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Efficiency of dynamical decoupling sequences in the presence of pulse errors
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For a generic dynamical decoupling sequence employing a single-axis control, we study its efficiency in
the presence of small errors in the direction of the controlling pulses. In the case that the corresponding ideal
dynamical decoupling sequence produces sufficiently good results, the impact of the errors is found to scale as
ξ 2, with negligible first-order effect, where ξ is the dispersion of the random errors. This analytical prediction is
numerically tested in a model in which the environment is modeled by one qubit coupled to a quantum kicked
rotator in chaotic motion. In this model, with periodic pulses applied to the qubit in the environment, it is found
numerically that periodic bang-bang control may outperform Uhrig dynamical decoupling.
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I. INTRODUCTION

Dynamical decoupling (DD) has attracted lots of attention
in the past years, due to its potential application in quantum-
information processes. The basic idea is to insert a sequence
of controlling pulses within a time period of interest, such that
the system of interest can be effectively decoupled from its
environment. As a result, environment-induced decoherence
can be effectively suppressed and initial coherence in the
system can be preserved.

Several DD schemes have been proposed. For example,
the so-called periodic “bang-bang” control [1–3] can suppress
decoherence up to the order of O(T 2) for a given period T of
coherence preservation, while the Carr-Purcell-Meiboom-Gill
sequence has an O(T 3) efficiency [4,5]. A better result can
be obtained by an approach called “concatenated dynamical
decoupling” [6,7], with an efficiency of the order of O(T N+1)
achieved by 2N pulses. Recently, a remarkable progress has
been made by Uhrig, showing that decoherence of a single
spin, which is induced by a spin-boson bath, can be suppressed
up to the order of O(T N+1) with only N pulses [5]. Later,
the Uhrig dynamical decoupling (UDD) was conjectured [8]
and rigorously proved to be model independent for the pure
dephasing case [9]. More recently, it has been found that
different types of UDD sequences may be integrated to
obtain better results [10] and, with appropriate extension, to
work for a system with two spins as well [11]. Meanwhile,
the efficiencies of UDD and its generalization have been
beautifully demonstrated experimentally [12–14]

In practical application of a DD sequence, an important
topic is its robustness, i.e., the influence of nonidealness
of the controlling pulses in the efficiency of the DD. The
nonidealness may come from finite widths of the pulses
and/or small deviations of the actual directions of the pulses
from their designed directions. In the case that the nonideal
parts of the pulses with finite width satisfy certain symmetry
requirements, a generalized UDD can be found [9]. However,
in a generic circumstance, the accumulation effect of small
imperfections in the pulses may have significant consequences
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when the number of pulses is not small. There have been
several investigations in the impact of systematic pulse errors
for some specific DD sequences, both experimentally [15–18]
and theoretically [17–20].

In this work, for a generic DD employing a single-axis
control, we study accumulation effects of small random errors
in the direction of the controlling pulses. Analytical derivations
are given in Sec. II. In particular, we show that a DD, which
has a sufficiently good performance in the ideal case, is robust
in the sense that the pulse errors have negligible first-order
effect.

In numerical investigation, we employ a model in which
there are periodic pulses in the environment, which are not
directly applied to the qubit of interest. Using this model, we
can test our analytical predictions and also study another topic
of interest, namely, the influence of high-frequency cutoff in
the efficiency of UDD. When the spectrum of the environment
has a sharp high-frequency cutoff, UDD has been found
outperforming all other known DD sequences and is regarded
as optimal. However, for environments with soft cutoffs in the
spectra, there is no reason to expect that UDD is optimal; in
fact, recently it has been shown that protocols with periodic
structure, such as the Carr-Purcell-Meiboom-Gill sequence,
may have a better performance for this type of environment
[21–24].

Specifically, In Sec. III, we study a model in which the
environment is simulated by a second qubit coupled to a
quantum kicked rotator in chaotic motion. Previous study
shows that this model, though a single-particle dynamical
system, may simulate a pure-dephasing many-body bath
(Caldeira-Leggett model [25]), as well as some non-Markovian
environments [26]. Our numerical simulations show that for
this type of environment the periodic bang-bang control may
outperform UDD. Finally, conclusions and discussions are
given in Sec. IV.

