
Stability of Fock states in a two-component Bose-Einstein condensate with a regular
classical counterpart

Wen-ge Wang,1,2 Jie Liu,3 and Baowen Li2,4

1Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
2Department of Physics and Centre for Computational Science and Engineering, National University of Singapore, 117542, Singapore

3Institute of Applied Physics and Computational Mathematics, P.O.Box 100088, Beijing, China
4Graduate School for Integrative Sciences and Engineering, National University of Singapore, 117597, Singapore

�Received 27 December 2007; revised manuscript received 10 April 2008; published 30 May 2008�

We study the stability of a two-component Bose-Einstein condensate �BEC� in the parameter regime in
which its classical counterpart has regular motion. The stability is characterized by the fidelity for both the
same and different initial states. We study as initial states the Fock states with definite numbers of atoms in
each component of the BEC. It is found that for some initial times the two Fock states with all the atoms in the
same component of the BEC are more stable than Fock states with atoms distributed in the two components.
An experimental scheme is discussed, in which the fidelity can be measured in a direct way.
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I. INTRODUCTION

In many research fields, such as Bose-Einstein condensa-
tion �BEC� and quantum information processing, stable and
coherent manipulation of quantum states is of crucial impor-
tance �1�. In fact, the instability issue of BEC in dilute gases
�2� has been constantly addressed for its crucial role in the
control, manipulation, and even future application of this
newly formed matter, including dynamical instability �3�,
Landau or superfluid instability �4�, modulation instability
�5,6�, and quantum fluctuation instability �7�. It is found that
instability may break the coherence among the atoms and
lead to collapse of BEC �8�.

Recently, the stability of the quantum motion of BEC sys-
tems under small perturbation, which is measured by the
so-called quantum Loschmidt echo or fidelity, has been stud-
ied �9,10�. Here, the fidelity is defined as the overlap of two
states obtained by evolving the same initial state under two
slightly different Hamiltonians �11–13�. Explicitly, it is
M�t�= �m�t��2, where m�t� is the fidelity amplitude for an ini-
tial state ��0�, defined as

m�t� = ��0�exp�iHt/��exp�− iH0t/����0� . �1�

Here H0 and H=H0+�V are the unperturbed and perturbed
Hamiltonians, respectively, with � a small quantity and V a
generic perturbing potential.

Fidelity decay has been well studied in quantum systems
whose classical counterparts have chaotic motion �14–23�.
Related to the perturbation strength, previous investigations
show the existence of at least three regimes of fidelity decay.
�i� In the perturbative regime with sufficiently weak pertur-
bation, in which the typical transition matrix element is
smaller than the mean level spacing, the fidelity has a Gauss-
ian decay �11,15,17�. �ii� Above the perturbative regime, the
fidelity has an exponential decay with a rate proportional to
�2, usually called the Fermi-golden-rule �FGR� decay of fi-
delity �14–19�. �iii� Above the FGR regime is the Lyapunov
regime in which M�t� usually has an approximate exponen-
tial decay with a perturbation-independent rate; the decay
rate of the fidelity is given by the Lyapunov exponent of the

underlying classical dynamics, when the classical counter-
part of the quantum system has a homogeneous phase space
�14–16,19–21�.

For quantum systems whose classical counterparts have
regular motion, many investigations in the decaying behavior
of fidelity have also been carried out �see, e.g., Refs.
�9,18,22–31��, however, the situation is still not as clear as in
the case of quantum chaotic systems. The point is that fidel-
ity decay in quantum regular systems exhibits notable initial-
state dependence. �In quantum chaotic systems, the main fea-
ture of fidelity decay is initial-state independent beyond a
short initial time.� The most thoroughly studied initial states
are narrow Gaussian wave packets �coherent states�, for
which the semiclassical theory and numerical simulations
show that the fidelity has, roughly speaking, a Gaussian de-
cay followed by a long-time power law decay �18,27,31�.
Some other types of initial states of practical interest have
also been studied numerically, e.g., the fidelity of an initial
maximally entangled �N-GHZ� state is shown to have an
interesting oscillating behavior �9�.

