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We study quantum Loschmidt echo, or fidelity, in the triangle map whose classical counterpart has linear
instability and weak chaos. Numerically, three regimes of fidelity decay have been found with respect to the
perturbation strength €. In the regime of weak perturbation, the fidelity decays as exp(—c€’t?) with y=1.7. In

the regime of strong perturbation, the fidelity is approximately a function of e

123, which is predicted for the

classical fidelity [G. Casati et al., Phys. Rev. Lett. 94, 114101 (2005)], and decays slower than power-law
decay for long times. In an intermediate regime, the fidelity has approximately an exponential decay

exp(—c'et).
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I. INTRODUCTION

The stability of quantum motion in dynamical systems,
measured by quantum Loschmidt echo [1], has attracted
much attention in recent years. The echo is the overlap of the
evolution of the same initial state under two Hamiltonians
with slight difference in the classical limit, M(t)=|m()|*,
where

m(t) = (V|exp(iHt/h)exp(— iHyt/h)| W) (1)

is the fidelity amplitude. Here H, and H are the unperturbed
and perturbed Hamiltonians, respectively, H=H,+ eH,, with
€ a small quantity and H; a perturbation. This quantity M(r)
is called fidelity in the field of quantum information [2].

Fidelity decay in quantum systems whose classical coun-
terparts have strong chaos with exponential instability, has
been well studied [3-17]. Related to the perturbation
strength, previous investigations show the existence of at
least three regimes of fidelity decay: (i) In the perturbative
regime in which the typical transition matrix element is
smaller than the mean level spacing, the fidelity has a Gauss-
ian decay. (ii) Above the perturbative regime, the fidelity has
an exponential decay with a rate proportional to €, usually
called the Fermi-golden-rule (FGR) decay of fidelity. (iii)
Above the FGR regime is the Lyapunov regime in which
M(r) has usually an approximate exponential decay with a
perturbation-independent rate.

Fidelity decay in regular systems with quasiperiodic mo-
tion in the classical limit has also attracted much attention
[9,14,17-25]. For single initial Gaussian wave packet, the
fidelity has been found to have initial Gaussian decay fol-
lowed by power-law decay [9,21,25].

Meanwhile, there exists a class of system which lies be-
tween the two classes of system mentioned above, namely,
between chaotic systems with exponential instability and
regular systems with quasiperiodic motion. One example of
this class of system is the triangle map proposed by Casati
and Prosen [26]. The map has linear instability with vanish-
ing Lyapunov exponent, but can be ergodic and mixing with
power-law decay of correlations. The classical Loschmidt
echo in the triangle map has been studied recently and found
behaving differently from that in systems with exponential
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instability and in systems with quasiperiodic motion [27].
This suggests that the decaying behavior of fidelity in the
quantum triangle map may be different from that in the other
two classes of system as well. In this paper, we present nu-
merical results which confirm this expectation.

Specifically, as in systems possessing strong chaos, in the
triangle map three regimes of fidelity decay are found with
respect to the perturbation strength: weak, intermediate, and
strong. However, in each of the three regimes, the decaying
law(s) for the fidelity in the triangle map has been found to
be different from that in systems possessing strong chaos. In
Sec. II, we recall properties of the classical triangle map and
discuss its quantization. Section III is devoted to numerical
investigations for the laws of fidelity decay in the three re-
gimes of perturbation strength. Conclusions are given in Sec.
Iv.

II. TRIANGLE MAP

On the torus (r,p) € T?=[—m, ) X [-, ), the triangle
map is

DPns1 =Pp+ asgn(r,) + B (mod 2m),

(mod 2), (2)

Tpnel =T+ Pntt

where sgn(r)= % 1 is the sign of r for r# 0 and sgn(r)=0 for
r=0 [26]. Rich behaviors have been found in the map: For
rational «/7 and B/, the system is pseudointegrable. With
the choice of =0 and irrational B/, it is ergodic but not
mixing. Interestingly, for incommensurate irrational values
of a/ and B/, the dynamics is ergodic and mixing. In our
numerical calculations, we take a=7> and B=(\5-1)m/2,
for which (B/«) is an irrational number, the golden mean
divided by 7, and the map is ergodic and mixing.

