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We study the quantum Loschmidt echo �LE� in a Bose-Einstein condensate �BEC� in a double-well potential.
The BEC may undergo a dynamical phase transition between two phases: a tunneling phase and a self-trapping
phase. For sufficiently weak perturbation, the LE has Gaussian decay in both phases. While, for relatively
strong perturbation, the LE has a Gaussian decay in the self-trapping phase and has a stretched exponential
decay in the tunneling phase. This qualitative difference in the decaying law of the LE in the two phases
provides a characterization of the dynamical phase transition of the BEC. The semiclassical theory is used to
explain the numerically observed behaviors of the LE decay.
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I. INTRODUCTION

Since Bose-Einstein condensate �BEC� was realized ex-
perimentally �1�, a new epoch for studying its dynamical
properties has also been launched �2�. An interesting phe-
nomenon of a BEC in a double-well potential �3� is a dy-
namical phase transition between a tunneling phase and a
self-trapping when the strength of the interaction among the
atoms is changed. This phenomenon was first predicted theo-
retically �4,5�, then observed experimentally �6� and studied
in detail analytically �7,8�. The dynamical phase transition
can be characterized by the difference in the average num-
bers of the atoms in the two wells, as well as by entangle-
ment entropy �8�.

Recently, a fidelity approach to quantum phase transitions
�9�, i.e., fundamental changes in properties of the ground
states of systems, has attracted much attention. It has been
found that quantum phase transitions can be characterized by
a quantity widely used in the field of quantum information,
namely, the fidelity. Two types of fidelity have been studied:
the overlap of ground states of neighboring systems �10,11�
and the so-called quantum Loschmidt echo �LE� or Peres
fidelity �12,13�. It has been found that both types of fidelity
have some dramatic changes in the neighborhood of the
quantum phase transitions.

It would be natural to study the possibility of using fidel-
ity to characterize the dynamical phase transition of BEC
mentioned above. In particular, one may consider the LE,
which is a dynamical quantity, defined by the overlap of the
time evolution of the same initial state under two slightly
different Hamiltonians,

M�t� = ���0�exp�iHt/��exp�− iH0t/����0��2, �1�

where H0 and H are the unperturbed and perturbed Hamilto-
nians, respectively, H=H0+�V, with � a small quantity and V
a generic perturbation. This quantity was first introduced by
Peres more than twenty years ago in the study of the stability
of quantum motion �14�, and has been extensively studied in

recent years �15–25�. Meanwhile, it is also of relevance in
the study of decoherence �26–28� and the concurrence en-
tanglement of a two-qubit system coupled to a spin chain
�29�.

The LE in quantum systems, whose classical counterparts
have strong chaos with exponential instability, has been
found to have the following main features in its decay, re-
lated to the perturbation strength: �i� in the perturbative re-
gime in which the typical transition matrix element is smaller
than the mean level spacing, the LE has a Gaussian decay.
�ii� Above the perturbative regime, the LE has an exponential
decay with a rate proportional to �2, usually called the Fermi-
golden-rule �FGR� decay of LE. �iii� Above the FGR regime
is the Lyapunov regime, in which the LE M�t� usually has an
approximate exponential decay with a perturbation-
independent rate. The LE decay in regular systems with qua-
siperiodic motion in the classical limit has also attracted
much attention. For a single initial Gaussian wave packet,
the main feature is a Gaussian decay for times not too long
�16,24,25�.

Indeed, as shown in Ref. �30�, the LE can be employed to
characterize the dynamical phase transition of a BEC system
in a double-well potential. Numerically the LE was found to
have qualitatively different decaying behaviors in the two
phases: a Gaussian decay in the self-trapping phase and a
stretched exponential decay in the tunneling phase. This is in
contrast to what has been found in quantum phase transi-
tions, where the LE decay on both sides of a quantum phase
transition obeys the same decaying law.