II. ANALYTICAL STUDY OF IMPACTS OF SMALL
PULSE ERRORS

In this section, we first recall essential properties of DD and
then derive expressions for the influence of small pulse errors
in the efficiency of a DD that employs a single-axis control.
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A. Dynamical decoupling scheme

Let us first recall some essential properties of a generic DD.
Consider a qubit S and its environment E , under a Hamiltonian,

H = HS + HI + HE , (1)

where HS and HE are the Hamiltonians of S andE , respectively,
and HI is the interaction Hamiltonian. The self-Hamiltonian
HS is assumed to be a constant, which can be taken as zero,
HS = 0. We further assume that the interaction Hamiltonian
HI is commutable with σz, [σz,HI ] = 0, where σz is the z

component of the Pauli operator for the qubit S.
Suppose the qubit S lies initially in a state which

is not an eigenstate of the interaction Hamiltonian HI .
Schrödinger evolution under the Hamiltonian H , given by
a unitary operator U (T ,0) for a time period T , may induce
decoherence to the state of the qubit S. The purpose of
a DD is to preserve coherence in the initial state of S

within the time period T by inserting a sequence of pulses,
e.g., π pulses for the x direction. Using ti = δiT , i =
1,2, . . . ,n, to indicate the instants at which pulses are applied,
with totally n pulses, the time-evolution operator is now
written as

R = U (T ,tn)σxU (tn,tn−1)σx · · · U (t2,t1)σxU (t1,0). (2)

To measure the preservation of coherence in an initial state
in the x direction, one may consider measurement of the
observable σx , which gives the signal

s(T ) = 〈↑|D†
y(−π/2)R†σxRDy(−π/2)|↑〉, (3)

where | ↑〉 indicates an eigenstate of σz and Dy(−π/2) rotates
it to an eigenstate of σx . After some derivation, one gets

s(T ) = Re〈↓|R†σxR|↑〉. (4)

The coherence is perfectly preserved if s(T ) = 1.
In UDD, π pulses are applied to the qubit S at times tj =

δjT , where

δj = sin2[πj/(2n + 2)] (j = 0,1,2,· · ·n,n + 1). (5)

For UDD, s(T ) = 1 − O(T 2n+2). In a periodic bang-bang
control of DD, pulses are applied at times with δj = j/n.

B. s(T ) expanded to the second-order term of error

As discussed in the Introduction, controlling pulses in a DD
may be subject to small random errors in its direction. Let us
consider small random deviation in the y direction for π pulses
in the x direction. In this case, σx in the ideal time-evolution
operator in Eq. (2) should be replaced by

σε = εxσx + εyσy, (6)

where εx =
√

1 − ε2
y and εy is a small random number with

Gaussian distribution,

f (εy) = 1√
2πξ 2

exp

(
− ε2

y

2ξ 2

)
. (7)

Here, ξ is the dispersion of the random number, with ξ � 1.
Then, the time-evolution operator, denoted by Rε, is written as

Rε = U (T ,tn)
(√

1 − ε2
y,nσx + εy,nσy

)
×U (tn,tn−1)

(√
1 − ε2

y,n−1σx + εy,n−1σy

)
· · · U (t2,t1)

(√
1 − ε2

y,1σx + εy,1σy

)
U (t1,0), (8)

where we use εy,i to indicate the value of εy for the ith
pulse. Now, the signal, denoted by sε(T ), has the following
expression,

sε(T ) = Re〈↓|R†
εσxRε|↑〉. (9)

To evaluate sε(T ), we substitute Eq. (8) into Eq. (9) and
expand the result in the power of εy . Up to the second-order
term of ξ , we write the signal in the following form,

sε(T ) = sε0(T ) + sε1(T ) + sε2(T ) + O(ξ 3). (10)

Definitions of the first three terms on the right hand side of
Eq. (10) will be given below, when they are treated separately.

