dispersion & and mean momentum p,,.

1 \d/4 - =32
dlﬂ(r[])_(L) E'Kp|:iﬁliﬂ'rﬂ—(rﬂ I‘n)]_

mé h 28
For a & small enough,
' ‘fz \ di2 j
m(t) = my (1) = (a-rﬁ.z ) jdr? C, exp[i&Ss(r,?g:r)

5“ 2 R.A. Jalabert and H.M. Pastawski,
( PD) Phys. Rev. Lett. 86, 2490 (2001).

r
AS(r.ry;1) = Ef di'Vr(t')] s the action difference along
0

nearby trajectories in the two systems. .




M(t) expressed as an integral of p,,

Changing variables r—p,,

Mg (t) o (r-wz)_dfg / dpg exp !EﬁS —

h

A S= ﬂS(p[},?[}r) w

hi/é

(po — Po)?

?_L? 2
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Loschmidt echo decay in regular systems with

In a very low energy region, the classical counterpart of
the system (if exists) is usually a regular system.

The ground state has approximately a Gaussian shape.

(The main results to be derived do not depend on the Gaussian shape.)

(1) d=1. AS = eUt. U=Viitial point for t<<T
U=t fnT Vi(t)dt fort>T

T Is the period of the classical motion.

17




d

1 WGW, G. Casati, and B. Li, Phys. Rev. E 75, 016201 (2007).

Expanding U to the second order term in p,,

2c —2(wol't)?
My(t) ~ ‘ — exp { (u';r — ) 5 }
\/4 4 ('1{?2{}'[;”"]5)2 4 + ('LU olU ”t}

- - .:.'3. r .
where 0 = €/h, U’ = gi, U = "E U ¢~ 1is a constant,
Po P

and tilde means evaluation at pg

For short times, it has an initial Gaussian decay; for
long times, it has a 1/t decay.

18



WGW, P.Qin, L.He, and P.Wang, Phys. Rev. E, 81, 016214 (2010)

Very large d.

(2) For a very large d, there are many different
frequencies, hence, T is very large and t<<T.

For times of interest, the classical motion looks random
due to the many different frequencies.

M, (t) ~ | [ dASeAS/EP(AS)|’

where P( A S) is the distribution of A S and is close to a
Gaussian distribution for times much shorter than T.

Mo(t) >~ e~ Ks®t/h° ith K, ~ %{U“ th] IV dtx?x

Similar to the chaotic case discussed in N.R.Cerruti and S.Tomsovic, Phys.
Rev.Lett. 88, 054103 (2002). 19




Summary of

semiclassical predictions for the decay law of SP at QPT.

For systems with classical counterparts in the very low
energy region, the SP may have two qualitatively
different decays for relatively long times:

Power law decay may appear for d=1.

Exponential decay for sufficiently large d.

20



Numerical study (1): single-mode Dicke model

Model: Interaction of a single bosonic mode and a
collection of N two-level systems (collective motion).

. )\ . h: 1
H =woJ, +wa'a+ —=(a" +a)(Jy + J_).

v N
In the limit N — oc, the system undergoes a QPT
at A\, = % wwqg, with a normal phase for A < A, and a

super-radiant phase for A > A_.

_ T
H(A) = Zk:LQ EEACLACEA T 0
C. Emary and T. Brandes, Phys. Rev. E 67, 066203 (2003).

21



Properties of Dicke model at QPT

In the normal phase,

1 .
E;QE__A — §{w2 —|—u.:§ + (—1);‘“\/(;&% — w?)2 4+ 16A2wwyq |}

At the critical point,

e1n, = 0 and egy = Jw? + wi.

Therefore, at the QPT, effectively the system has a
classical counterpart with d=1.

E1y = ;—1|.ﬁ/‘\|1‘!2

i

1‘11 _ Q(Lr.?-;r.?ﬂja‘q

22



Properties of Dicke model at QPT

T~ |AXN™" with v = 1/2.

AQ
Vb = =5~ (chcn +2(cly)? + Qcﬂ) ~ |AX|TY?

' ~ [ANT1e?