In this paper, we perform a more thorough investigation in
the decaying behavior of the LE at the dynamical phase tran-
sition of the BEC system. We do this mainly for three rea-
sons: �i� Ref. �30� gives only numerical evidence for the
above mentioned difference in the decaying behavior of the
LE in the two phases of the BEC, while the underlying
mechanism of such a difference is still unclear. �ii� After the
publication of Ref. �30�, we found that, when the perturba-
tion strength is decreased to sufficiently small values, the LE
has Gaussian decay in both phases of the BEC. It should be
of interest to give an explanation to the qualitative change in
the decaying behavior of the LE with perturbation strength.
�iii� Stretched exponential decay of the LE is still an unex-*wgwang@ustc.edu.cn
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plained phenomenon. It has also been observed numerically
in two other models: namely, a quantum system whose clas-
sical counterpart lies in a region between chaotic sea and
regular island �31�, and a quantum triangle map whose clas-
sical counterpart has a linear instability but is ergodic and
mixing �32�. The origin of this stretched exponential decay is
still not clear, therefore, an explanation of this phenomenon
is of interest by itself.

In order to explain the above mentioned three points, we
are to make use of a semiclassical approach to the LE. We
show that the previously predicted Gaussian decay of the LE
in regular systems, which was given in Refs. �16,24,25�, is
valid for relatively weak perturbation. �The BEC model we
study here has a regular classical counterpart.� When the
perturbation is strong enough, the LE may have a non-
Gaussian decay, as a result, a stretched exponential decay
may appear. We then give further semiclassical analysis to
the LE decay and show that the semiclassical theory can
indeed explain the observed stretched exponential decay.

This paper is organized as follows: in Sec. II, the double-
well potential BEC model is introduced and the dynamical
phase transition is briefly discussed. Numerical results for
the decaying behavior of the LE in the neighborhood of the
dynamical phase transition are presented and discussed in
Sec. III. In Sec. IV, we explain the numerical results by mak-
ing use of the semiclassical theory. Conclusions are given in
Sec. V.

II. BEC IN A DOUBLE-WELL POTENTIAL

A. Model

We consider a N-atom BEC in a double-well potential,
with the wells indicated by A and B, respectively. The
Hamiltonian in the second quantization form is written as
�33,34�,

H =
�

2
�a†a − b†b� +

c

2N
�a†a†aa + b†b†bb� −

v
2

�a†b + b†a� .

�2�

Here � is the level separation of the two wells, c is the
interaction constant determined by the scattering of the at-
oms, v is the coupling strength between the two wells, and a†

and b† �a ,b� are boson creation �annihilation� operators for
the two wells, respectively.

In this paper, we consider the case of a symmetric double-
well potential with �=0 and c�0 corresponding to a repul-
sive interaction between atoms. In this case, the controlling
parameters of the dynamics are c, v, and N �35�. Here we fix
the particle number N=1000. In addition, a scaling can make
the Hamiltonian depend on only one of the two parameters v
and c, hence, we set unit the coupling strength v and con-
sider the variation of c. Experimentally, the atom-atom inter-
action may be adjusted via Feshbach resonances �36�.

Time evolution of the state of the BEC is given by
Schrödinger equation

i
d���t��

dt
= H���t�� , �3�

where the Planck constant is set unit, �=1. We employ the
Fock states �n� as the basis states, where n is the number of
the atoms in the well A, with �N−n� atoms in the well B. In
this basis, nonzero matrix elements of the Hamiltonian are

Hn,n =
c

2N
�n�n − 1� + �N − n��N − n − 1�� , �4�

Hn,n−1 = Hn−1,n = −
v
2

�n�N − n + 1��
1
2 , �5�

and the state of the BEC is written as

���t�� = �
n=0

N

an�t��n� . �6�

In the study of LE decay, it is convenient to adopt the
direct numerical diagonalization method as used in Ref. �39�.
Meanwhile, it is worth mentioning that in some limiting
cases this BEC model can be �approximately� solved by
making use of the algebraic Bethe ansatz �37,38�.