The first term on the right-hand side of Eq. (10) is obtained
by considering only the contribution of εxσx in each σε,

sε0(T ) = Re〈↓|R†
ε0σxRε0|↑〉, (11)

where

Rε0 = U (T ,tn)
√

1 − ε2
y,nσxU (tn,tn−1)

×
√

1 − ε2
y,n−1σxU (tn−1,tn−2) · · ·

√
1 − ε2

y,1σxU (t1,0)

=
n∏

k=1

(
1 − ε2

y,k

) 1
2 R. (12)

Here, R is the time-evolution operator for the case of ideal
pulses in Eq. (2). Substituting Eq. (12) into Eq. (11), we find

sε0(T ) =
n∏

k=1

(
1 − ε2

y,k

)
s(T ). (13)

It is seen that, for sufficiently small ξ ,

sε0(T ) − s(T ) ∼ −nξ 2s(T ). (14)

Thus, deviation of sε0(T ) from the ideal signal s(T ) is of the
order of (ξ

√
n)2.

Next, we calculate the second term on the right-hand side
of Eq. (10), which is the contribution of those multiplication
terms that include only one (εyσy) term in each of them.
Noticing that, up to the second-order contribution of εy , εx

in this second term can be taken as 1, we have the following
expression for it,

sε1(T ) = Re〈↓|R†
ε1σxRε0 + R

†
ε0σxRε1|↑〉, (15)

where

Rε1 =U (T ,tn)εy,nσyU (tn,tn−1)σx · · · U (t2,t1)σxU (t1,0)

+U (T ,tn)σxU (tn,tn−1)εy,n−1σy · · · U (t2,t1)σxU (t1,0)

+ · · ·
+U (T ,tn)σxU (tn,tn−1)σx · · ·U (t2,t1)εy,1σyU (t1,0).

(16)
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Making use of the fact that σy = iσxσz and [σz,H ] = 0, we
find

Rε1 = i

n∑
k=1

(−1)k+1εy,kRε0σz. (17)

Substituting Eq. (12) into Eq. (17), then into Eq. (15), we
obtain

sε1(T ) = Re

[
2i

n∑
k=1

(−1)k+1εy,k〈↓|R†
ε0σxRε0|↑〉

]
. (18)

Typically, one has the following estimate,∣∣∣∣∣
n∑

k=1

(−1)k+1εy,k

∣∣∣∣∣ ∼ ξ
√

n, (19)

and hence,

sε1(T ) ∼ ± 2ξ
√

nRe[i〈↓|R†
ε0σxRε0|↑〉]. (20)

Making use of Eq. (12), after simple algebra, it is found that

sε1(T ) ∼ ±2ξ
√

nq(T ), (21)

where

q(T ) = Im〈↓|R†σxR|↑〉. (22)

Therefore, sε1(T ) gives a first-order correction (∼ ξ
√

n) to the
ideal signal.

The first-order correction sε1(T ) also depends on the
quantity q(T ). To give an estimation to q(T ), we note that
s(T ) + iq(T ) = 〈↓|R†σxR|↑〉 [see Eqs. (4) and (22)]. Hence,

|q(T )| =
√

|〈↓|R†σxR|↑〉|2 − s2(T ) �
√

1 − s2(T ), (23)

where we have used the fact that |〈↓|R†σxR|↑〉| � 1.
Finally, we discuss the third term on the right-hand side

of Eq. (10), which includes all multiplication terms that have
only two (εyσy) terms,

sε2(T ) = Re〈↓|R†
ε1σxRε1 + R

†
ε0σxRε2 + R

†
ε2σxRε0|↑〉,

(24)

where

Rε2 = U (T ,tn)εy,nσyU (tn,tn−1)εy,n−1σy

×U (tn,tn−1)σx · · · U (t2,t1)σxU (t1,0)

+U (T ,tn)εy,nσyU (tn,tn−1)σx

×U (tn,tn−1)εy,n−2σy · · · U (t2,t1)σxU (t1,0)

+ · · · + U (T ,tn)σxU (tn,tn−1)σx

· · · U (t3,t2)εy,2σyU (t2,t1)εy,1σyU (t1,0). (25)

Following a procedure similar to that for Rε1, we find

Rε2 =
n∑

k=1

∑
j (<k)

(−1)j+k+1εy,j εy,kRε0 ∼ ±1

2
ξ 2nRε0. (26)