The triangle map (2) can be associated with the
Hamiltonian

H= %p‘z +V(r) D, 8(t-nT), (3)

n=—0w

where V(r)=—a|r|-Br and T is the period of kicking. It is
easy to verify that the dynamics produced by this Hamil-
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tonian gives the map (2) with the replacement p=Tp,
a=Ta, and B=Tp.

The classical map can be quantized by the method of
quantization on torus [28-31]. Schrddinger evolution under
the Hamiltonian in Eq. (3) for one period of time is given by
the Floquet operator

U= exp(— %(ﬁﬁ) exp[— iV(7)], (4)

where we set =1 in the Schrodinger equation. In this quan-
tization scheme, an effective Planck constant % .;=7T is intro-
duced. It has the following relation to the dimension N of the
Hilbert space,

Nheff=4772’ (5)

hence, #i.g=27/N. In what follows, for brevity, we will
omit the subscript eff of 7. FEigenstates of 7 and
p are discretized, 7j)=jilj) and plky=khlk), with
j,k==-N/2,-N/2+1,...,0,1,...,(N/2)—1. Then, making
use of the above discussed relations among
p.,p,T,a,a, E, B, in particular, T=#, the Floquet operator in
Eq. (4) can be written as

v=ex|- o2 ool Ltalit+ 0] ©

In numerical computation, the time evolution |¢A(1))=U"| )
is calculated by the fast Fourier transform (FFT) method.

The fidelity in Eq. (1) involves two slightly different
Hamiltonians, unperturbed and perturbed. In this paper, for
an unperturbed system with parameters « and g, the per-
turbed system is given by

B— B ()

Without the loss of generality, we assume €=0. The param-
eter o=(e/h) can be used to characterize the strength of
quantum perturbation.

a— a+ €,

II1. THREE REGIMES OF FIDELITY DECAY
A. Weak perturbation regime

Let us first discuss weak perturbation. As mentioned in
the Introduction, in systems with strong chaos in the classical
limit, the fidelity has a Gaussian decay under sufficiently
weak perturbation. The Gaussian decay is derived by
making use of the first-order perturbation theory for eigen-
solutions of H and H, and the random matrix theory for
AEnEE,,—Eg, where E, and ES are eigenenergies of H and
H,, respectively. Numerical results in Ref. [32] show agree-
ment of the spectral statistics in the triangle map with the
prediction of random matrix theory, hence, at first sight,
Gaussian decay might be expected for the fidelity decay in
the weak perturbation regime of the triangle map.

However, our numerical results show a non-Gaussian de-
cay of fidelity for small perturbation. An example is given in
Fig. 1 for 0=10"*. To obtain relatively smooth curves for
fidelity, average has been taken over 50 initial point sources
(eigenstates of 7) chosen randomly. This figure, plotted with
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FIG. 1. (Color online) Averaged fidelity at weak perturbation,
o=10"* (solid curve), with average taken over 50 initial point
sources chosen randomly, N=2'2=4096. The dashed-dotted straight
line has a slope 1.7, showing that log,o M(f) is approximately a
function of 7!7. For comparison, we also show two straight lines
(dashed and dotted) with slopes 1 and 2, respectively.

logjo[—log;o M(r)] versus logjotf, shows clearly that

log;o M(t) is approximately proportional to ¢!/ (the dashed-
dotted straight line), while is far from the Gaussian case of 2
and the exponential case of ¢ represented by the dotted and
dashed lines, respectively.