When the particle number is sufficiently large, the system
can be well described by a mean-field approximation and has
a classical counterpart with the following Hamiltonian, ex-
pressed in terms of a pair of canonical variables �� ,s� �4�:

Hcl = −
1

2
cs2 + 	1 − s2 cos � . �7�

The two variables s and � have the following physical mean-
ing: writing the probability amplitudes of the atoms in the
two wells as a= �a�exp�i�a� and b= �b�exp�i�b�, respectively,
s= �b�2− �a�2 is the population difference between the two
wells and �=�b−�a is the phase difference. The equations of
motion of the canonical variables � and s are

ṡ = 	1 − s2 sin �, �̇ = − cs −
s

	1 − s2
cos � . �8�

The Hamiltonian in Eq. �2� can also be written in terms of
the generators Lx, Ly, and Lz of the group SU�2� �40�,

Lx = �a†b + b†a�/2, Ly = �a†b − b†a�/2i ,

Lz = �a†a − b†b�/2. �9�

These generators obey the same commutation rules as for
angular momentum. The Fock states �n� are also eigenstates
of Lz, Lz�n�= �n− N

2 ��n�, since Lz=a†a−N /2 and the total
number of the atoms is conserved.

An important class of states in a system with the dynami-
cal group SU�2� is coherent state �41�. A SU�2� coherent
state �	� centered at a point in the sphere with polar angle 

and azimuthal angle � is given by
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�	� 
 e	�L+−	L−�0�, with 	 =
� − 


2
e−i�. �10�

The Fock state �n=0� is a coherent state with 	=0. To see
the relation of other Fock states to coherent states, one can
expand �	� in the Fock states,

�	� = �
n=0

N
z�n

�1 + zz��N/2� N!

n ! �N − n�!�1/2

�n� , �11�

where z=−e−i� cot�
 /2�. Considering the limit �z�→�, it is
easy to check that �N� is also a coherent state. For 	 suffi-
ciently far from the two poles, the expansion of �	� in �n� has
approximately a Gaussian form.

B. Two phases

The BEC system may have two phases: a tunneling phase
and a self-trapping phase. For relatively weak nonlinear
term, i.e., small value of c, if all the atoms are initially in one
of the two wells, they can travel to the other well by tunnel-
ing. On the other hand, for sufficiently large c, the tunneling
effect can be suppressed, resulting in a self-trapping phase.
Since the two phases are not required to be stationary, tran-
sition between them is called a dynamical phase transition.

Separation of the two phases is sharp in the large N limit.
For any initial coherent state, which can be represented ap-
proximately by its center ��i ,si� in the classical phase space,
the critical value ccr separating the two phases can be conve-
niently evaluated by the classical dynamics, giving �4,8�

ccr =
2

si
2 �1 + 	1 − si

2 cos �i� . �12�

The system has a tunneling phase for cccr and a self-
trapping phase for c�ccr. For example, for the initial state
�0� with all the atoms in the well B, si=1, as a result, ccr
=2.

To illustrate the difference in the behavior of the system
in the two phases, one can consider the time evolution of the
numbers of the atoms in the two wells, denoted by NA and
NB, respectively,

NA = ���t��a†a���t��, NB = ���t��b†b���t�� . �13�

Some examples are shown in Fig. 1 for the initial state �0�.

III. DECAY OF LOSCHMIDT ECHO-NUMERICAL
RESULTS

A. General discussions

The classical counterpart of the BEC system discussed
above has a time-independent Hamiltonian in Eq. �7�, with
one degree of freedom, hence, it is integrable. The semiclas-
sical theory predicts a Gaussian decay for the LE in regular
systems, when the initial states are Gaussian wave packets or
coherent states with approximate Gaussian shape �16,24,25�.
Therefore, it is natural to expect a Gaussian decay of the LE
in both phases of the BEC model with the Hamiltonian in
Eq. �2�.

However, numerical results given in Ref. �30� show that
the LE of the initial state �0� has qualitatively different de-
caying behaviors on the two sides of the dynamical phase
transition for certain intermediate perturbation strength: it
has a Gaussian decay in the self-trapping phase and has a
stretched exponential decay in the tunneling phase. Refer-
ence �30� is a letter presenting some numerical results only,
without any analysis in the mechanism of this difference in
the decay law of the LE, while such an analysis is obviously
important for understanding the LE decay at the dynamical
phase transition. Moreover, the origin of a stretched expo-
nential decay of LE is still not clear.

For the above reasons, in what follows, we perform a
more complete investigation in the decaying behavior of the
LE in the BEC system. We first study the case of very weak
perturbation and show that the LE indeed has the analytically
expected Gaussian decay on both sides of the dynamical
phase transition. Then, making use of the semiclassical
theory, we analyze the LE’s decaying behaviors under inter-
mediate perturbation strength. We also study the decaying
behavior of the LE for initial coherent states other than �0�.

