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We study fidelity decay by a uniform semiclassical approach, in the three perturbation regimes: namely, the
perturbative regime, the Fermi golden rulesFGRd regime, and the Lyapunov regime. A semiclassical expres-
sion is derived for the fidelity of initial Gaussian wave packets with width of the orderÎ" s" being the effective
Planck constantd. The short-time decay of the fidelity of initial Gaussian wave packets is also studied with
respect to two time scales introduced in the semiclassical approach. In the perturbative regime, it is confirmed
numerically that fidelity has FGR-type decay before Gaussian decay sets in. An explanation is suggested for a
non-FGR decay in the FGR regime of a system with weak chaos in the classical limit by using the Levy
distribution as an approximation for the distribution of the action difference. In the Lyapunov regime, it is
shown that the average of the logarithm of fidelity may have roughly Lyapunov decay within some time
interval in systems possessing large fluctuations in the finite-time Lyapunov exponent in the classical limit.
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I. INTRODUCTION

It is well known that in classical, chaotic systems the time
evolution of trajectories in phase space are sensitive to small
changes in initial conditions, as well as in parameters in the
Hamiltonians. On the other hand, in the quantum case, the
time evolution of state vectors in Hilbert space is insensitive
to small changes in initial conditions. Nearly 20 years ago,
Peres observed that small changes in perturbation parameters
can be employed to study the stability of quantum motion in
the Hilbert spacef1g, supported by further numerical inves-
tigationsf2,3g. The quantity used to measure the stability of
quantum motion is the quantum Loschmidt echo, or fidelity
in the field of quantum informationf4,5g. It is an overlap of
the evolution of the same initial state under two Hamilto-
nians with a slight difference in the classical limit,Mstd
= umstdu2, where

mstd = kC0uexpsiH1t/"dexps− iH0t/"duC0l. s1d

Here H0 is the Hamiltonian of a classically chaotic system
and H1=H0+eV, with e a small quantity andV a generic
perturbing potential. This quantity can also be seen as a mea-
sure of the accuracy to which an initial quantum state can be
recovered by inverting, at timet, the dynamics with the per-
turbed HamiltonianH.

Fidelity decay has attracted increasing attention, since the
work of Jalabert and Pastawskif6g, which relates the decay
rate of fidelity to thesmaximumd Lyapunov exponent of the
underlying classical dynamics. In order to understand the
behavior of fidelity in various systems, extensive investiga-
tions have been carried outf7–33g. Previous investigations
show the existence of at least four regimes of perturbation
strength for fidelity decayf7–9g: sid In the perturbative re-
gime below a perturbative border, the fidelity has a Gaussian
decayf1g. In this regime, the typical transition matrix ele-
ment is smaller than the mean level spacing.sii d Above the
perturbative regime is the Fermi golden rulesFGRd regime,

with an exponential decay of fidelity,Mstd~exps−Gtd, where
G is the half-width of the local spectral density of states
sLDOSd f7g. The decay rate can also be calculated semiclas-
sically f10,11g. siii d With increasing perturbation strength,
one enters into the Lyapunov regime, in whichMstd~
exps−ltd, with l being the Lyapunov exponent of the under-
lying classical dynamicsf6g. sivd In the regime above the
Lyapunov regime, the perturbation strength is so large that
the classical perturbation theory fails. Presently, little is
known about the decaying behavior of fidelity in this regime.
Within a random matrix theory approach, in which fidelity is
expressed as the Fourier transform of LDOS, a Gaussian
decay was suggested for fidelity decay in this regimef8g,
without further numerical confirmationscf. f34,35g for shape
of LDOS in this regimed. It is also known that, for timet
short enough, the fidelity has a quadratic decay, which may
be extended to a Gaussian decay, just as a direct result of
perturbation theoryf21g.

Most recent investigations show that the above picture of
fidelity decay is incomplete, at least in four aspects. First, in
the perturbative regime, numerical resultsf22g show that fi-
delity in the kicked rotator model has an exponential decay,
which can be described by their semiclassical approximation,
before the Gaussian decay sets in at about the Heisenberg
time. A random matrix approach to fidelity also suggests an
approximately exponential decay of fidelity att short enough
f29g. It is not quite clear whether this exponential decay is
the FGR decay or not.

Second, a non-FGR decay of fidelity in the expected FGR
regime has been found in a system with weak chaos in the
classical limit, which is induced by deviation of the distribu-
tion of action difference from the expected Gaussian distri-
bution f28g. An analytical description for the rate of the non-
FGR decay is still lacking.

Third, in the Lyapunov regime, the decay rate of the av-
erage fidelity has been found to be different from the
Lyapunov exponent, although still perturbation independent,
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in systems possessing large fluctuations in the finite-time
Lyapunov exponentf36,37g, as in the kicked top and kicked
rotator modelsf7,19,20g. A semiclassical WKB description
of wave packets suggests an exps−l1td decay for the fidelity,
with l1,l f20g. More recently, more general semiclassical
expressions of fidelity decay have been derived, with the
Lyapunov decay and thel1 decay being two limiting cases
f33g, along the lines of the semiclassical treatment to fidelity
in Refs.f6,9,10,22,28g. However, the situation has not been
clarified completely, since numerical results in the kicked top
model show that Lyapunov decay can be resumed in an ap-
proximate way if an average is performed on the logarithm
of fidelity, but not on the fidelity itselff19g sseef38g for an
analysis of the fluctuating behavior of fidelityd.

Finally, in the deep Lyapunov regime, the fidelity of ini-
tial Gaussian wave packets may have a decay which is su-
perexponential and much faster than the Lyapunov decay at
short initial timesf20g. Meanwhile, a decay with a rate of
twice the Lyapunov exponent may appear before a time scale
introduced inf33g in systems with constant local Lyapunov
exponents. A quantitative description of the former decay is
still not available, and the time scale that separates the two
faster than Lyapunov decays is unknown.

In this paper, we use the uniform semiclassical approach
introduced inf22g to study the problems mentioned above.
This approach is not only a suitable method for a numerical
evaluation of fidelity, but also a good starting point for ana-
lytical study f28,33g. For simplicity, we study one-
dimensionals1Dd kicked systems only in this paper.

The paper is organized as the following. In Sec. II, we
introduce two models, the kicked rotator and the sawtooth
map, which will be employed for numerical check of our
analytical results. A major difference between the two mod-
els is that the sawtooth map has a constant finite-time
Lyapunov exponent, while the kicked rotator has large fluc-
tuations in the finite-time Lyapunov exponent. For the saw-
tooth map, the semiclassical prediction of the rate of FGR
decay can be calculated accurately at some parameter values;
meanwhile, it has weak chaos with a structure of Cantori in
some parameter regimef39g.