Furthermore, we found that the averaged fidelity M(r) can
be fitted well by

M, (1) = exp(- co”1”) (8)

with y=1.7 and c as a fitting parameter. In Fig. 2, we show
fidelity decay for three different values of o. With the hori-
zontal axis scaling with log;, o?t!”7, the three curves corre-
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FIG. 2. (Color online) Averaged fidelity at three weak perturba-
tion strengths, o=10"* (thin solid curve), 103 (dashed curve), and
1072 (thick solid curve), with average taken over 50 initial point
sources chosen randomly, N=2'2=4096. The dashed-dotted straight
line represents M (¢) in Eq. (8) with y=1.7 and ¢ as an adjusting
parameter. Inset: Fidelity of o=10"3 and N=2"; the two curves are
almost indistinguishable.
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sponding to the three values of ¢ are hardly distinguishable
in their overlapping regions (except for long times). Note
that, to show clearly the dashed-dotted straight line which
represents M (¢) in Eq. (8), we have deliberately adjusted a
little the best-fitting value of ¢ such that the dashed-dotted
line is a little above the curves of the fidelity.

In the inset of Fig. 2, we show curves of fidelity for the
same o but different values of € and N. The two curves are
very close, supporting the assumption that € and N appear in
the form of the single variable o as written on the right-hand

side of Eq. (8). This dependence of M(f) on the variable o
for sufficiently small o can be understood in a first-order
perturbation treatment of fidelity, as shown in the following
arguments.

Let us consider a Hilbert space with sufficiently large di-
mension N and make use of arguments similar to those used
in Ref. [8] for deriving the Gaussian decay, but without as-
suming the applicability of the random matrix theory. It
follows that, for times not very long, the averaged fidelity
(averaged over initial states) is mainly determined by
(exp(—iAw,t)), where Awnzwn—wg and (- --) indicates aver-
age over the quasispectrum. Here wg is an eigenfrequency of
the Floquet operator U in Eq. (6) and w,, is the corresponding
eigenfrequency of (Ue'"). For large N, (exp(—iAw,1)) can
be calculated by making use of the distribution of Aw,,. Since
the two Floquet operators U and (Ue@!") differ by ¢V, the
distribution of Aw, is approximately a function of ¢. Then,
M(¢) is approximately a function of o.

Finally, we give some remarks on the value of y. When

Aw, has a Gaussian distribution, M (r) has a Gaussian decay
with y=2, as in the case of systems possessing strong chaos.
In the triangle map, the non-Gaussian decay of fidelity dis-
cussed above implies that Aw, does not have a Gaussian
distribution. Other types of distribution may predict values of
v different from 2, in particular, a Lévy distribution would
give y<2 in agreement with our numerical result. We also
remark that the results here are not in confliction with nu-
merical results of Ref. [32], in which only the statistics of w,
(not that of Aw,) is found in agreement with the prediction of
random matrix theory.

B. Intermediate perturbation strength

With increasing perturbation strength, exponential decay

of M(r) appears (see Fig. 3). For o from 0.02 to 0.1, after
some initial times and before approaching its saturation
value, the fidelity decays as

M (1) = exp(-aot), )

with a as a fitting parameter. Numerically, we found that
a=0.08. The decay rate is proportional to (o7), unlike in the
FGR decay found in systems with strong chaos,

Mrcg(t) ~ exp(- 207K ), (10)

where K is the classical action diffusion constant [8]. The
curves of 0=0.02 and 0.1 in Fig. 3 are quite close, while that
of 0=0.01 has some deviation from the two. This implies

that the exp(-aot) behavior of M(r) appears between
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FIG. 3. (Color online) Variation of the averaged fidelity with ot
for 0=0.01, 0.02, and 0.1, with average taken over 100 initial point
sources chosen randomly, N=4096. The solid straight line is drawn
for a comparison with linear dependence on ot. For 0=0.02 and
0.1, logyo M(7) is approximately a linear function of o7, before it
becomes close to the saturation value. Inset: The distribution P(y)
for the action difference AS at r=40, where y=(AS—(AS))/ e and
(AS) is the average value of AS. It is calculated by taking randomly
107 initial points in the phase space. P(y) does not have a Gaussian
shape.

0=0.01 and 0.02. Note that vertical shifts have been made
for the two curves of 0=0.02 and 0.1 in Fig. 3 for better
comparison.