Below, we use H�c� and H�c�� to denote the unperturbed
and perturbed Hamiltonians, respectively, with c�=c+�c,
hence, �=�c. Writing the time evolution of the states in the
Fock basis,

���c,t�� = exp�− iH�c�t���0� = �
n=0

N

an�t��n�

���c�,t�� = exp�− iH�c��t���0� = �
n=0

N

an��t��n� , �14�

the LE is

M�t� = ����c�,t�����c,t���2 = �
n=0

N

an�
��t�an�t�2

. �15�

B. LE decay for initial state �0‹

We have performed extensive numerical experiments in
the LE decay at weak perturbation. For sufficiently small �c,
specifically, �c�10−5, we indeed found the Gaussian decay
of LE, ln M�t��−t2, in both the tunneling phase and the
self-trapping phase �see Fig. 2 for an example in the tunnel-
ing phase�. Hence, when the perturbation is sufficiently
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FIG. 1. �Color online� An illustration of the two phases of the
BEC. NA and NB are the average numbers of the atoms in the wells
A and B, respectively. The initial state is �0�, for which ccr=2. Panel
�a�: c=1.8 in the tunneling phase. Panel �b�: c=2.3 in the self-
trapping phase. In this and the following figures, N=1000.
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weak, the LE obeys the same decaying law on both sides of
the dynamical phase transition, as expected from previous
semiclassical analysis.

With increasing perturbation strength, the phenomenon
reported in Ref. �30� appears. Namely, for the initial state �0�,
the LE still has a Gaussian decay in the self-trapping phase,
but has a stretched exponential decay in the tunneling phase.
Both decay can be fitted by the following function:

Mf�t� = exp�− kt�� , �16�

with �=2 corresponding to a Gaussian decay and �2 to a
stretched exponential decay. Some examples are presented in
Fig. 3, where �=2 for the fitting line in the self-trapping case
of c=2.3 and �=1.85 for the tunneling case of c=1.8.

In order to have a whole picture for the decaying behavior
of the LE in the neighborhood of the dynamical phase tran-
sition, in Fig. 4 we plot the variation of � with c for the
initial state �0�. The value of � is smaller than 2 for c2,
indicating a stretched exponential decay of the LE in the
tunneling phase. With c approaching 2, the stretched expo-

nential decay becomes closer and closer to the Gaussian de-
cay. For c approximately between 2 and 2.3, there is an os-
cillation of the value of � around �=2. Finally, for c�2.3, �
is quite close to 2, showing a good Gaussian decay of the
LE. This figure shows clearly that the value of � can char-
acterize the dynamical phase transition of the BEC.

We have also performed extensive numerically experi-
ments for other values of �c. The LE has been found to have
similar decaying behaviors for �c in the region �5�10−4 ,2
�10−3�. In particular, the same type of oscillation of � for c
between 2 and 2.3 has been found for different perturbation
strengths �c �see Fig. 4�. For �c�2�10−3, the LE has been
found to have quite large fluctuations, which make it difficult
to study the decaying law of the LE.

One may guess that the oscillation of � for c between 2
and 2.3 might be related to some finite-size effect. In fact,
this oscillation lies in the transition region between the two
phases. For a finite N, the transition is not sharp and has a
finite region. Due to competition of the two phases, behav-
iors of the system in the finite transition region are more
complex than those in the region of either of the two pure
phases, hence, explanation of the former is more difficult. If
in the large N limit the phase transition becomes sharp, with
the transition region shrinking to zero, then, it seems reason-
able to expect that the oscillation might disappear. However,
numerically it is difficult to confirm this point, since it might
need a quite large N. In fact, in our numerical simulations, no
obvious signature of this mechanism has been observed for N
from 500 to 1500. Therefore, the real mechanism of the os-
cillation of � in the transition region is still an open problem.

C. LE decay for initial coherent states

Dynamical phase transition may happen not only for the
initial state �0�, but for all initial coherent states with high
population of the particles in one of the two wells. The be-
havior of the LE of initial coherent states other than �0� is not
discussed in Ref. �30�. Therefore, we study this more general
situation here.