23



a5, a2
M, (t) ~ 2c exp { 2(wolU’t) }
)2

Numerical results in Dicke model T~ |ANLe2
T T T T T T T T IU.DE; T T T T
o — i
-1 - i
P 08 1.0 |
0.00
=
2l e
-3 -0.104 .
= 015
o -0.20;
. -0.25] -
4 = .0.30
= .0.35]
-0.40 -
-5 0.0 0.2 0.4 0.6 0.8 1.0 1.2 14 16 -
£x10
[ [ [ T [ [ T [ [ [ [ [

Int
in the normal phase of Dicke model. Parameters w = wo = 1.
e = 1072, and § = —10™™ with m = 4.5,6,7.8 from top
to bottom. The solid curve is a fitting curve of the form in
Eq. (4), having a Gaussian decay followed by a 1/t decay.*




Numerical study (2): 1-dimensional Ising chain

Model: A 1-dimensional Ising chain in a transverse field.

N
H(\) ==Y 0704+ Ao}
i=1

Using Jordan-Wigner and Bogoliubov transformations,
the Hamiltonian can be diagonalized,

H\) =Y, en(blbe—1/2)

er = 2v/1 + A2 — 2 cos(ka) Jo — 2mm

aN

with m=-M, 1-M, ...,M, N=2M+1

25




Properties of Ising chain at QPT

In the large N limit, for fixed m (low energy region),

€1 = 2|&}\| A, = 1
] A — cos ka : 1. sinka
[y = —— (bp.b_1.—bl b’

having no singularity.

26



Classical counterpart of Ising chain in low energy region

For A=A _, large N, and relatively small m,
er >~ dmw|\m|/N

Due to the linear dependence of e, on m, the method of
bosonization can be used to express the fermionic states

by, - - by [vacuum)
In terms of bosonic modes.

The system has a classical counterpart with a large d in
the low energy region.

27




Numerical results in Ising chain

D = T T T T
] 1.0
-1 08| o o o o 5 o o o o
24 0.6 7]
y . % 04 o uwunnnnnaal
-3 B
] 0.2 ]
= 44 4 TR 00—
c | "%, 00 02 04 06 08 10
54 - = 4 i
z, 5x 10
£
-6 - E
7 01 T
1 12 1 -0 -9
84 In|g|
0 10 20 30 40 50

My(t) = e~ Kee™t/P




Two other models

(3) LMG model:
H = —%(SE +7S5;) = AS. Ae =

d=1 and power law decay 1/t of the SP has been found.

(4) XY model
14y 1 —~ A
H = — E ~ofol + F{ﬁ'gfﬂ + —o7

7

Its classical counterpart has a large d and an
exponential decay of SP has been found.

1
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O Laser cooling (Stevens Chu, 1997 Nobel Prize in Physics)
O Evaporative cooling

BEC Apparatus

I VAL puamnp

and Eb source
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First experimental realizations
of Bose-Einstein condensates (BEC

2001 Nobel prize in physics:

—Anderson et al.,
Science, 269 (1995),

198: JILA Group; Rb

—Dauvis et al., Phys.
Rev. Lett., 75 (1995),

3969: MIT Group; Rb

—Bradly et al., Phys.
Rev. Lett., 75 (1995),

1687, Rice Group; Ll
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http://jilawww.colorado.edu/bec/hi_res_pic_album_macromedia/images/BEC_peaks_jpg.jpg

Ultracold Fermi Gas (1999)
Ultracold molecules formed from an ultracold Fermi gas (2003)
Molecular Bose-Einstein Condensate (2003)

1=0
/

Cold atoms with Fermi-Dirac statistics, 1999 \ ]

~Er=kgTe

Fermionic atom - diatomic molecular BEC, 2003
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Munich: I. Bloch, T. Haensch et al.

{e) T. W, Hansch, 2003



Formation of 1D, 2D, 3D optical lattices

34



What can cold-atoms do?

O Quantum simulation of condensed-matter physics (electrons in
periodic potentials, electrons in strong magnetic fields,
superconductivity physics, spintronics)

O Exotic quantum materials (such as those with long-range dipolar
interactions made from dipolar BECs, Bose-Fermi mixture, etc)

O Fundamental studies of ultracold physics, ultracold chemistry, and
quantum physics (macroscopic quantum coherence, chemical
reactions in the BEC regime)

O Quantum simulation of other physics areas, such as relativistic
quantum mechanics, quantum field theory, nonlinear physics.

O Precision measurement, novel interferometry, better atomic clocks,
novel atom devices...