The validity of the uniform semiclassical approach has
been checked numerically for initial point sourcesf22,28g.
For initial Gaussian wave packets, narrowness of the packets
is assumed in deriving the semiclassical expressions of fidel-
ity in f6,22g. In Sec. III, we show that the expression inf22g
fails in describing fidelity decay when the width of the initial
Gaussian wave packet is of the orderÎ", where " is the
effective Planck constant in the 1D kicked systems studied
here. By considering the second-order term in the Taylor
expansion of the action, we derive a modified expression,
which works well for this kind of initial wave packets.

In Sec. IV, we discuss the short-time behavior of fidelity.
In particular, a time scale is introduced for fidelity decay of
initial Gaussian wave packets, which separates the two faster
than the Lyapunov decays mentioned above, and an analyti-
cal expression is derived for fidelity before this time scale.
The dependence of the first-kick decay of the fidelity of ini-
tial point sources on the perturbation strength is also derived.
Fidelity decay in the perturbative and FGR regimes is stud-
ied in Sec. V, with an emphasis on the problems mentioned

above. In the perturbative regime, the exponential fidelity
decay before the Heisenberg time is shown numerically to
coincide with the FGR decay in the sawtooth map. In the
FGR regime, we revisit the non-FGR decay in the sawtooth
map found inf28g and show numerically that the central part
of the distribution of the action difference can be approxi-
mated by the Levy distribution, which can explain some
properties of the non-FGR decay. Section VI is devoted to a
study of fidelity decay in the Lyapunov regime, when the
average is performed over the logarithm of fidelity. Conclu-
sions and discussions are given in Sec. VII.

II. MODELS: KICKED ROTATOR AND SAWTOOTH MAP

The Hamiltonians in the two models employed in this
paper are of the forms

H =
1

2
p2 + Vkssdsrdo

n=0

`

dst − nTd, s2d

with

Vksrd = K cosr sfor kicked rotatord, s3d

Vssrd = − Ksr − pd2/2 sfor sawtooth mapd. s4d

For simplicity, the periodT is set to be unit,T=1. Kicks are
switched on att=n, n=0,1,2, . . .. Theclassical map describ-
ing the kicked rotator is the standard map,

pn+1 = pn + K sinsrnd smod2pd,

rn+1 = rn + pn+1 smod2pd. s5d

The sawtooth map is

pn+1 = pn + Ksrn − pd smod2pd,

rn+1 = rn + pn+1 smod2pd. s6d

Equations6d can be rewritten in the matrix form

S pn+1

rn+1 − p
D = S1 K

1 K + 1
DS pn

rn − p
D , s7d

where the 232 constant matrix possesses two eigenvalues
1+sK±ÎK2+4Kd /2. At K.0, motion in the sawtooth map is
completely chaotic, with the Lyapunov exponentl=ln(h2
+K+fs2+Kd2−4g1/2j /2) given by the largest eigenvalue of
the matrix. The finite-time Lyapunov exponent has the same
value as the Lyapunov exponentl defined in the limit
t→`. On the other hand, the standard map, which is chaotic
at K larger than 6 or so, does not have a constant finite-time
Lyapunov exponent, because the mapping matrix is a func-
tion of rn. It is of interest to mention a recent result on the
classical analog of fidelity: namely, for systems with more
than one-dimensional configuration space the classical fidel-
ity has a decaying rate related to not only the maximum
Lyapunov exponent, but also other positive Lyapunov expo-
nentsf40g.

The two classical systems are quantized on a torus
f41–44g. In a system with 1D finite configuration space,
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0ø r , rm, and 1D finite momentum space, 0øp,pm, the
effective Planck constantheff and the dimensionN of the
Hilbert space has the relation

Nheff = rmpm. s8d

In both models, we takerm=pm=2p, and hence"eff=2p /N.
In what follows, we will omit the subscript eff in"eff, for
brevity.

Floquet operators in the two quantized systems have the
form

U = expf− ip̂2/s2"dgexpf− iVkssdsr̂d/"g. s9d

Eigenstates ofr̂ are denoted byu jl, r̂ u jl= j"u jl, with j
=0,1,2, . . . ,N−1. In this representation, elements of the op-
eratorU are

Uj8 j =
1

ÎN
expFi

ps j8 − jd2

N
− i

NVkssdsr jd

2p
− i

p

4
G . s10d

The evolution of states,cstd=Utc0, is calculated numerically
by the fast Fourier transformsFFTd method.

The fidelity in Eq. s1d involves two slightly different
HamiltoniansH0 andH1=H0+eV. In what follows,H0 takes
the form ofH in Eq. s2d and

V =
1

K
Vkssdsrdo

n=0

`

dst − nTd, s11d

except in Sec. IV B 2.

III. UNIFORM SEMICLASSICAL APPROACH TO
FIDELITY

A. Approximation to fidelity with action expanded to the first-
order term

For the sake of completeness and convenience in present-
ing our results, we briefly recall the main results of the semi-
classical approach to fidelity in Refs.f6,22g in this section.

In the semiclassical approach, an initial statec0sr 0d in a
d-dimensional configuration space is propagated by the semi-
classical Van Vleck–Gutzwiller propagator,

cscsr ;td =E dr 0Kscsr ,r 0;tdc0sr 0d, s12d

whereKscsr ,r 0; td=osKssr ,r 0; td, with

Kssr ,r 0;td =
Cs

1/2

s2pi"dd/2 expF i

"
Sssr ,r 0;td −

ip

2
msG . s13d

Here, the labels fmore exactlyssr ,r 0; tdg indicates classical
trajectories starting fromr 0 and ending atr in a time t, the
actionSssr ,r 0; td is the time integral of the Lagrangian along
the trajectory s, Sssr ,r 0; td=e0

t dt8L, and Cs

= udets]2Ss/]r0i]r jdu. ms is the Maslov index counting the con-
jugate points.

Consider an initial Gaussian wave packet centered atr̃ 0,
with dispersionj and mean momentump̃0,

c0sr 0d = S 1

pj2Dd/4

expF i

"
p̃0 · r 0 −

sr 0 − r̃ 0d2

2j2 G . s14d

Whenj is small enough, within the effective domain ofr 0,
Sssr ,r 0; td can be expanded in the Taylor expansion with re-
spect to the centerr̃ 0,

Sssr ,r 0;td = Sssr , r̃ 0;td − sr 0 − r̃ 0d ·ps + ¯ , s15d

where

ps = −U ]Sssr ,r 0;td
]r 0

U
r 0=r̃ 0

s16d

is the initial momentum of the trajectoryssr , r̃ 0; td.
The semiclassical approximation to the fidelity amplitude

mstd in Eq. s1d is

mstd . E dr fcsc
H1sr ;tdg*csc

H0sr ;td, s17d

where the two states are propagated by the two Hamiltonians
H1 andH0, respectively. For quite smallj, the expansion in
Eq. s15d can be truncated at the first-order term. Then, by
using Eqs.s13d–s16d the integration on the right-hand side of
Eq. s12d is calculated.