The above considerations motivate our interest in the sta-
bility of a two-component BEC �32�, which is exposed to a
pulsed laser field coupling two internal states of the atoms in
the BEC. This BEC system possesses a classical counterpart,
which has chaotic or regular motion depending on both the
strength of the coupling field and that of the interaction
among the atoms �9�. In Ref. �9�, the fidelity of initial coher-
ent states in this BEC system has been studied and found in
agreement with previous analytical predictions in both cases
with chaotic and regular motion in the classical limit. We
remark that, more recently, the fidelity approach has also
been employed in the study of the stability of another BEC
system, which starts from the ground state �10�.

In this paper, we study the stability of the quantum motion
of the same BEC system as in Ref. �9�. However, here we are
interested in the stability of initial Fock states, which have
definite numbers of atoms occupying each of the two com-
ponents of the BEC, and in the parameter regime in which
the classical counterpart of the BEC system has regular mo-
tion. In particular, we are interested in whether some Fock
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states are more stable than others. Knowledge about the sta-
bility properties of this type of initial states may be useful for
potential application of BEC in fields such as quantum infor-
mation �33�. As in Ref. �9�, we still consider the stability
issue caused by small perturbation due to imperfect control
of the coupling field and use fidelity to characterize the sta-
bility, with the difference between H and H0 in Eq. �1� given
by a small change in the strength of the coupling field.

Presently, there is no analytical prediction for fidelity de-
cay of initial Fock states, therefore, our investigation is
mainly based on numerical simulations. Interestingly, our nu-
merical results show that, for some initial times, initial Fock
states with all the atoms in the same component of the BEC
are more stable than other Fock states. To see whether or not
this property is due to the specific measure given in Eq. �1�,
we have also studied the behavior of a more general form of
the fidelity, which is the overlap of the time evolution of two
different initial Fock states under two slightly different
Hamiltonians. Our numerical simulations for this more gen-
eral fidelity give consistent results.

The paper is organized as follows: In the second section,
we discuss briefly the two-component BEC model. Section
III is devoted to a study of fidelity for the same initial Fock
states. In Sec. IV, we introduce and study numerically the
more general fidelity mentioned above for two different ini-
tial states. Conclusions are given in Sec. V. An experimental
scheme for measuring fidelity of the quantum motion of a
two-component BEC is discussed in the Appendix.

II. PHYSICAL MODEL

We consider the same BEC system as in Ref. �9�, specifi-
cally, cooled 87Rb atoms with two different hyperfine states
F=1,mF=−1 and F=2,mF= +1. The total number of the
atoms in the BEC is N. A near resonant, pulsed radiation
laser field is used to couple the two internal states. Within the
standard rotating-wave approximation, the Hamiltonian de-
scribing the transition between the two internal states reads

Ĥ =
�

2
�â1

†â1 − â2
†â2� +

g

4
�â1

†â1 − â2
†â2�2

+
K

2
�â1

†â2 + â2
†â1��

n

��t − nT� , �2�

where K is the coupling strength proportional to the laser
field. Here we suppose that the laser field used to couple the
two states is turned on only at certain times with a period T.
The operators â1 , â1

† , â2, and â2
† are boson annihilation and

creation operators for the two components, respectively. The
parameters are K=��R , g= 2��2

m 	�2a12−a11−a22� , and �
=−�+ �4N��2 /m�	�a11−a22�. Here, �R is the Rabi fre-
quency; aij is the s-wave scattering amplitude; � is the de-
tuning of lasers from resonance, very small and negligible in
our case; m is the mass of atom; 	 is a constant of order one
independent of the hyperfine index, relating to an integral of
equilibrium condensate wave function �34�.