35




Example: Cold atoms in periodic optical potentials (optical lattices)

O Strongly correlated gas (e.g., Bose-Hubbard model, Fermi-Hubbard
model)

O Bloch oscillations (extremely hard to observe in solid-state systems)
0 Quasi-crystal

O Anderson localization

36
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Joiners and loners. Mear absolute zero, identical bosons pile into the least energetic quantum
state (left), whereas identical fermions stack into low-energy states one by one.
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mal

Number of particles n_

Energy E; Energy £;

Fig. 2. Schematic diagram ol the Bose-Einstein distribution for a system of particles at a temperature 7. The
formula shows the average number of particles n; occupving a state i of energy €. The parameter g 1s the
chemical potenuial, which is the energy required to add an additional particle 1o the svstem. The lelt frame
depicts the general behavior of this distribution above the transition temperature 7, the right panel shows the
macroscopic occupancy of the lowest state ol the system when 7<= 7,
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Atomic collisions Applications

e Scattering length * Precision
e |nelastic collisions measurements
e Molecule formation e (Coherent atom sources

g ] N
Quantum Optics

e (Coherence
e Atom laser

BEC of

e Quantum
measurement

- process S

e TN
Quantum control
e Quantum computer
¢ Quantum devices
¢ Nanotechnology

\® Atom optics .

dilute gases

Many-Body-Physics N

e Realization of weakly interacting BEC
Superfluidity

Vortices

Phase transition, critical phenomena

\® Thermodynamics with finite number




First experimental realizations
of Bose-Einstein condensates (BEC

2001 Nobel prize in physics:

—Anderson et al.,
Science, 269 (1995),

198: JILA Group; Rb

—Dauvis et al., Phys.
Rev. Lett., 75 (1995),

3969: MIT Group; Rb

—Bradly et al., Phys.
Rev. Lett., 75 (1995),

1687, Rice Group; Ll
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Some atomsin a
BEC condensate

Typical parameters of BEC,
Density 10t ~ 101> cm3
Temperature nK ~ p K

macroscopic quantum fluid phenomena
Interference tunnelling

The Nobel Prize in Physics 2001

To the ler,
- Ketterle's Tirst
_ interference

- pattern.

5.8 ms

5.0 ms

The interference pattern between two
expanding condensates resemibles that
rormed by throwing two stones Into still
water.
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Example: Macroscopic quantum coherence:
Matter transport without transit (Rab et al, 2008)

(a)

Assuming the same on-site
energy for the three wells,
the Hamiltonian is

Potential Surface

Heff =h

Tunneling rate from
well 1 to well 2 is {21

Tunneling rate from
well 2 to well 3 is (223

/0 (19 0\
12 0 Qg3

| 0 25 0
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More example: Cold-atom and Superconductivity:

Using rotating BEC to simulate superconductors
In strong magnetic fields: formation of vortex lattices

From Abrikosov vortex lattice to vortex lattice in a rotating BEC
- ]

Bose-Einstein condensate

A.A. Abrikosov, -
Nobel Prize 2003
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T>Tc, R T
T<Tc, &2 P& LZ)E, HNBEC.

BECHIFFRl: ARZ CEMEED K141 [A—A 20 ok £ ik
FPRZS, AR GET) .

N
BECIHZMMBEHNA: @ (r-ry) =[] yo(r)
i=1 |

U (rt)=\Ny(1) xo(r:1)
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BECHIZ2#HiiR: Gross-Pitaevskii (GP) J5 &

h?
—— VU (r)+V

2m

=uW(r),

()W (r)+ Ug| W (1)|*¥(r)

ext
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c Time =0.67 s d Time=1.57s

L Np=113311 Tr-. . Ny=348327

Nature 455, 948 (2008)




N [10% atoms)

0.8

0.6

0.4 r

Vortex probakbility

Figure 2 | Condensate formation and vorticity. a, Condensate number N

versus time. Blue squares (red circles) indicate experimental data for quench

A (B}, and lines indicate corresponding numerical simulations. The green

dot-dashed line is the numerical result for the toroidal trap (quench C).

Vertical dotted lines indicate the observation times for which experimental

statistics are generated. Inset, experimentally measured temperatures for

quenches A and B (1o = 7s and 5 s, respectively). b, The probability of

finding at least one vortex passing through the z = 0 plane plotted for all

three simulated quenches. Grey regions indicate the experimental 47
measurement range for each data set.
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