The amplitudemstd thus obtained isf6g

mstd . msc1std ; S j2

p"2Dd/2E dro
s

Cs expF i

"
DSssr , r̃ 0;td

−
j2

"2sps − p̃0d2G , s18d

whereDSssr , r̃ 0; td is the action difference for the two trajec-
tories with the same labels in the two systemsH1 andH0. In
the first-order classical perturbation theory, the difference be-
tween the two trajectoriess is assumed negligible,

DSssr , r̃ 0;td . eE
0

t

dt8Vfr st8dg, s19d

with V evaluated along the trajectory.
A simpler expression ofmstd can be obtained by changing

the variabler →p0 f22g,

msc1std = S j2

p"2Dd/2E dp0 expF i

"
DSsp0, r̃ 0;td −

sp0 − p̃0d2

s"/jd2 G ,

s20d

whereDSsp0, r̃ 0; td coincides withDSssr , r̃ 0; td for the same
trajectorys with initial momentump0. The main contribution
to the right-hand side of Eq.s20d comes from a window in
the p0 space, which is centered atp̃0 and has a size of the
order" /j in all directions.

For a system with finite momentum space, Eq.s20d is
invalid for initial Gaussian wave packets that are wide in the
momentum space. The extreme case is for initial point
sources,kr uC0l=Îs2p"dd/Vpdsr −r 0d, with Vp being the
volume of the momentum space. In this casef28g,
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mstd . mpsr 0,td ;
1

Vp
E dp0 expF i

"
DSsp0,r 0;tdG .

s21d

The semiclassical expressions ofmstd discussed above sug-
gest introducing

s = e/" s22d

as a quantum perturbation parameter.

B. Contribution to fidelity from the second-order term in the
action expansion

Hereafter we restrict our discussions to one-dimensional
kicked systems. In deriving Eq.s20d for the fidelity of an
initial Gaussian wave packet, the right-hand side of Eq.s15d
is truncated at the first-order term. Hence, Eq.s20d is valid
only whenj2!", or k@1 with the parameterk defined by

k ; "/j2, s23d

which has been confirmed in our numerical calculation.
When the conditionk@1 is not satisfied, high-order

terms on the right-hand side of Eq.s15d may give a consid-
erable contribution. Indeed, numerically, an obvious devia-
tion of Msc1std= umsc1stdu2 from the exactMstd has been ob-
served atk close to 1 or smallerssee Fig. 1 for an exampled.
We remark that numerical evaluation of the right-hand side
of Eq. s20d for msc1std becomes more and more difficult with
increasing t, because the number of oscillations of
DSsp0, r̃0; td vs p0 increases exponentially witht f33g.

To have a good semiclassical approximation atk,1, one
needs to consider the second-order term on the right-hand
side of Eq.s15d,

Sssr,r0;td . Sssr, r̃0;td − sr0 − r̃0dps −
1

2

]ps

]r̃0

sr0 − r̃0d2,

s24d

where

]ps

]r̃0

;U ]ps

]r0
U

r0=r̃0

=U −
]2Sssr,r0;td

]r0
2 U

r0=r̃0

. s25d

Using Eq.s24d and following a procedure similar to the deri-
vation of Eq.s20d, we obtain

msc2std =E dp0
j

Îp"D
expF i

"
DSsp0, r̃0;td −

sp0 − p̃0d2

s"D/jd2 G ,

s26d

where

D =Î1 +
1

k2S ]ps

]r̃0
D2

. s27d

Note thatD is a function ofp0, r̃0 andt. A numerical test for
this modified semiclassical approximation is shown in Fig. 1.

Equationss20d and s26d show that the modification is to
replaces" /jd in Eq. s20d by

wp =
"

j
D =Î"2

j2 + j2S ]ps

]̃r0
D2

, s28d

i.e., the change in the size of the effective window for inte-
gration. Therefore, the modified semiclassical expression in
Eq. s26d predicts the same long-time decaying behavior of
fidelity as Eq.s20d, more precisely, the same decaying rate
for the FGR decay in the FGR regime, and the sameL1std
decay in the Lyapunov regimescf. Sec. VId. While the value
of D may have obvious influence on the short-time behavior
of fidelity.

When the value ofk decreases further, higher-order terms
in the Taylor expansion of the action should be considered;
e.g., atj3,", the third-order term should be taken into ac-
count.

IV. SHORT-TIME BEHAVIOR OF FIDELITY

In this section, we discuss short-time-decay of fidelity of
initial Gaussian wave packets and of initial point sources.

A. Oscillation of DS„p0,r0; t… versusp0

The semiclassical expressions of fidelity discussed in the
previous section, specifically Eqs.s20d, s21d, ands26d, show
that the decaying behavior ofMstd is mainly determined by
the action differenceDSsp0,r0; td as a function ofp0. There-
fore, before addressing fidelity decay, we first discuss an im-
portant property of the action difference: namely, its oscilla-
tion vs p0.

The number of oscillations ofDS, asp0 runs overf0,2pd,
increases exponentially with timet. To see this, using Eq.
s19d, we write the slope ofDS/e, denoted bykp, in the fol-
lowing explicit form:

FIG. 1. Comparison of the exact values of a single fidelityMstd
and their semiclassical approximationsMsc1std in Eq. s20d and
Msc2std in Eq. s26d, in the kicked rotator model. Parameters areK
=10, N=217=131 072,s=1, andk=1. The typical value ofD in
Eq. s27d is about 8.9@1, explaining the deviation ofMsc1std from
the exact values, whileMsc2std= umsc2stdu2 being quite close to the
exact ones.
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kp ;
1

e

]DSsp0,r0;td
]p0

. E
0

t

dt8
]V

]r8

]r8st8d
]p0

, s29d

where the dependence ofkp on p0, r0, and t is not written
explicitly, for brevity. Due to the underlying chaotic classical
dynamics,u]r8st8d /]p0u increases exponentially witht8, on
average. On the other hand, the variance ofDS increases ast
f10g; hence, the typical value ofuDSu increases asÎt. As a
result, the number of the oscillations ofDS increases expo-
nentially with t. This fast oscillation ofDS is crucial in un-
derstanding the long-time decay of fidelity in the Lyapunov
regimef28,33g.

We present some examples of the oscillating behavior of
DS in the sawtooth mapsFig. 2d, as well as some in the
kicked rotator modelsFig. 3d. The two models have different
dependences of the positionrstd on the initial momentump0

at fixed timet. Specifically, in the sawtooth map,r is a linear
function of p0 except at the discontinuous points, with the
slope given by the constant local Lyapunov exponent, while
in the kicked rotator, it is an oscillating function.

B. Time scalest1 and t2 for fidelity of initial Gaussian wave
packets

The fidelity of initial narrow Gaussian wave packets has a
rich behavior at short times. For example, there are both very
fast and quite slow decays at the first several kicks in the
deep Lyapunov regimef20g, as well as a decay with a rate of
twice the Lyapunov exponentf33g. By using the uniform
semiclassical approach discussed above, we give a unified
description for these phenomena in this section.