The above Hamiltonian can be written in terms of the
SU�2� generators �35�

L̂x =
â1

†â2 + â2
†â1

2
, L̂y =

â1
†â2 − â2

†â1

2i
, L̂z =

â1
†â1 − â2

†â2

2
,

�3�

which gives

Ĥ = �L̂z + gL̂z
2 + K�T�t�L̂x. �4�

The Floquet operator describing the quantum evolution in
one period is �9,18�

Û = exp�− i��L̂z + gL̂z
2�T�exp�− iKL̂x� , �5�

where the Planck constant is set unit unless otherwise stated.
Since the overall scaling of the Hamiltonian does not influ-
ence dynamical properties of the system, we will set � unit.

The Hilbert space for the system is spanned by the eigen-

states of L̂z, denoted by �l� with l=−L ,−L+1, . . . ,L, where
L=N /2. These states �l� are the Fock states. Using N1 and N2
to denote the numbers of the atoms in the two components,
respectively, with N=N1+N2, we have l= �N1−N2� /2. Hence,
�l� is the state with N1= �L+ l� atoms in the first component
and with N2= �L− l� atoms in the second component. In par-
ticular, the two states with all the atoms in one of the two
components are �−L� and �L�. The SU�2� representation of
the system discussed above is quite convenient for the study
of properties of the Fock states �l�.

Note that for some specific choice of the parameters the
system degenerates to the quantum kicked top model �36�.
As in the kicked top model, an effective Planck constant can
be introduced, �eff=1 /L, which will be written as � in what
follows for brevity. The system has a classical counterpart in
the limit N→
.

III. FIDELITY DECAY FOR INITIAL FOCK STATES

As mentioned in the Introduction, we consider a small
perturbation due to imperfect control of the coupling field.
Specifically, for an unperturbed Hamiltonian H0 with the
form given on the right-hand side of Eq. �4�, the perturbed
Hamiltonian �H0+�V� is given by the change K→K+�. De-
noting the one-period evolution operators corresponding to

the unperturbed and the perturbed Hamiltonians by Û and

Û�, respectively, the fidelity amplitude m�t� is now written as

m�t = nT� = ��0��Û�
†�n � �Û�n��0� , �6�

with ��0� indicating the initial state. Fast decay of the fidelity
means rapid lose of information during the quantum evolu-
tion in the presence of the perturbation. For small �, it is
usually convenient to use �=� /� as a measure for the
strength of quantum perturbation.

In this paper, we consider only the parameter regime in
which the corresponding classical system has regular motion
�see Ref. �9� for details of the regime�. We have carried out
numerical investigations in the fidelity decay of initial Fock
states �l� in this parameter regime. It is found that the two
Fock states with �l�=L, i.e., with all the atoms occupying the
same component of the BEC, behave differently from other
Fock states.
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Some examples of our simulations are shown in Fig. 1,
with parameters K=1, gc	gL=0.2, L=100, and �=0.1. For
some initial times, the fidelity M�t� of the two initial Fock
states with �l�=L has a decay which is approximately a
Gaussian decay and is much slower than the fidelity decay of
the other three Fock states. For long times, the fidelity of �L�
and �−L� are smaller than that of the other three Fock states,
the latter of which oscillates and decays slowly on average.
Similar results have also been found for other Fock states �l�
with �l� not close to L. We have varied the perturbation
strength, with � from 0.01 to 5, and found qualitatively simi-
lar results. These results show that for not long times, the
two Fock states �L� and �−L� are more stable than other Fock
states with �l� not close to L.

There is also some difference between the fidelity decay
of the two initial states �−L� and �L�, as shown in Fig. 1, that
is, the fidelity of �L� decays more slowly than that of �−L�.
This can be understood from the form of the Hamiltonian in
Eq. �4�. Indeed, for the state �L�, the first two terms on the
right-hand side of Eq. �4� give �L+gcL�, while for �−L� they
give �gcL−L�. Since L+gcL� �gcL−L�, the state �L� is less
perturbed than the state �−L� for the same change of the
parameter K.

We have also studied fidelity decay of Fock states �l� with
�l� close to L. Figure 2 gives the cases of l=100, 99, 98, and
97, which shows that the rate of the initial decay of fidelity
increases with decreasing l, and the oscillation of M�t� ap-
pears even at l=99. For l close to −L, the situation is similar.