Numerically, we found that the LE of initial coherent
states other than �0� has behaviors qualitatively similar to

5.5 6 6.5 7 7.5 8
−10

−8

−6

−4

ln(t)

ln
[−

ln
(M

(t
))

]
Num
Fit

FIG. 2. �Color online� Decay of the LE M�t� at very weak per-
turbation for the initial state �0�, c=1.8 �tunneling phase� and �c
=10−5. The straight line is the best fitting to the squares obtained
numerically. The slope of the straight fitting line is 2, showing that
the LE has a Gaussian decay, ln M�t��−t2. Similar Gaussian decay
has also been found in the self-trapping phase.
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−5

−4
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FIG. 3. �Color online� The LE decay for the initial state �0� with
�c=5�10−4, c=1.8 �tunneling phase� and c=2.3 �self-trapping
phase�. The squares and circles are numerically computed LE and
the solid and dotted straight lines are fitting curves of the form in
Eq. �16�: �=1.85 for c=1.8 and �=2.0 for c=2.3.
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FIG. 4. �Color online� Variation in the fitting parameter � in Eq.
�16� with c for the initial state �0�. The straight dashed line is shown
for guiding eyes. Empty squares, circles, and diamonds correspond
to the perturbation strength �c=5�10−4, 8�10−4, and 10−3,
respectively.
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those of the initial state �0�. As an example, let us consider
the initial coherent state �	� with 	=1.3. Equation �12� gives
ccr=1.32 for 	=1.3, which is in agreement with a direct
calculation of �N shown in Fig. 5. For sufficiently weak
perturbation, the LE has been found to have Gaussian decay
in both phases. While for relatively strong perturbation, as
shown in Fig. 6, the LE has a stretched exponential decay in
the tunneling phase �c=1.2� and has a Gaussian decay in the
self-trapping phase �c=5�.

In fact, we have another reason to study initial coherent
states other than �0�. In the classical limit, �0� corresponds to
the south pole in the Bloch sphere. Direct application of the
semiclassical theory to this state is not easy, due to the pe-
culiarity of the pole. Now, the LE has qualitatively similar
behaviors at dynamical phase transition for different initial
coherent states, hence, we can study initial coherent states
whose centers depart enough from the two poles. For ex-
ample, in the derivation of the Gaussian decay of the LE of
initial coherent states in regular systems, which is given in
Ref. �16�, the coherent states are assumed to have a Gaussian
shape in the Fock basis. That derivation cannot be directly

applied to the initial state �0�, which is a single Fock state,
but can be applied to initial states like �	=1.3�.

IV. SEMICLASSICAL EXPLANATION

The most useful analytical tool in the study of the LE
decay in regular systems seems the semiclassical approach.
In this section, we use the semiclassical theory to explain the
numerical results presented above, in particular, the follow-
ing ones: �i� for initial coherent states with high population
in one of the two wells, the LE has Gaussian decay in both
phases of the BEC system when the perturbation is suffi-
ciently weak, but obeys different decay laws in the two
phases when the perturbation is relatively strong. �ii� The LE
has a stretched exponential decay in the tunneling phase for
relatively strong perturbation.

A. Semiclassical approach to LE: A preliminary
explanation of the numerical results

Let us first briefly recall the main results of the approach.
We present it in a general d-dimensional configuration space
and consider the general expression of the LE given in Eq.
�1�. For an initial wave-function �0�r0�, its time evolution
propagated by the semiclassical Van Vleck-Gutzwiller propa-
gator is written as

�sc�r;t� =� dr0Ksc�r,r0;t��0�r0� , �17�

where Ksc�r ,r0 ; t�=�cKc�r ,r0 ; t�, with

Kc�r,r0;t� =
Cc

1/2

�2�i��d/2exp� i

�
Sc�r,r0;t� −

i�

2
�c� . �18�

Here, the label c �more exactly c�r ,r0 ; t�� indicates classical
trajectories starting from r0 and ending at r within the time t,
Sc�r ,r0 ; t� is the action �the time integral of the Lagrangian
L� along the trajectory c, Sc�r ,r0 ; t�=�0

t dt�L, and Cc
= �det��2Sc /�r0i�rj��. �c is the Maslov index counting the
conjugate points. �In this section, we write the Planck con-
stant explicitly in the semiclassical expressions.�

Consider an initial Gaussian wave packet centered at r̃0,
with dispersion � and mean momentum p̃0,

�0�r0� = � 1

��2�d/4

exp� i

�
p̃0 · r0 −

�r0 − r̃0�2

2�2 � . �19�

When � is small enough, the amplitude m�t� of the LE is
written as �15,18,21�

msc�t� � ��wp
2�−d/2� dp0 exp� i

�
�Sp0

−
�p0 − p̃0�2

wp
2 � ,

�20�

where wp=� /� and �Sp0
is the action difference between two

nearby trajectories of the two systems H and H0 starting at
�p0 , r̃0�. The semiclassical expression of the LE can then be
calculated, Msc�t�= �msc�t��2. We mention that, for not very
narrow initial Gaussian packets, Eq. �20� may still hold with
a redefinition of wp �21�.

1 1.1 1.2 1.3 1.4 1.5
−0.8

−0.6

−0.4

−0.2

0

c

∆N

FIG. 5. �Color online� Variation in the averaged atom number
difference, �N= �NA−NB� /N, with the interaction strength c for the
initial coherent state �	=1.3�. Here �.� denotes average over time.
�N�0 for c�1.28 in the tunneling phase and ��N��0.5 for c
�1.36 in the self-trapping phase. This is in agreement with the
analytical prediction of Eq. �12� for the large N limit, which gives
ccr=1.32 for this initial state. The finite region of transition is due to
finite-size effect.
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FIG. 6. �Color online� Variation in the LE for the initial coherent
state �	� with 	=1.3. The slopes of the fitting lines: �=1.85 for c
=1.2 �tunneling phase� and �=2 for c=5 �self-trapping phase�. The
perturbation strength �c=3�10−3.
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The action difference can be calculated in the first-order
classical perturbation theory

�Sp0
� ��

0

t

dt�V�r�t��,p�t��� , �21�

with the perturbation V evaluated along one of the two tra-
jectories. Equations �20� and �21� give quite accurate predic-
tions even for relatively long times, much more accurate than
what is usually expected for a first-order perturbation treat-
ment �18,20�. The reason for the unexpected accuracy is ex-
plained in �19� by making use of a shadowing theorem.

For a regular system, Eq. �20� predicts an approximate
Gaussian decay of the LE in the case of ��T. Here � is the
decay time of the LE, which can be defined by M���=1 /e,
and T is the period of the �approximately� periodic motion of
the classical system. In fact, in this case, as shown in Ref.
�24�, due to the periodicity of the classical motion, �S can be
divided into an average part and an oscillating part and, for
times not too long, the LE has mainly a Gaussian decay
determined by the average part of �S �42�,

M1�t� � e−�t2 with � = 2wp
2�2��p0

�Ṽ��2/�2. �22�

Here, �V�= 1
T�0

TV�t�dt and tilde means evaluation at p̃0. This
Gaussian decay was first derived in Ref. �16� for initial co-
herent states. Since � increases with decreasing �, ��T is
satisfied for sufficiently weak perturbation. This explains the
phenomenon that the LE of the BEC system has Gaussian
decay in both phases for sufficiently weak perturbation.

With increasing the perturbation strength �, we enter into
the region of perturbation strength in which ��T. The decay
law of the LE in this case has not been discussed in the
literature and the LE does not necessarily have a Gaussian
decay. Numerically, we found that the LE of the BEC system
in the tunneling phase begins to have a stretched exponential
decay when ��5T, in agreement with the above analytical
analysis. Therefore, the semiclassical theory predicts the pos-
sibility of non-Gaussian decay for relatively strong perturba-
tion.

B. LE decay of the BEC system at relatively strong
perturbation

Now, we use Eq. �20� to explain the following numerical
observation in the system of a BEC in a double-well poten-
tial. That is, for relatively strong perturbation the LE obeys
different decay laws in the two phases of the BEC: a
stretched exponential decay in the tunneling phase and a
Gaussian decay in the self-trapping phase.