1. Time interval t,t1

The main contribution to the right-hand side of Eq.s26d
comes from a narrow window in thep0 space. For timet
short enough, a linear approximation can be used for the
action differenceDS within the narrow window. This sug-
gests the introduction of a time scale, denoted byt1, such
that for t,t1 the linear approximation toDS can be used in
calculating the right-hand side of Eq.s26d,

DSsp0, r̃0;td . DSsp̃0, r̃0;td + ek̃psp0 − p̃0d, s30d

wherek̃p is the value ofkp in Eq. s29d at the centersr̃0, p̃0d of
the initial Gaussian packet.

To give an estimation tot1, we useDp0std to denote the
size of the region in thep0 space, which is capable of the
above linear approximation forDS. One should note that
Dp0std shrinks exponentially, due to the exponentially in-
creasing of the number of oscillations ofDS vs p0. Since the
oscillation of DS is mainly induced by local instability of
trajectories,Dp0std shrinks roughly ase−Lstdt, where

Lstd = lim
dxs0d→0

1

t
flnudxstd/dxs0dug, s31d

with dxstd denoting distance in phase space and an average
performed over phase space.fIn a classical system with
strong chaos,Lstd usually approaches the Lyapunov expo-
nentl quickly, as will be illustrated numerically in Sec. VI.g
Then,

Dp0std . bstdDp0s1de−Lstdst−1d, s32d

wherebstd is the influence of other factors, such as the vari-
ance of DS increasing linearly witht, and changes much
slower than the exponential term. At timet1, we write

Dp0st1d = a1wp, s33d

wherea1.1 is determined by the accuracy required.
Substituting Eq.s32d into Eq. s33d for t=t1, we obtain

FIG. 2. Variation ofDSsp0,r0; td /2pe versusp0/2p in the saw-
tooth map atK=1, for a value ofr0 taken randomly withinf0,2pd.
rstd is the positionr at time t, with initial condition sr0,p0d. For
clarity, r is plotted as a continuous function ofp0, by adding 2np at
the discontinuous points.

FIG. 3. Same as Fig. 2, but for the standard map withK=10.
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t1 , 1 +
1

Lst1d
ln

b̄Dp0s1d
a1wp

, s34d

where b̄ is the average value ofbstd for small t. Several
points can be seen in Eq.s34d. First, sinceDp0s1d decreases
with increasings, when s is large enough, the right-hand
side of Eq.s34d can be smaller than 1, implyingt1=0. Sec-
ond, for large enought1 such thatLst1d.l, the dependence
of t1 on " is given bys1/2ldln "−1 for j="1/2, which is half
the Ehrenfest time.

Now we calculate fidelity of a single initial Gaussian
wave packet at times shorter thant1. When the change ofD
is negligible within the effective narrow window ofp0, in
which the linear approximation forDS in Eq. s30d can be
used, substituting Eq.s30d into Eq. s26d, we have

Msc2std . expF−
1

2
sswpk̃pd2G, t , t1, s35d

with the time dependence on the right-hand side given by

k̃psr̃0, p̃0; td.
Due to exponential divergence of neighboring trajectories

in the phase space of chaotic systems, the main contribution
to the right-hand side of Eq.s29d comes from timest8< t.

Therefore,uk̃pu increases typically ascke
Lstdt, with ck being

the prefactor. For this typical type of time dependence ofuk̃pu,
Eq. s35d predicts

Msc2std . expF−
1

2
wp

2ck
2se/"d2e2LstdtG, t , t1. s36d

Alternatively, one may consider the average of lns1/Md as in
Ref. f20g. Using Eqs.s35d and s31d, one obtains the same
prediction as on the right-hand side of Eq.s36d for fidelity
averaged in this way, which gives the extremely fast, double-
exponential-rate decay of fidelity predicted in Ref.f20g,
Mstd.exps−const3e2ltd, whenLstd,l. Note that the pre-
diction s35d is more general than Eq.s36d, since it works for

small values ofuk̃pu as well, as long asp̃0 is not quite close to
any stationary point, which may invalidate the approxima-
tion in Eq. s30d.

Numerical check of our predictions35d is shown in Fig. 4
for the first kick. Fors,40, the analytical results have good
agreement with the exact numerical calculations. With in-
creasings, the deviation enlarges, withMscstd,Mstd, be-
cause the difference between the exact values of the phase
DS/" and their linear approximations increases linearly with
s.

2. Time intervalt1, t,t2

For t.t1, the main contribution to the right-hand side
of Eq. s26d comes from the integration over the region
fp̃0−wp, p̃0+wpg. It is useful to introduce a second time
scale, denoted ast2, at whichDSsp0, r̃0; td completes one full
oscillation period asp0 runs overfp̃0−wp, p̃0+wpg f33g. Note
that t1,t2, according to their definitions.

In order to estimate the timet2, we note that the number
of oscillations ofDS increases asc0e

Lstdt; then, t2 satisfies
the relation

t̄2 <
1

Lst̄2d
lnS p

c0wp
D . s37d

For Lst̄2d.l, this gives the estimation

t̄2 <
1

l
lnS p

c0wp
D . s38d

The time scalet2 is important in understanding short-time
decay of fidelity in the deep Lyapunov regime withs@1.
Indeed, in the time intervalt1, t,t2, the phaseDS/" on the
right-hand side of Eq.s26d, as a function ofp0, can usually
be approximated by a straight line within the regionp0

P fp̃0−wp, p̃0+wpg. Then, for initial states satisfyingusk̃pu
@p /wp, one hasf33g

Mscstd ~ 1/ssk̃pd2, t1 , t , t2. s39d

To be more specific, let us consider a special kind of
system which has constant local Lyapunov exponentl in the
classical limit and has no stationary point ofDS—i.e., kp
Þ0 for all p0. For such systems,Lstd=l. As shown inf33g,
when the smallestukpu are sufficiently large, such that Eq.
s39d is applicable to all initial states, the average fidelity has
a decay with a rate of twice the Lyapunov exponent,

M̄std ~ e−2lt, s40d

sincekp increases aselt on average. Here let us consider a
different situation in which the smallestukpu are not large

enough for the application of Eq.s39d; i.e., usk̃pu@p /wp is

not satisfied foruk̃pu close to the smallest possible value. In
this case, the average fidelity has a decay rate smaller than
2l, due to the influence smallukpu. On the other hand, we
note that the size of the region ofp0 with quite smallukpu is
usually small and decreases exponentially, due to the expo-
nential increment of the number of oscillations ofDS; hence,
the decay rate of the average fidelity should be larger thanl.