The origin of the non-FGR decay of fidelity in this regime
of perturbation strength, may come from weak chaos. In fact,
in another system which also possesses weak chaos in the
classical limit, namely, the sawtooth map in some parameter
regime, linear dependence of the decaying rate on o has also
been observed in the intermediate perturbation regime
[13,15,33]. In this regime of perturbation strength, the semi-
classical theory predicts that, in the first-order classical per-
turbation theory, the averaged fidelity is given by [13]

2

M(t) = . (11)

f dASe™S"P(AS)

where AS(py,ry;7)=€[fdt’Hi[r(z')] is the action difference
of two classical trajectories starting at the same point (pg,r)
in the two systems, with H; evaluated along one of the two
trajectories, and P(AS) is the distribution of AS(pg,ry;7). In
systems possessing strong chaos, P(AS) may have a Gauss-
ian form, which implies the FGR decay for the fidelity. In the
triangle map, P(AS) is not a Gaussian distribution as shown
in the inset of Fig. 3, hence, the fidelity does not have the
FGR decay with a rate proportional to 2.

It is difficult to find an analytical expression for P(AS),
hence, we cannot derive Eq. (9) analytically. However, a

qualitative understanding of the (o) dependence of M(r) can
be gained, as shown in the following arguments. Equation
(11) shows that the time dependence of fidelity decay comes
mainly from the dependence of P(AS) on time. In the case of

036206-3



WEN-GE WANG
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FIG. 4. (Color online) Fidelity decay for o=0.1 and N=2",
averaged over 100 initial point sources.

strong chaos, AS behaves like a random walk, hence, P(AS)
has a Gaussian form with a width increasing as \t [8]. Since
AS €, the width of P(AS) is a function of (eVr); then, Eq.
(11) gives the FGR decay of M(r) which depends on (0?¢). In
the case of the triangle map, due to the linear instability of
the map, it may happen that the width of P(AS) increase
linearly with ¢ in some situations when ¢ is not very long.
This implies that the width of P(AS) may be a function of
the variable (er). Then, it is possible for M(r) to be approxi-
mately a function of (o).

Equation (11) predicts that, up to the first-order classical
perturbation theory, the dependence of M(z) on € and 7 takes
the single variable o=¢€/#. Numerically we found that this is
approximately correct, as shown in Fig. 4. Specifically, for
fixed =0.1, M(r) of N=2'! and of N=2'? separate at about
t=15. Indeed, for long times 7, higher order contributions in
the classical perturbation theory may need consideration and
M(r) may depend on € and 7 in a different way. For larger N,

hence smaller 7, the agreement becomes better, e.g., M (1) of
N=2'2is closer to N=2'3 than to N=2'1.

When o goes beyond 0.1, the exponential decay of M(r)
expressed in Eq. (9) disappears, in particular, the dependence

of M(r) on o and ¢ does not take the form of (o7) (see Fig. 5).
Meanwhile fluctuations of M(r) becomes larger and larger

log, M(t)
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FIG. 5. (Color online) Averaged fidelity of o from 0.1 to 1, with
average taken over 1000 randomly chosen initial pointer sources,
N=2!4=16 384. For 6=0.2 and above, the averaged fidelity obeys a
decaying law which is different from that in Eq. (9), in particular, it
is not a function of (o).
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FIG. 6. (Color online) Averaged fidelity at strong perturbation,
with average taken over 1000 randomly chosen initial Gaussian
wave packets, N=2'7=131 072. z=et>>/# with # fixed in this fig-
ure. The solid line represents a curve exp(—cet>?), where the fitting
parameter c¢ is determined from comparison with the two curves of
o=2 and 4 in the small-z region.

with increasing o for initial point states. For example, Fig. 5

shows that M(¢) of o=1 has considerable fluctuations even
after averaging over 1000 initial point sources. Taking initial
Gaussian wave packets, the fluctuations can be much
suppressed.