For this purpose, we need to use a technique which is
different from that used in Ref. �24�. In fact, for times tT,
the periodicity of the classical trajectories plays no role in
determining the decay law of the LE. To calculate the LE in
this case, one may write the LE given in Eq. �20� in the
following form:

Msc�t� � � d�Sei�S/�P��S�2

, �23�

where P��S� is the distribution of �S with the Gaussian
weight taken into account,

P��S� =� dp0

��wp
2�−d/2e−�p0 − p̃0�2/wp

2
���S − �Sp0

� . �24�

The decaying behavior of the LE is determined by the
distribution of the action difference, P��S�. In the case of a
classical system with strong chaos, P��S� has a form close to
a Gaussian distribution �17�. However, when the underlying
classical motion is not strongly chaotic, P��S� may deviate
from the Gaussian form. For example, in the case of weak
chaos in the sawtooth map �20,21� and in the triangle map
�32�, obvious deviation of P��S� from the Gaussian form has
been observed numerically, which leads to deviation of the
decay law of the LE from that found in strongly chaotic
systems.

Before calculating the distribution P��S�, it is useful to
first have a look at features of the classical trajectories cor-
responding to the two phases. Some examples are given in
Fig. 7, for classical trajectories starting from the center of
coherent state �	=1.3�, computed by using Eq. �8�. It is seen
that the trajectory in the self-trapping phase is relatively
simple, while that in the tunneling phase is more complex in
�, with more than one obvious frequencies.

In the sawtooth map, the central body of the distribution
P��S� was found to have roughly a Levy shape and this was
used in explaining the LE decay there �20,21�. Hence, here
we also study the relation between the distribution P��S�
and a Levy distribution. We note that, since a Levy distribu-
tion has an infinite variance, the distribution P��S� cannot be
of a Levy form in the long-tail region. This point is not
serious, if we consider times not long such that the long tails
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FIG. 7. �Color online� Panels �a� and �b�: variation of s and �
with time, for the classical trajectory �see Eq. �8�� starting from the
center of the coherent state �	=1.3� with c=1.2 in the tunneling
phase. Panels �c� and �d�: the same as panels �a� and �b�, for c=5 in
the self-trapping phase.
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of P��S� do not give a significant contribution to the right-
hand side of Eq. �23�. In this case, we can focus on the
central part of P��S� and study whether it can be approxi-
mated by a Levy distribution.

We consider the following asymmetric form of the Levy
distribution �43�:

L�x,�,�� =
1

2�
�

−�

�

exp�izx���z�dz . �25�

Here the function ��z� is

��z� = exp�− igz − DL�z���1 + i� sgn�z���z,���� , �26�

where

��z,�� = tan���/2� for � � 1, �27�

��z,�� = �2/��ln�z� for � = 1. �28�

The parameter �, with 0�2, determines the decay of
long tails, i.e., L�x���x�−�1+�� for large �x�; the parameter �
has the domain �−1,1�, with �=0 giving the symmetric dis-
tribution; the parameter g gives a shift along the x direction;
and DL is related to the width of the distribution.

If the Levy distribution can be used as an approximation
to P��S�, with x=�S /�, substituting Eq. �25� into Eq. �23�,
one obtains,

Msc�t� � exp�− 2��/���DL� . �29�

The dependence of Msc on the time t is given by that of the
quantity DL. Therefore, if DL� t�, then, the semiclassical
theory can explain the observed stretched exponential decay
of the LE with the exponent �. Note that Msc�t� can also be
written in the form of Eq. �29�, when the distribution P��S�
has a Gaussian form. In this case, �=2 and DL is propor-
tional to the width of the Gaussian distribution.

Now we study whether the expression �29� can be used to
explain the numerically found stretched exponential decay of
the LE in the double-well BEC model. The distribution
P��S� can be calculated numerically by making use of Eq.
�24� for initial coherent states with Gaussian shape. For this,
we need to calculate classical trajectories starting from
�r̃0 ,p0� and use Eq. �21� to compute the action difference. As
discussed in Sec. II A, the classical counterpart of the system
has a pair of canonical variables �� ,s�. For initial coherent
states sufficiently far from the two poles, s and � can be
treated like the ordinary momentum and coordinate, respec-
tively. Then, using Eq. �8� to calculate the classical trajecto-
ries and noticing that V=− 1

2s2 since the perturbation is taken
for the parameter c �see Eq. �7��, we can compute the distri-
bution P��S� numerically.