FIG. 4. Comparison of the exact values ofMstd and the semi-
classical prediction given by Eq.s35d at the first kickt=1, for one
initial Gaussian wave packet chosen randomly, in the kicked rotator
model withK=10, k=1.
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To check numerically the above prediction of fidelity de-
cay betweene−lt and e−2lt for t1, t,t2, we use the saw-
tooth map, with the following form of the perturbationV sH0
unchangedd f33g:

Vsid = Vsidsrdo
n=0

`

dst − nTd, s41d

where

Vsidsrd = − Nisr − pdi, i = 1,2,3,4,5. s42d

Setting the coefficientN2=1/2,Vs2d gives the perturbation in
Eq. s11d, which are also used inf17,28g. The other coeffi-
cientsNi are chosen by the requirement of having the same
decaying rate in the FGR regime—i.e., possessing the same
value of the classical action diffusion constantKsEd f10g. For
kicked maps,KsEd has the formf45,46g

KsEd =
1

2
Cs0d + o

l=1

`

Csld, s43d

where

Csld = khVfrsldg − kVljhVfrs0dg − kVljl, s44d

with the average performed over phase space.
At integer values ofK in the sawtooth map in Eq.s4d, a

simple derivation shows thatCsld=0 for l Þ0 and

Cs0d =5
1

2i + 1
Ni

2p2i sodd id,

i2

s2i + 1dsi + 1d2Ni
2p2i sevenid.6 s45d

Then,

N1 =
p

Î15
, N3 =

Î1.4

3p
, N4 =

Î5

4p2, N5 =
Î2.2

3p3 .

s46d

For the sawtooth map with the above perturbation, the
action difference at timet can be written as

DS. − eo
n=0

t−1

Nifrsnd − pgi . s47d

It is easy to prove, by using Eq.s6d, thatrsnd for any fixedn
is a monotonically increasing function ofp0 except at the
discontinuous changes from 0 to 2p sor reverselyd. Then, Eq.
s47d shows that no point exists at whichkp=0 for odd i,
while kp can be zero for eveni. sSee Figs. 2 and 5 for some
examples of numerical illustrations.d Therefore, in the time

interval t1, t,t2, M̄std should have a faster than Lyapunov
decay for oddi, with a decay rate betweenl and 2l. sIt has
the standard Lyapunov decay for eveni f33g.d

Some values ofukpu for Vsid of i =3 and 5 are presented in
Fig. 6. It is seen that somekp of i =5 are quite close to zero,
implying a decay rate of fidelity betweenl and 2l in the
time intervalst1,t2d for i =5; on the other hand, the smallest
ukpu for i =3 is not quite close to zero, implying a decay rate

of 2l at larges. Indeed, these predictions have been con-
firmed in a direct calculation ofMstd, as shown in Fig. 7. The
values oft1 andt2 can be estimated as follows. AtK=1 and
j=Î", numerical computation shows thatc0.0.45 andD
.1.9. We takeDp0s1d,2p /100 for s=100 scf. Fig. 2 for

variation ofDS/e at t=1d, a1,5, b̄,1; then, Eq.s34d gives
t̄1,1. Meanwhile, Eq.s38d gives t̄2<6.5. The two estima-
tions are in good agreement with the direct numerical results
shown in Fig. 7.

C. Dependence of fidelity at the first kick on perturbation
strength for initial point sources

The fidelity of initial point sources, described by Eq.s21d
with integration performed over the wholep0 domain, has a
short-time decay different from that of initial Gaussian wave
packets discussed above.

In the FGR regime, withs,sc,1 f17g, fidelity can be
calculated by writing the right-hand side of Eq.s21d in terms
of the distribution ofDS ssee Refs.f10,28gd. When the dis-
tribution of DS is close to the expected Gaussian distribution,
one has the FGR decay for fidelity,

MFGRstd . expf− 2s2KsEdtg, s48d

whereKsEd is the classical action diffusion constant in Eq.
s43d.

FIG. 5. Same as Fig. 2 but for the sawtooth map with perturba-
tions in Eq.s41d and t=2.

FIG. 6. Values ofkp of a r0 chosen randomly, in the sawtooth
map with perturbationVsid of i =3 and 5,t=3.

UNIFORM SEMICLASSICAL APPROACH TO FIDELITY… PHYSICAL REVIEW E 71, 066203s2005d

066203-7



On the other hand, fors@1, Eq.s21d enables an estima-
tion to the dependence of fidelity on perturbation strength,
which is 1/s, as shown in Eq.sA4d in Appendix A. Since
this dependence does not change with time, it can be seen at
the first kick only. For systems with constant local Lyapunov
exponents, combining Eq.sA4d and the known Lyapunov
decay, we have

M̄pstd ~
1

s
exps− ltd. s49d

Figure 8 presents an example of numerical confirmation to
the above predictions for the first-kick decay of fidelity.

V. PERTURBATIVE AND FGR REGIMES

In this section, we study fidelity decay before the Heisen-
berg time in the perturbative regime and the influence of
weak chaos on fidelity decay in the FGR regime.

A. Perturbative regime

The regime of quite smalle, more precisely, quite small
s, is named the perturbativesPTd regime, in which fidelity
has a Gaussian-type decayf1,7,10,16g. Combining the per-
turbation theory, the random matrix theorysRMTd, and the
semiclassical theory, it has been found that

MPTstd . expS−
2gKsEd

pd̄b
s2t2D , s50d

for quantized maps, where 2g/b is the number of classical
orbits with identical action, which is 2 for the models used

here, andd̄ is the total mean density of states. The indexb
=1 for time-reversal-invariant systems andb=2 for time-
reversal-breaking systems.sCf. Ref. f16g for the expression
for continuous variables.d

The Gaussian decays50d sets in at about the Heisenberg
time tH<N. For t short enough compared withtH, there is no
reason for the semiclassical approach to fail in describing
fidelity decay, even for quite smalle. Therefore, it is reason-
able to expect that fidelity in the perturbative regime, before
some time shorter thantH, can be described by the semiclas-
sical theory, which gives the same expressions48d as in the
FGR regime. In fact, numerically, fidelity has been found to
possess an exponential decay, before some time shorter than
the Heisenberg timetH in the kicked rotator modelf22g.
Whether this exponential decay is the decay in Eq.s48d or
not is unclear, since the value ofKsEd in this model was
calculated approximately.

To make the situation clearer, we employ the sawtooth
map, in which the value ofKsEd can be computed analyti-
cally for integer values of the parameterK in its Hamil-
tonian,KsEd=p4/90.1.08fsee Eq.s45dg. Numerical results
indeed support the above argument that fidelity has the FGR-
type decay before a time shorter than the Heisenberg time
ssee Fig. 9d.

Deviation of fidelity decay in the perturbative regime
from the prediction of Eq.s48d provides a good opportunity
for a numerical study of the breakdown time of the semiclas-
sical approach, denoted bytB. It is known thattB is propor-
tional to some inverse algebraic power of" f47–50g. In the
sawtooth map, it was found thattB is linear in 1/", more
exactly,tB<0.8N~"−1, as seen in Fig. 10.

B. FGR regime

With increasing the perturbation parameters, Mstd comes
close to its saturation value, which is proportional to 1/N

FIG. 7. Decay of the averaged fidelity in the sawtooth map with
K=1, for Vsid of i =1,3,4,5 in Eq.s41d, with parameterss=100,
N=131 072,j=Î". For these parameters,t̄1,1 and t̄2<6.5 ssee
textd. In the time intervalt1, t,t2, the average fidelity has the
Lyapunov decay fori =4, a roughly double-Lyapunov decay fori
=3, and a decay between the two decays fori =5. The quite fast
decay fori =1 is due to the linear dependence ofDSon p0, as shown
in Fig. 5. Averages are performed over 2000 initial Gaussian pack-
ets, with centers taken randomly with flat distribution in the region
p /2ø r̃0sp̃0d,3p /2.