In Fig. 3, we show fidelity decay at different values of K
corresponding to the same fixed time t. For �=0.01 shown in
the upper panel, at t=1000 the fidelity of the two Fock states
�L� and �−L� is much higher than that of the other three Fock
states for K between 0.5 and 3. With increasing the pertur-
bation strength �, the fidelity at this time becomes smaller.
For �=0.04 shown in the lower panel, M�1000� of �−L� is
already small, while M�1000� of �L� is still high within some
windows of K. This is because the fidelity of �−L� decays
faster than that of �L� �see Fig. 1 and discussions in a previ-
ous paragraph�.

In quantum regular systems, the fidelity of initial coherent
states is known to have initial Gaussian decay �18�. Hence, it
is natural to check the relationship between the Fock states
and the coherent states generated by generators of the group
SU�2�. A SU�2� coherent state �� centered at a point in the
sphere with polar angle � and azimuthal angle � is given by
�37,38�

�� 	 e�L̂+−L̂−�− L� with  =
� − �

2
e−i�. �7�

The state �−L� is a coherent state with =0. To see the rela-
tion of other Fock states to coherent states, one can expand
�� in the Fock states

FIG. 1. �Color online� Decay of fidelity for K=1, gc=0.2, L
=100, and �=0.1. The initial states are Fock states �l� of l=−100
�thin solid curve�,�75 �dashed curve�, 0 �dotted curve�, 75 �dashed-
dotted curve�, and 100 �thick solid curve�, respectively. The initial
decay of the fidelity of the two states �L� and �−L� is much slower
than that of the other three Fock states.

FIG. 2. �Color online� Decay of fidelity for K=1, gc=0.2, L
=100, and �=0.1. The initial states are Fock states �l� of l=100, 99,
98, and 97, respectively.

FIG. 3. �Color online� Values of M�t� for t=1000, as a function
of K. The five curves correspond to five initial Fock states: the thin
solid curve for �−L�, dashed curve for �−L /2�, dotted curve for �0�,
dashed-dotted curve for �L /2�, and thick sold curve for �L�. Param-
eters are L=100,gc=0.2, and �=0.01 for the upper panel and �
=0.04 for the lower panel.
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�� = �
l=−L

L
�z��l+L

�1 + zz��L
 �2L�!
�L + l� ! �L − l�!�1/2

�l� , �8�

where z=−e−i�cot�� /2�. This gives

���l��2 =
�z�2�l+L�

�1 + �z�2�2L
 �2L�!
�L + l� ! �L − l�!� . �9�

Considering the limit �z�→
, it is easy to check that �L� is
also a coherent state. Other Fock states are not coherent
states; some examples are shown in Fig. 4.

One may expect that, since the two Fock states �L� and
�−L� are coherent states, the initial slow Gaussian decay of
their fidelity, as shown in Fig. 1, might be explained quanti-
tatively by making use to results given in Ref. �18�. How-
ever, detailed analysis show that the situation here is more
complex. Indeed, in the derivation of Gaussian decay given
in Ref. �18�, a property of coherent states is made use of,
namely, a Gaussian form of the expansion of a coherent state
in the basis of Fock states. This property is possessed by
most of the coherent states, but the two states �L� and �−L�
are themselves Fock states. If one tries to use a � function for
the expansion, going along the line of Ref. �18�, it is found
that their fidelity has a decay rate which is equal to zero.
Hence, this approach cannot explain quantitatively the initial
Gaussian decay of the fidelity of the two states �L� and �
−L�. But, it indeed gives a qualitative explanation to the fact
that the decay is slow.

IV. FIDELITY FOR DIFFERENT INITIAL STATES

In practical situations, experimentally prepared initial
states are usually not exactly the same as the expected ones.
Hence, in addition to perturbation, one should also consider
small change in the initial state in the study of fidelity, i.e.,
considering fidelity of a more general form than that in given
Eq. �1�. In this section, we consider such a more general
fidelity and use it in the study of the stability of Fock states.