Substituting the above-obtained expressions of Rε0, Rε1,
and Rε2 into the expression of sε2(T ) in Eq. (24), after some
derivation, we obtain an expression for sε2(T ). Then, making
use of results obtained above in Eqs. (14) and (21), finally, we
find

sε(T ) − s(T ) ∼ ±2q(T )ξ
√

n + C2ξ
2n + O(ξ 3), (27)

where |C2| is of the order of 1.
Of particular interest is the case for a DD with good

performance, i.e., with s(T ) ∼ 1. In this case, the inequality
(23) shows that q(t) is small. In particular, in the case that
|q(t)| � ξ

√
n, the first-order term on the right-hand side of

Eq. (27) can be neglected and we have

sε(T ) − s(T ) ∼ C2ξ
2n + O(ξ 3), (28)

scaling as ξ 2n. For example, for a UDD with s(T ) = 1 −
O(T 2n+2), q(T ) is of the order of O(T 2n+2) or less; hence, for
a fixed ξ , |q(T )| � ξ

√
n for a sufficiently large n.

In concluding this section, we remark that it is straightfor-
ward to generalize the above discussions to the case of pulses
with more generic random errors in their direction. In fact, in
this generic case, the time-evolution operator can be obtained
by replacing σx in Eq. (2) by

σε = εxσx + εyσy + εzσz, (29)

where εx =
√

1 − ε2
y − ε2

z and both εy and εz are small random

numbers with Gaussian distribution. We have found results
that are qualitatively the same as those discussed above for
the case of σε in Eq. (6). In particular, we have found similar
estimations as those given in the relations (27) and (28).

III. NUMERICAL SIMULATIONS

In this section, we discuss numerical simulations we have
performed for two purposes. One is to check analytical
predictions given in the previous section, the other is to study
the influence of kicks in the environment in the efficiency of
UDD. In fact, since instant kicks in the environment may have
non-negligible high-frequency components, the performance
of UDD for such an environment may be not as good as that
for an environment with a sharp high-frequency cutoff.

A. The model

We consider a model, in which there is a qubit S of interest
and an environment E that is composed of a second qubit A

and a quantum kicked rotator denoted by B. The qubit S has
interaction with A only, while A interacts with both S and the
kicked rotator B. The Hamiltonian is written as

H = HS + HA + HB + HSA + HAB, (30)

where the self-Hamiltonians are HS = 0, HA = ωAσA
x , and

HB = p2

2
+ k cos θ

∑
j

δ(t − jT0), (31)

with T0 being the period of kicking. The interaction Hamilto-
nians are HSA = gσS

z ⊗ σA
z and

HAB = λσA
z cos θ

∑
j

δ(t − jT0). (32)

Here, for clearness we write explicitly the superscript S in the
Pauli operator for the qubit S.

This model has been studied in Ref. [26], showing that the
kicked rotator, though a single-particle dynamical system, may
simulate a pure-dephasing many-body bath (Caldeira-Leggett
model [25]), as well as some non-Markovian environments.
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FIG. 1. (Color online) Variation of the signal s(t) in Eq. (34)
with time for ideal UDD and ideal periodic bang-bang control. Both
UDD and periodic bang-bang control have better performance for
larger values of n, the number of controlling pulses. Results of UDD
(circles) are better than those of the periodic bang-bang control (solid
curve) for n = 50. But, for larger values of n, the periodic bang-
bang control outperforms UDD. Parameters are ωA = 1.5 × 103,

λ = 103, g = 100, N = 212 and T = 50T0, and the kicked rotator
is in the chaotic region with K = 103. The same parameters are also
used in the following figures.

Here, we are interested in the chaotic region of the kicked
rotator to simulate some random properties of the environment.

The time evolution for one period T0 is given by the unitary
operator

ÛT0 = e−i(ωAT0σ
A
x +T0gσS

z ⊗σA
z )e−iT0

p2

2 e−i(k+λσA
z ) cos θ , (33)

where h̄ has been set unit. An effective Planck constant can be
introduced, h̄eff = T0 = 2π/N , where N is the dimension of
the Hilbert space of the kicked rotator. The classical limit is
obtained by letting T0 → 0 and k → ∞ while keeping K =
kT0 fixed, and the classical counterpart is defined on a torus

FIG. 2. (Color online) Dependence of 1 − sε(T ) (solid squares)
on ξ 2 for a UDD sequence, with n = 500 and ξ

√
n � 1. The solid

curve is a straight line, indicating a linear dependence, in agreement
with the prediction of Eq. (28). For the corresponding ideal UDD,
1 − s(T ) ∼ 10−4. Since 1 − sε(T ) � 1 − s(T ), the influence of the
pulse errors is profound.