FIG. 8. Decay of fidelityMstd at the first kickt=1 as a function
of s, for a single initial point source, in the logarithm scale. It
shows a FGR behavior for smalls and a 1/s dependence for large
s. MFGRstd.e−2.2s2t in the sawtooth map withK0=1.
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f11g, before Gaussian decay sets in at about the Heisenberg
time. Then, one enters into the FGR regime. The perturbation
border for the crossover from the perturbative regime to the
FGR regime can be estimated asf10g

sp =
ep

"
,Î ln N

2KsEdN
. s51d

For systems possessing strong chaos in the classical limit,
two analytical approaches are available to obtain the FGR
decay: namely, the semiclassical approach with the assump-
tion of a Gaussian-type distribution ofDS f10g, which gives
the result in Eq.s48d, and the RMT approach making use of
the closeness between the form of the LDOS and the Lorent-
zian distributionf7,8g. The two approaches are believed to be
equivalent when both are valid, while an analytical proof of
the equivalence is available only in some special casesf9g.
An interesting phenomenon is that the two approaches are
complementary in some cases. For example, for quite short
time t, there is no analytical reason for the distribution ofDS

to be close to a Gaussian distribution, while the RMT ap-
proach can be used in deriving the FGR decay. On the other
hand, fort relatively longsbut shorter thantBd, the semiclas-
sical approach works well, while the RMT approach may
meet the problem of deviation of the LDOS from the Lorent-
zian form in the tail region, which is a result of the finite
domain of the quasienergy spectrumf19g.

When the underlying classical dynamics has weak chaos,
non-FGR decay of fidelity may appear in the expected FGR
regime, due to an obvious deviation of the distribution ofDS
from the expected Gaussian distributionf28g. For this kind
of systems, the RMT approach does not give a correct pre-
diction for fidelity decay, while the semiclassical approach
still works.

In the semiclassical approach, one can separate the aver-
age fidelity into a mean-value part and a fluctuating part,

denoted by M̄astd and M̄ fstd, respectively, M̄std;umstdu2

=M̄astd+M̄ fstd, where

M̄astd ; um̄stdu2, s52d

with an average performed over initial states. In the FGR
regime, the average fidelity is approximately given by the

mean-value partM̄astd, with M̄ fstd!M̄astd f28g. The mean-

value partM̄astd can be expressed in terms of the distribution
PsDSd of the action differenceDS,

M̄astd . UE dDSeiDS/"PsDSdU2

, s53d

where

PsDSd =
1

E dr 0dp0

E dr 0dp0dfDS− DSsp0,r 0;tdg.

s54d

In case of weak chaos, a general analytical expression for
the distribution ofDS is still absent. Since the Gaussian dis-
tribution is invalid in this case, it is natural to study the
possibility of Levy distribution. Due to its infinite variance,
the Levy distribution cannot describe the distribution ofDS
in the long-tail region. Therefore, we focus on the central
part and short-tail region of the distribution of the action
difference, which gives the main contribution to the mean-

value partM̄astd of fidelity.
We consider the following asymmetric form of the Levy

distribution f51g:

Lsx,a,bd =
1

2p
E

−`

`

expsizxdcszddz, s55d

with x=DS/e. Here the functioncszd is

cszd = exph− igz− Dluzuaf1 + ib sgnszdvsz,adgj, s56d

where

vsz,ad = tanspa/2d for a Þ 1, s57d

FIG. 9. Decay of the averaged fidelity in the perturbative regime
of the sawtooth map atK=1, N=512, ands=10−5. The average is
performed over 100 initial point sources taken randomly in the con-
figuration space. Approximately up tot,400, the fidelity is quite
close to the prediction in Eq.s48d for FGR decay.

FIG. 10. The breakdown timetB of the semiclassical approach
versus the dimensionN of the Hilbert space, in the logarithmic
scale for the sawtooth map withK=1, at different values ofs. In
numerical calculation,tB was taken as the first kick at which the
relative error ufMstd−MFGRstdg /Mstdu is larger than 0.1, where
MFGRstd is the prediction of the semiclassical theory in Eq.s48d.
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vsz,ad = s2/pdlnuzu for a = 1. s58d

The parametera, with 0,a,2, determines the decay of
long tails—i.e.,Lsxd,uxu−s1+ad for largeuxu. The parameterb
has the domainf−1,1g, with b=0 giving the symmetric dis-
tribution, g gives a shift along thex direction, andDl is
related to the width of the distribution. If the Levy distribu-
tion can be used as an approximation forPsDSd, substituting
Eq. s55d into Eq. s53d, one obtains

M̄astd ~ exps− 2Dls
ad, s59d

with the time dependence given by that ofDl. Note that a
Gaussian form ofPsDSd corresponds toa=2, giving the
well-known dependence ons in the FGR decay.

It is known that the sawtooth map has weak chaos atK
,1 and has Cantori structures at smallK f39g. Non-FGR
decay has been observed in this model, which can still be
described by Eq.s53d f28g. Therefore, we use this model to
study the possibility of using the Levy distribution as an
approximation to the distributionPsDSd.

Numerically we use −gt to fit ln M̄std in order to calculate
the decay rateg of fidelity. Variation ofg vs s is presented in
Fig. 11 for some values ofK between 0.1 and 0.9, before the
Lyapunov regime is reached.sFidelity has been found to
have Lyapunov decay in the Lyapunov regime forK,1
f28g.d As seen in the figure, forK=0.1, 0.2, and 0.4, there
exist some regions ofs, respectively, in whichg increases
approximately linearly withs. According to Eq.s59d, this
implies thata.1 if the Levy distribution can be used as an
approximation toPsDSd. Figure 12 shows a fit of the Levy
distribution to the central part and short tails of the distribu-
tion PsDSd at K=0.4, with a=1 fixed andDl andb used as
two adjusting parameters. The agreement is encouraging, for
which an analytical explanation is still not yet available and
deserves a further investigation.

VI. LYAPUNOV REGIME

Increasing the perturbation strength further, one enters
into the Lyapunov regime, in which the average fidelity has
the Lyapunov decaye−lt f6g, in the special situation with
negligible fluctuation in the finite-time Lyapunov exponent.
In the general situation, the fluctuation of the finite-time
Lyapunov exponent is not negligible and the average fidelity
has aL1std decayf33g, which is usually different from the
Lyapunov decay. TheL1std decay will be discussed briefly in
Sec. VI A, starting from the modified semiclassical approxi-
mation to fidelity in Eq.s26d.