C. Strong perturbation regime

The triangle map has vanishing Lyapunov exponent,
hence, its fidelity may not have the perturbation-independent
decay which has been observed at strong perturbation in sys-
tems possessing exponential instability in the classical limit
[3,7,12,16]. To understand fidelity decay in the triangle map,
it is helpful to recall results about the classical fidelity given
in [27]. In the classical triangle map, the classical fidelity
decays as M (f) ~exp(—cet>>) for initial times when M(f)
remains close to one, and has an exponential decay
exp(—c’€”t) for longer times. The interesting feature is that
the classical fidelity depends on the same scaling variable
7= et>? in different time regions.

In the weak and intermediate perturbation regimes dis-
cussed in the preceding sections, the dependence of fidelity
on € and ¢ does not take the form of the single variable 7.
This is not strange, because the classical limit is achieved in
the limit 2 — 0, which implies o— o for whatever small but
fixed e. Therefore, it is the strong perturbation regime in
which the decaying behavior of fidelity may have some rel-
evance to the classical fidelity. Numerical results presented
below indeed support this expectation.

Figure 6 shows variation of the averaged fidelity with
log,, €t*3, with average taken over 1000 initial Gaussian
wave packets chosen randomly. The initial decay of the fi-
delity of o=2 and 4 are quite close to the classical prediction
exp(—cer®?). For longer times, the fidelity of o from 2 to 10
(with % fixed) is approximately a function of 7, the scaling
variable predicted in the classical case, but, the decaying
behavior of fidelity is not the same as that of the classical
fidelity, i.e., not an exponential decay. We found that the

dependence of M(t) on # and 7 does not take the form of
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FIG. 7. (Color online) Averaged fidelity for strong perturbation,
from top to bottom, =2, 4, and 10. The average is taken over 1000
initial Gaussian wave packets chosen randomly and over time from
t=2 to t+2, N=2!7. The time axis is plotted in the logarithm scale.
It shows that the long time decay of fidelity is slower than power-
law decay.

7/h, i.e., M(1) is not a function of the single variable (7/%).

For long times, the fidelity has large fluctuations even
after averaging over 1000 initial Gaussian wave packets. The
fluctuations can be much suppressed, when a further average
is taken for time ¢. Specifically, for each time 7, we take
average over M(t') for t' from 1—2 to t+2. The results are
given in Fig. 7, which shows that the long time decay of
fidelity is slower than power-law decay. To study the decay-
ing behavior of the slower-than-power-law decay, we com-
pare it with the function

M;(1) = a(log,o 1), (12)

with a and b as fitting parameters. In the time interval
140<r<<1000, the averaged fidelity can be fitted by this
function, as shown in Fig. 8, where we plot log,, M () versus
log o(log;o 7). Further research work is needed to find ana-
lytical explanations for this slower-than-power-law decay of

fidelity.
IV. CONCLUSIONS AND DISCUSSIONS

We present numerical results on fidelity decay in the tri-
angle map with linear instability. Three regimes of fidelity
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FIG. 8. (Color online) The same as in Fig. 7, with a different
scale for the horizontal axis and for the time interval
140 <7< 1000. For o=4 and 10, log,, M(z) form two lines for each
o. The three solid lines represent log;y M5(r) given by Eq. (12),
with £=9.6, 9.3, and 8.3 from top to bottom.

decay have been found with respect to the perturbation
strength: weak, intermediate, and strong. At weak perturba-
tion, the fidelity decays as exp(—co?t'7). In the intermediate
regime, the fidelity has an exponential decay which is ap-
proximately exp(—c’ot). In the regime of strong perturba-
tion, the fidelity is approximately a function of ef>> and de-
cays slower than power-law decay for long times.

These results show that the fidelity in the triangle map
obeys decaying laws which are different from those in sys-
tems with strong chaos or with regular motion. The differ-
ence is closely related to the weak-chaos feature of the clas-
sical triangle map. In which way and to what extent does
weak chaos influence the fidelity decay? This is still an open
question. Indeed, common features of fidelity decay in sys-
tems with weak chaos, as well as their explanations, should
be an interesting topic for future research work. In particular,
one may note that stretch exponential decay of fidelity has
also been observed for wave packets which initially reside in
the border between chaotic and regular regions in mixed-
type systems [34].
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