A. Fidelity for different initial Fock states

Suppose the expected initial state is a Fock state �k�, while
what is really prepared is the state

��0� = �
l

Cl�l� �10�

with �Ck� close to but smaller than one. The expected state at
time t is the time evolution of �k� under H0, while the real
state is the time evolution of ��0� under H. Hence, one
should consider the following more general form of the fi-
delity amplitude �see Ref. �13��:

f�t� = ��0�eiHte−iH0t�k� = �
l

Cl
�mlk�t� ,

where

mlk�t� = �l�eiHte−iH0t�k� . �11�

The quantity mlk�t� can be regarded as a generalized echo,
from an initial state �k� to a final state �l�. Its absolute value
square, Mlk�t�	�mlk�t��2 gives the probability for the final
state to be found in �l�, if the initial state is �k� and the
dynamics is governed by H0 for the first time interval t and
by �−H� for the second interval with the same length. For
k= l, mlk�t� is just the fidelity amplitude in Eq. �1�. In this
section, we are more interested in the case of k� l, for which
�mlk�0��2=0.

For a quantum regular system H0, Mlk�t� of k� l may be
considerably large within some time windows, due to the
peculiarity of integrability. �If H0 is a quantum chaotic sys-
tem, Mlk�t� usually approaches its saturation value soon and
fluctuates around the saturation value.�

We would like to mention that the quantity mlk�t� also
appears, when one considers the difference between the ex-
pectation values of an arbitrary observable A for the same
initial state under two slightly different Hamiltonians. In-
deed, consider an initial state �k� and the expectation values
of A in the two systems

Akk
H0�t� 	 �k�eiH0tAe−iH0t�k� , �12�

Akk
H �t� 	 �k�eiHtAe−iHt�k� . �13�

Inserting the identity operator �le
−iH0t�l��l�eiH0t in Eq. �13�

before and after the operator A, we obtain

Akk
H �t� − Akk

H0�t� = �
ll�

� mkl�t�mkl�
� �t�All�

H0�t� , �14�

where the prime over the sum implies that l=k and l�=k
cannot hold at the same time and

All�
H0�t� 	 �l�eiH0tAe−iH0t�l�� �15�

is a quantity given in the system H0.

B. Numerical investigation

Now we study the behavior of the quantity Mlk�t� in the
two-component BEC system discussed above. As shown in
Sec. III, for some initial times the two Fock states �L� and

FIG. 4. �Color online� Variation of �� � l��2 with � for L=100,
where �� is the coherent state in Eq. �7�. For the three curves on the
left, l=100 �solid curve�, 99 �dashed curve�, and 98 �dotted curve�,
respectively. For the three on the right, l=−100, −99, and �98,
respectively. For the two in the middle, l=0 and 2, respectively.
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�−L� are more stable than other Fock states �l� with �l� not
close to L, in the sense that the former’s fidelity is higher
than the latter’s. In this section, we show that our numerical
investigations in the quantity Mlk�t� give consistent results.
Specifically, Mlk�t� with either �l� or �k� close to L behave
more regularly than those with both �l� and �k� far from L.

Let us first consider Mlk�t� with �l� far from L. An example
is given in Fig. 5, which shows variation of Mlk�t� with time
t for L=100, l=−31, and k from-100 to 99. It shows that for
k close to −L, Mlk�t� has quite regular peaks, and with in-
creasing k from −L to 0, the peaks become more and more
irregular. Similarly, for k decreasing from L to 0, the peaks of
Mlk�t� also becomes more and more irregular.