As mentioned in the Introduction, in the kicked top model
with strong chaos in the classical limit, which possesses large
fluctuation in the finite-time Lyapunov exponent, numerical
results show that the average of the logarithm of fidelity has
roughly the Lyapunov decayf19g. In Sec. VI B, we explain
this phenomenon by using the technique developed inf33g.

A. L1„t… decay of average fidelity in the deep Lyapunov
regime

Since Eq.s26d can be obtained from Eq.s20d by replacing
" /j with wp="D /j, generalization of the results inf33g is
straightforward. In this section, we present the main points of
the generalization, because part of them will be used in Sec.
VI B.

For systems in whichDS has stationary points withkp
=0, we denote bya the stationary points ofDS and byp0a

the momenta at whichkp=0. Fors@1, the stationary phase
approximation can be used in calculating the right-hand side
of Eq. s26d, which gives

mscstd . o
a

mastd, s60d

where

FIG. 11. Decay rateg of fidelity vs perturbation strengths,

calculated by the best fit of −gt to lnM̄std, for some values of the
parameterK in the sawtooth map. In the calculation of the average
fidelity, 1000 randomly chosen Gaussian wave packets were used as
initial states. The solid curve shows the rateG.2.2s2 of the FGR
decay.N=131 072,j=Î".

FIG. 12. DistributionPfsDS−kDSld /eg of the classical action
differenceDS at t=10, for K=0.4 in the sawtooth map, calculated
by taking randomly 107 initial points in the phase space. Here
kDSl;etkVl=−p2et /6, with the average performed over the phase
space. The solid curve is a fit given by the Levy distribution in Eq.
s55d, with a=1, andb andDl as two fitting parameters.
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mastd =
Î2i"

wp

expF i

"
DSsp0a, r̃0;td − sp0a − p̃0d2/wp

2G
ÎuDSa9 u

,

with

DSa9 =U ]2DSsp0, r̃0;td
]p0

2 U
p0=p0a

. s61d

Note thatwp in Eq. s61d takes the value at the stationary
point a, with D being a function ofp0a.

Let us consider timet.t2, for which there are one or
more stationary points within the effective window inp0
space for integration on the right-hand side of Eq.s26d. Simi-
lar results can also be obtained fort,t2, when the stationary
phase approximation is applicable, as discussed inf33g. The
average fidelity in the ordinary sense, with an average per-
formed over bothr̃0 and p̃0, can be calculated by using di-
agonal approximation, with the following result obtained:

M̄std ~ Isstd ªE dr̃0E
Pd

dp0
1

Dukpu
, s62d

where PdªøaAa. Here, Aa denotes the regionfp0a
− ,p0a

−dgø fp0a+d ,p0a
+ g, where p0a

− =sp0a+p0,a−1d /2, p0a
+ =sp0a

+p0,a+1d /2, andd is a small quantity.
The main contribution to the integral on the right-hand

side of Eq.s62d comes from small values ofukpu in the region
Pd. For p0PPd close to a stationary pointp0a, kp in Eq. s29d
can be approximated by

kp < E
0

t

dt8F ]2V

]r82S ]r8

]p0
D2

+
]V

]r8

]2r8

]p0
2 Gsp0 − p0ad. s63d

Due to exponential divergence of neighboring trajectories in
phase space, the main contribution to the right-hand side of
Eq. s63d comes from timest8< t. The time evolution of the
quantity inside the brackets in Eq.s63d is given by the dy-
namics of the system described byH0. On average, it in-
creases asfdxstd /dxs0dg2, with dxstd being distance in phase
space. With increasing time, the number of stationary points
increases exponentially, roughly in the same way as
dxstd /dxs0d, since the oscillation ofDS is mainly induced by
local instability of trajectories.

Then, substituting Eq.s63d into Eq. s62d, we have

M̄std ~ F 1

Dudxstd/dxs0duG . s64d

WhenD changes slowly withp0 and r̃0, we have

M̄std ~ ILstd ; e−L1stdt,

with

L1std = − lim
dxs0d→0

1

t
ln U dxstd

dxs0d
U−1

. s65d

In systems with constant local Lyapunov exponents, Eq.s65d
reduces to the usual Lyapunov decay withL1std=l. On the
other hand, when fluctuations in local Lyapunov exponent

cannot be neglected,ILstd coincides with thee−l1t decay in
Ref. f20g in the limit t→`, with l1= limt→`L1std.

B. Decay of the average of lnM„t…

To understand the decaying behavior of the average of
ln Mstd for initial Gaussian wave packets, we divide the time
t into four time intervals, specifically,s0,t1d, st1,t2d, ft2,tdd,
and ftd,tsd. Here td is a time scale defined below, beyond
which the diagonal approximation can be used before aver-
age is performed, andts is the time at which the saturation
value of fidelity is reached.

Within the first time interval,Mstd is described by Eq.
s35d for most of initial states. Fors not large, lnMstd is close
to zero. On the other hand, for quite larges, the average of
ln Mstd can be quite smallscf. Fig. 4d.

For the second time intervalst1,t2d, Eq. s39d can be used

to calculate lnMstd, for initial states with k̃p satisfying

usk̃pu@p /wp. For this part of initial states,uk̃pu typically in-
creases asdxstd /dxs0d fsee Eq.s29dg; as a result, the average
of ln Mstd for this part of initial states behaves as −2Lstdt,
where Lstd is defined by Eq.s31d. On the other hand, for

initial states with smalluk̃pu, which lie in the neighborhoods
of the stationary points ofDS, fidelity decay is slower. Since
the total size of the regions ofp0 with small ukpu is small
compared with the domain ofp0, the average of lnMstd over
all possible initial states usually has a decay rate between
Lstd and 2Lstd. In a classical system with strong chaos,Lstd
usually approaches the Lyapunov exponentl quickly, as
seen in Fig. 13; then, in the time intervalst1,t2d, the decay
rate of the average of lnMstd is usually close to, or a little
larger than,l.

For t aroundt2 or longer, the main contribution to the
average of lnMstd is given by the neighborhood of stationary
points and one can start from Eq.s60d in calculatingMstd. In
the third time intervalft2,tdd, the number of stationary points
within the effective window inp0 is small; hence, the diag-
onal approximation cannot be used in calculating the abso-

FIG. 13. Variation ofLstd andL1std with t in the kicked rotator
model atK=7, with the average performed over 106 random initial
positions in phase space. The definitions ofLstd andL1std are given
in Eqs.s31d ands65d, respectively. The value ofLstd approaches the
Lyapunov exponentl<1.27 quickly, ast increases.
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lute value square of the right-hand side of Eq.s60d. We do
not know much about the decay of the average of lnMstd in
this time interval. One should note that the third time interval
is quite short, as a result of the exponential increment of the
number of oscillations ofDS.