FIG. 3. Variation of 1 − sε(T ) with ξ
√

n for a UDD sequence
with n = 500.

[0,2π ) ⊗ [0,2π ). The kicked rotator has a chaotic motion for
K larger than 6 or so.

B. Numerical results

Let us first discuss the performance of ideal UDD and ideal
periodic bang-bang control in this model. We are interested in
the case that T � T0. In this case, due to the time dependency
of the Hamiltonian of the environment, Uhrig’s strategy for
deriving 1 − s(T ) ∼ O(T 2n+2) is not applicable. It is of
interest to know whether UDD is optimal or not in this case.

In a numerical simulation, we calculated s(t) defined by

s(t) = Re〈↓|R†(t)σxR(t)|↑〉, (34)

where R(t) is obtained by truncation of the time-evolution
operator R in Eq. (2) at an intermediate time t � T . Figure 1
shows that both UDD and periodic bang-bang control have
better performance with increasing number n of the controlling
pulses. For n = 50, UDD outperforms the periodic bang-
bang control in the whole time region (0,T ]. However, with
increasing n, results of the periodic bang-bang control become
better than those of UDD for t > T/2.

Next, we check analytical predictions given above for the
impact of random errors in the direction of the controlling
pulses, in particular, the behavior of sε(T ) in Eq. (28). We use
the general form of σε in Eq. (29), with the same dispersion
ξ for εy and εz. An example is given in Fig. 2, showing
linear dependence of 1 − sε(T ) on ξ 2. To check the details of
agreement with analytical predictions, we have numerically
computed the corresponding ideal UDD and found that it
has a good performance with 1 − s(T ) ∼ 10−4. This gives

FIG. 4. Variation of the signal sε(t) with time for a UDD with
nonideal pulses, ξ = 10−2. The UDD with n = 500 (right panel)
gives results worse than those of the UDD with n = 200 (left panel).
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|q(T )| � 10−2 [see the estimate in the inequality (23)]. Hence,
|q(T )| � ξ

√
n ∼ 10−1 for the solid squares shown in the

figure; as a result, Eq. (28) should hold with s(T ) − sε(T ) �
1 − sε(T ). Thus, the results in Fig. 2 indeed confirm the
prediction of Eq. (28).

We have also numerically studied the case of large ξ
√

n.
In this case, higher-order terms of ξ in Eq. (27) should be
considered. Anyway, this expression of sε(T ) suggests that
1 − sε(T ) may be large for ξ 2n ∼ 1. Indeed, numerical results
support this expectation, as shown in Fig. 3.

Figure 2 shows that for a fixed n, the influence of pulse
errors may become large with increasing ξ , such that 1 −
sε(T ) � 1 − s(T ). In Fig. 4, we show that for a fixed error
dispersion ξ , deviation of sε(t) from 1 enlarges when n is
increased, where sε(t) is defined by Eq. (34) with R(t) replaced
by the corresponding Rε(t).

IV. CONCLUSIONS AND DISCUSSIONS

In this paper, we have analytically studied the efficiency of
a generic DD with a single-axis control when the controlling
pulses are subject to small random errors in their direction.
We have derived expressions for the influence of the pulse
errors up to the second-order term. When the ideal DD has a
sufficiently good performance, the influence has a negligible
first-order effect; in this sense, good DD is relatively robust.

We have tested the above analytical predictions numerically
and shown that accumulation of small pulse errors may have
significant influence on the efficiency of DD. For an envi-
ronment with kicks applied on some part of the environment,
it has been found that the periodic bang-bang control may
outperform UDD.

A natural question would concern the possibility of having
negligible first-order effect of pulse errors in more generic
situations, e.g., in the case of more than one layer of controlling
pulses with different single-axis control in different layers.
For pulse errors appearing only at certain fixed layers with
single-axis control, results of this paper may be generalizable.
However, the more generic situation with pulse errors in
different layers, as well as the case with finite width of the
pulses, is much more complex and further investigation is
needed before a definite conclusion can be drawn.
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