On the other hand, for l=−L=−100, Mlk�t� behaves regu-
larly for all the values of k, as shown in Fig. 6. Here, the
basic feature is that for each value of k, Mlk�t� is consider-
ably large only within some time intervals. Specifically, for
k=−100, Mlk�t�=1 at t=0 as a trivial result of k= l, then, it
decays and remains small until t�1370 after which there is a
revival, forming a second peak centered at t�1450. The sec-
ond peak of Mlk�t� of k=−100 splits into two peaks when
k=−98, hence, Mlk�t� has three peaks for k=−98. Interest-

ingly, with further increasing k, the first peak of Mlk�t�
moves to the right while the second peak moves to the left.
The two peaks meet at a value of k a little smaller than 79. In
Fig. 7, we show variation of the times corresponding to the
centers of the first and second peaks with increasing k.

The structure of the peaks shown in Fig. 6 suggests that at
each fixed time t, �Mlk�t�� of l=−L may be concentrated in a
relatively small region of k. Indeed, this is confirmed by our
further numerical simulations. We have calculated the quan-
tity

Sk�l,t� = �
k��k

Mlk��t� , �16�

which gives the total probability for k��k. Examples for
some fixed times are given in Fig. 8, which shows that
�Mlk�t�� of l=−L is indeed concentrated in a relatively narrow
region of k for each time.

V. CONCLUSIONS

By numerical simulations, we have studied quantum
Loschmidt echo or fidelity decay of initial Fock states in a

FIG. 5. Variation of �mlk�t��2 with t for l=−31. It has relatively
regular peaks when �k� is close to L. Parameters are L=100, K
=2, gc=0.17, for which the classical counterpart has regular mo-
tion, and �=0.5.

FIG. 6. Same as in Fig. 5 for l=−L=−100.

FIG. 7. �Color online� Variation with k for the times correspond-
ing to the centers of the first and second peaks of �mlk�t��2 shown in
Fig. 6.

FIG. 8. �Color online� Values of Sk=�k��kMlk��t� for l=−L. Pa-
rameters are the same as in Fig. 5. It shows that at each of the times,
Mlk�t� is concentrated in a small region of k.
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two-component BEC system, whose classical counterpart has
regular motion. Our results show that, for some initial times,
initial Fock states with all the atoms in one component of the
BEC are more stable than Fock states with atoms distributed
in the two components. This implies that one-component
BEC might be more stable than two-component BEC.

We have further investigated this issue by considering a
more general form of the fidelity, i.e., fidelity for different
initial states. Numerical computations of the general fidelity
show consistent results, namely, initial Fock states with all
the atoms in the same component behave more regularly than
other Fock states.
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APPENDIX: AN EXPERIMENTAL SCHEME
FOR MEASURING FIDELITY

In this appendix, we discuss in detail an experimental
scheme for measuring fidelity decay in a BEC system, which
is briefly sketched in the last section of Ref. �9� and give an
explicit expression of the fidelity in terms of measurable
quantities. Experimental schemes for measuring fidelity have
been discussed by several groups and basically three types of
schemes have been proposed �23�. In the first type of
scheme, a quantum system is considered, which is composed
of two subsystems �or has two degrees of freedom�
�29,30,39,40�. The system is assumed to have a time evolu-
tion such that the fidelity of the first subsystem is given by
the reduced density matrix of the second subsystem �41,42�.
Then, measuring properties of the second subsystem which
can be small, fidelity of the first subsystem which may be
large can be obtained. This scheme is adopted in the experi-
ments in Refs. �43,44�. To be specific, one may consider a
Hilbert space which is the direct product of a two-
dimensional subspace with basis states �1� and �2� and a sec-
ond subspace for state vectors ���. The Hamiltonian has the
form H=H1�1��1�+H2�2��2�, where H1 and H2 act in the
second subspace only. For an initial state ���0��= ��1�
+ �2����0� /2, the state at time t is ���t��= 1

2
�e−iH1t��0��1�

+e−iH2t��0��2��. Then, the fidelity amplitude
��0�eiH2te−iH1t��0� in the second subspace is related to an off-
diagonal element of the reduced density matrix in the first
subspace.