As shown in Fig. 8, in the self-trapping phase with c=5,
the numerically computed distribution P��S� is quite close
to a Gaussian distribution, in agreement with the numerical
observation that the LE has a Gaussian decay in the self-
trapping phase even for relatively strong perturbation. On the
other hand, in the tunneling phase �c=1.2�, the distribution
P��S� deviates notably from the Gaussian shape. Here, for a
reason discussed previously, namely, P��S� cannot have
long tails of the Levy form, we consider a truncated Levy

distribution, which is obtained from the Levy distribution
�25� by taking a finite domain of the variable, y� �−3,3�.
The figure shows that the central part of P��S� has a shape
roughly close to a Levy distribution. We have further com-
pared the Fourier transform of P��S� and the function ��z�
in Eq. �26�, which is the Fourier transform of the Levy dis-
tribution, and found that they are close.

We further study the dependence of DL on the time t. For
this, we first calculate numerically the Fourier transform of
P��S�, then, use it as an approximation to ��z� in Eq. �26�
and calculate DL. As shown in Fig. 9, ln DL has a good linear
dependence on ln t in both phases, implying that DL� t�. In
both phases, the numerically computed values of � have
been found quite close to the corresponding values of the
exponent �, which were obtained from fitting of the LE de-
cay by Mf�t� in Eq. �16�. That is, in both phases, ���.
Hence, Msc�t� in Eq. �29� decays in a way similar to the
numerically computed LE, specifically, a stretched exponen-
tial decay in the tunneling phase and a Gaussian decay in the
self-trapping phase in the case of relatively strong perturba-
tion. Therefore, the semiclassical theory indeed can give ex-
planations to the numerically observed decaying behaviors of
the LE in the BEC system.
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FIG. 8. �Color online� Histograms show the distribution P�y� of
the action difference �S for t=80, where y= ��S− ��S�� /�c, with
��S� the average value of �S. The distribution was calculated by
taking 104 initial points in the phase space, corresponding to the
initial coherent state �	=1.3�. �a�: c=1.2 in the tunneling phase. The
dotted curve is a fitting one calculated from a truncated �y� �
−3,3�� Levy distribution. �b�: c=5 in the self-trapping phase. The
dotted curve is a fitting Gaussian distribution.
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FIG. 9. �Color online� �a�: Dependence of DL on the time t for
c=1.2 in the tunneling phase. Here DL is the parameter in Eq. �29�,
calculated from fitting of ��z� in Eq. �26� to the Fourier transform
of the distribution P��S�. The squares represent numerically com-
puted results and the solid straight line gives the linear fitting,
ln DL�� ln t with �=1.86. �b�: Similar to �a�, except that c=5, DL

is the width of the fitting Gaussian distribution, and �=2.0 for the
fitting line. Note that in both cases ���, where � is exponent of
the stretched exponential decay of the LE shown in Fig. 6.
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V. CONCLUSIONS

We have studied decaying behaviors of the LE in a BEC
system in a double-well potential. This system has a classical
counterpart with one pair of canonical variables, hence, is a
regular system. The BEC system may undergo a dynamical
phase transition between two phases: a tunneling phase and a
self-trapping phase. Our numerical results show that the LE
has Gaussian decay in both phases under sufficiently weak
perturbation, which is in agreement with a previous semi-
classical prediction. However, for relatively strong perturba-
tion, the LE is found to obey different decaying laws on the
two sides of the dynamical phase transition: Gaussian decay
in the self-trapping phase and stretched exponential decay in
the tunneling phase. This feature of the LE decay provides a
proper characterization of the dynamical phase transition of
the BEC system.

In order to understand the above mentioned numerical
observations, we have performed a semiclassical analysis.
The semiclassical theory shows that the LE indeed may have
different types of decaying behaviors under weak and strong
perturbation. Furthermore, the difference in the decaying law

of the LE in the two phases at relatively strong perturbation,
has its origin in the difference between the classical trajecto-
ries in the two cases. We show that certain properties of
classical trajectories, specifically, properties of the distribu-
tion of certain action difference, are indeed responsible to the
difference in the decaying law of the LE in the two phases.
The semiclassical approach can quantitatively predict the ex-
ponents of the decay of the LE in the two phases, in particu-
lar, that of the stretched exponential decay in the tunneling
phase.
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