In the fourth time intervalftd,tsd, the diagonal approxima-
tion is applicable to the absolute value square of the right-
hand side of Eq.s60d before the average is performed, due to
the large number of stationary points within the effective
window in p0. Then, Eqs.s60d and s61d give

Mstd . o
a

umastdu2 = o
a

2"

wp
2

expf− 2sp0a − p̃0d2/wp
2g

uDSa9 u
.

s66d

Using Eq.s29d, we write DSa9 as

DSa9 < eE
0

t

dt8F ]2V

]r82S ]r8

]p0
D2

+
]V

]r8

]2r8

]p0
2 G . s67d

Arguments similar to those leading from Eq.s63d to Eq.s64d
show that, when the fluctuation ofudxstd /dxs0du is small for
p0 within the effective window in thep0 space, the main
decaying behavior of a single fidelity is typically

Mstd ~ udxstd/dxs0du−1, s68d

with dxs0d being a small displacement fromsr̃0, p̃0d, the cen-
ter of the initial Gaussian packet. Then, it is ready to obtain

expfln Mstdg ~ e−Lstdt . e−lt, s69d

where the second equation is obtained, sinceLstd is usually
close to the Lyapunov exponentl within this time interval.

Since the fluctuation ofudxstd /dxs0du within the effective
window in p0 increases with time, Eq.s69d becomes invalid
for t long enough. Fort sufficiently long, the fluctuation of
udxstd /dxs0du within the effective window inp0 has similar
properties as in the wholep0 domain; then, the average of
ln Mstd has theL1std decay in Eq.s65d. For intermediate
times, it is reasonable to expect that the decay rate of the
average of lnMstd decreases from the Lyapunov exponent
and approachesL1std with increasingt.

Combining the above results, it is seen that there indeed
exists a certain short time interval in which the average of
ln Mstd follows roughly the Lyapunov decay, as observed in
the kicked top model in Ref.f19g. Specifically, the decaying
rate of the average of lnMstd is close to or a little larger than
the Lyapunov exponent in the second time interval; then,
beyond the short third time interval, it decreases from the
Lyapunov exponent and approachesL1std at long time.

We have tested these predictions, as well as those in the
previous section, in the kicked rotator model atK=7, which
is shown in Fig. 14. It is seen in the figure that the average of
ln Mstd decays a little faster than theLstd decaysas well as
the Lyapunov decayd initially; then, after a transient time, it
decays a little slower than the Lyapunov decay, but obviously
faster than theL1std decay. The predicted long-timeL1std
decay for the average of lnMstd is not seen atK=7, because

K is not large enough for the value ofN taken. We mention
that thel1 decay at long time has indeed been observed for
K=10 in Ref.f20g.

Finally, for quite large s, the initial approximate
Lyapunov decay in the second time interval discussed above
may disappear. Indeed, in this case,uln Mstdu for t,t1 is
usually much larger than that fort.t1 fcf. Eq. s35dg. Then,
due to the fluctuation of the value oft1 with respect to initial
condition, for timet a little beyond the average oft1, the
average of lnMstd is still dominated by contributions de-
scribed by Eq.s35d. Hence, the average of lnMstd can be
obviously smaller than the prediction of the Lyapunov decay
in the second time interval, as shown numerically inf20g.

VII. CONCLUSIONS AND DISCUSSIONS

In this paper, we have improved the uniform semiclassical
approximation to fidelity by considering the second-order
term in the Taylor expansion of action, which is important
for fidelity of initial Gaussian wave packets with width of the
orderÎ". Short-time decay of fidelity is analyzed, which is
initial state dependent; in particular, two time scales have
been introduced and studied in detail for initial Gaussian
wave packets. Initial FGR-type decay of fidelity in the per-
turbative regime is confirmed by direct numerical calcula-
tion. A non-FGR decay in the FGR regime in a system with
weak chaos in the classical limit is explained by relating the
distribution of action difference to the Levy distribution. The
average of the logarithm of fidelity is shown to have an ap-
proximate Lyapunov decay within some time intervals in the
Lyapunov regime in systems possessing large fluctuations of
the finite-time Lyapunov exponent in the classical limit.

As we have demonstrated, fidelity has a decaying behav-
ior richer than the simple picture mentioned in the beginning
of the Introduction with just four distinct regimes. In Fig. 15,

FIG. 14. Fidelity decay in the kicked rotator model atK=7, N
=217, s=20. The average is performed over 500 initial Gaussian
wave packets withj=Î", whose centers are chosen randomly in the
chaotic sea in phase space. TheLstd andL1std decays are the pre-
dictions in Eqs.s69d ands65d, respectively, with the values ofLstd
and L1std shown in Fig. 13. Decay of the average ofMstd is de-
scribed by theL1std decay. The average of lnMstd is a little faster
than theLstd decay in an initial short time interval, as predicted by
the theory.

W.-G. WANG AND B. LI PHYSICAL REVIEW E 71, 066203s2005d

066203-12



we present a schematic diagram for the present understand-
ing of the fidelity decay of initial point sources in systems
possessing a constant local Lyapunov exponent in the classi-
cal limit. For initial Gaussian wave packets, short-time decay
is more complex than for initial point sources, for which two
time scalest1 and t2 should be introduced, as discussed in
this paper. When the underlying classical dynamics has large
fluctuations in the finite-time Lyapunov exponent, the decay-
ing rate of fidelity in the Lyapunov regime is not given by
the Lyapunov exponent.
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APPENDIX: DEPENDENCE OF FIDELITY DECAY ON
PERTURBATION STRENGTH IN THE DEEP LYAPUNOV

REGIME FOR INITIAL POINT SOURCES

In this appendix, we consider the dependence of fidelity
decay on perturbation strength in the deep Lyapunov regime
for initial point sources, which can be estimated by using Eq.
s21d. Let us first divide the domainf0,2pd of p0 into a series
of subregions,fp0j ,p0s j+1dd, so that within each of the subre-
gions the phaseDS/" of the integrand on the right-hand side
of Eq. s21d can be approximated by a linear function,

DS/" . sskjp0 + bjd, for p0 P fp0j,p0s j+1dd, sA1d

where the parameterskj and bj do not depend onp0. Here
p0j =0 for j =1 andp0j =2p for j =NX+1, with NX denoting
the number of the subregions. Substituting Eq.sA1d into Eq.
s21d, we have

mpstd .
1

2pis
o
j=1

NX

Xj , sA2d

with

Xj ª
1

kj
seiskjp0s j+1d − eiskjp0jdeisbj .

In arranging the subregions, we require thatNX should be
as small as possible, conditional on the linear approximation
in Eq. sA1d not losing the main contribution to the right-hand
side of Eq.s21d. Since the phaseDS/" is proportionals, NX
increases approximately linearly withs. In the deep
Lyapunov regime with quite larges, for subregions chosen
in this way, the phase ofXj, which is approximately propor-
tional to s, can be regarded as random with respect toj and
r0; then, the diagonal approximation can be used in comput-
ing the averaged fidelity,

M̄pstd =
1

2p
E dr0umpstdu2 .

1

s2psd2o
j=1

NX

uXju2, sA3d

where we assume that the fluctuation ofNX with respect tor0
is small. Finally, usingNX~s, we have the following rela-
tion:

M̄pstd ~ 1/s, for s @ 1. sA4d
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