In the second type of scheme, a special kind of system is
considered, for which the time evolution can be such con-
trolled that the system evolves under H0 for a time period t,
then, evolves under �−H0−�V� for a second period t. The
fidelity is then just the survival probability, i.e., the probabil-

ity for the final state to be found in the initial state. In the
third type, classical waves are employed, which evolves ac-
cording to a dynamical law mathematically equivalent to
Schrödinger equation �45�.

Now we discuss the scheme briefly mentioned in Ref. �9�.
We propose to use a setup similar to that used in Ref. �46�.
Consider a BEC �e.g., 87Rb� which is optically cooled and
trapped, then, transferred into a double-well potential. The
double-well potential can be created by deforming a single-
well optical trap into a double-well potential with linearly
increasing the frequency difference between the rf signals
�46�. Near-resonant coupling fields are applied to the BEC in
the two wells with slight difference in strength. Finally, si-
multaneously switching off all the external fields and letting
the BEC expand freely, interference pattern of the BEC can
be observed. The wells should be deep, such that the total
density remains approximately a constant, and the atom
numbers in the two wells are required nearly equal.

At the initial time t0, suppose the state of the system is a
product state ���t0��= ���t0�����t0����p�t0��, where ���t0�� is
the internal state of the atoms, e.g., with all the atoms in the
same hyperfine internal state, ���t0�� describes the motion of
the center-of-mass degrees of freedom of the atoms, and
��p�t0�� represents the field forming the optical trap. We as-
sume that the field of the optical trap is not entangled with
the BEC in the experimental process and shall omit the term
��p�t��.

From time t0 to t1, the potential of the optical trap is
deformed into a double-well potential. If the internal state of
the atoms is not influenced in this process, at t= t1, one has
���t1��= ���t1�����1�R1 , t1��+ ��2�R2 , t1���, where R1 and R2
indicate spatial locations of the two wells, respectively.

From time t1 to t2, near-resonant coupling fields can be
applied to the condensates to couple the two hyperfine states.
The coupling fields have a slight difference in strength in the
two wells. We assume that the near-resonant coupling fields
can be treated as classical fields and do not induce tunneling
between the two wells. The internal states of the condensate
in the two wells will then evolve differently. Thus, for
t� �t1 , t2�,

���t�� = ��1�t����1�R1,t�� + ��2�t����2�R2,t�� . �A1�

In the case that the internal degrees of freedom are not
coupled to the center-of-mass degrees of freedom, �� j�t�� has
unitary time evolution

�� j�t�� = Uj�t1,t����t1�� , �A2�

with j=1,2 indicating the two wells. The internal state can
be expanded in the Fock states �l�,

�� j�t�� = �
l

dl
�j��t��l� . �A3�

At t= t2, one can simultaneously switch off all the external
fields and let the two clouds of BEC expand freely. For
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t� t2, Eqs. �A1� and �A3� are still valid. Substituting Eq.
�A3� into Eq. �A1�, one has

���t�� = �
l

�dl
�1��t���1�R1,t�� + dl

�2��t���2�R2,t����l� .

�A4�

Suppose the single particle states for ��1�R1 , t�� and
��2�R2 , t�� are �1�x , t� and �2�x , t�, respectively. Then, the
probability of finding a particle at a position x is

P�x,t� = ��1�2 + ��2�2 + 2 Re� f̃�t��1�2
�� , �A5�

where f̃�t�	�ldl
�1��t�dl

�2��

�t�.

Making use of Eqs. �A2� and �A3�, it is seen that

f̃�t� = ���t1��U2
†�t1,t�U1�t1,t����t1�� , �A6�

which is a fidelity amplitude. Since there is no coupling field

beyond t2, U1�t2 , t�=U2�t2 , t� and, as a result, f̃�t�= f̃�t2� for
t� t2. Then, Eq. �A5� can be written as

2� f̃�t2��Re�ei�f�t2��1�2
�� = P�x,t� − ��1�2 − ��2�2, �A7�

where � f�t2� is the phase of f̃�t2�. Therefore, the value of

� f̃�t2�� can be obtained by measuring the interference pattern
of the two expanding clouds of BEC.
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