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Uniform semiclassical approach to fidelity decay in the deep Lyapunov regime
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We use the uniform semiclassical approximation in order to derive the fidelity decay in the regime of large
perturbations. Numerical computations are presented which agree with our theoretical predictions. Moreover,
our theory allows us to explain previous findings, such as the deviation from the Lyapunov decay rate in cases
where the classical finite-time instability is nonuniform in phase space.
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The stability of quantum motion under a system’s pertur-initial Gaussian wave packeft$l]. In view of the importance
bation can be measured by the so-called quantum Loschmidi fidelity for the characterization of the stability of quantum
echo or fidelity[1-3]. It is defined as the overlap(t) motion under a system’s perturbation, it is necessary to pro-
=|m(t)|? of two states obtained by evolving the same initial vide a clear theoretical understanding of its behavior and, in

state| W) under two slightly different Hamiltonians: particular, to account for the seemingly disconnected and
sometimes contradictory results.
m(t) = (WolexpliHt/A)exp(— iHt/A)|[P). (1) In this paper, we focus on the behavior of fidelity fer

>1 and we treat this problem in full generality. We derive

Here Hy is the Hamiltonian of a classically chaotic system the general semiclassical formula which correctly reproduces
andH=Hg+eV is the perturbed Hamiltonian, witha small  the two limiting cases of eXpAt) and exg—\,t) decays. We
quantity andV a generic perturbing potential. This quantity also show that under certain conditions the exponential rate
can also be seen as a measure of the accuracy to which affidelity decay can be equal twicethe classical Lyapunov
initial quantum state can be recovered by inverting, at time exponent.
the dynamics with the perturbed Hamiltonikhn Our starting point is the semiclassical approximation to

This quantity has attracted much attention recentlythe fidelity for an initial Gaussian wave packet given in Ref.
mainly in relation to the field of quantum computation and in[12],
connection to the corresponding classical mofin13]. Fo-
cusing on systems with chaotic classical limit, one may iden- (2] 32\d12 ; = .
tify, by increasing the perturbation strength, three different Medt) = (&) fdpo eXHiAS(Po,To; /A
regimes of fidelity decay(i) The perturbative regime, in ~ \2 2
which the fidelity has a Gaussian decdi) The Fermi = (Po=Po)1(A19)7], 2
golden rule regime, with an exponential decay of fidelity,where AS(p,,F,:t) is the action difference along the two
M(t) xexp(—I't). Here the decay ratE is the half width of  nearby trajectories starting §b,,7o) in the two systemsd
the local spectral density of stat@sDOS) [5], which can  andH,,
also be calculated semiclassically]. (ii) The Lyapunov .
regime, in whichM(t) «cexp(-At), with A being the(maxi- ~ NSl ? (41
mum) Lyapunov exponent of the underlying classical dy- ASlpoToit) = efo drvr ()] @
namics[4]. ) . )

However, the above picture remains unsatisfactory. This i§vith V evaluated along the trajectory in th& system. The
particularly the case in the deep Lyapunov regime with initial Gaussian wave packet, centerediat po), is
>1, where o=¢/f is the parameter characterizing the PR, N S T R Ry
strength of quantum perturbation, arid the (effective Yolro) = (me) exiiBo - ro/h = (o =To) (2691 (4)
Planck constant. In systems with nonconstant finite-time~or simplicity, we will consider here kicked systems with
Lyapunov exponentwhich is the typical situation fidelity = d=1 and set the domains ofandp to be[0,2m7). The ef-
decays with a rate different froi [11]. Indeed, a semiclas- fective Planck constant is taken #&s 27/ N, whereN is the
sical analysid11] leads to an exponential decay of fidelity dimension of the Hilbert space.
with a rateh;<\. The relation between this semiclassical The main feature oAS as a function ofp, is its oscilla-
treatment and that along the lines of R€#4,6,7,12,13 is tions, the number of which increases exponentially with time
unclear. Moreover, an extremely fast, superexponential decay Indeed, the variance oS increases linearly with [7],
of fidelity has been found within a quite short initial time for while the slope ofAS/¢, denoted byk,
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k

1 9AS(pg,ro;t) f N ar'(t') AS(pg,.To:t)/A in Eq. (8) can be regarded as random with
= = t,——
P

€ 9o o o' dpy (5) respect toa andT, Then, the averaged fidelitM_(t), with

average taken ovér, and P, can be approximated by its
increases on average exponentially witidue to the factor diagonal par{13],

ar' 1 apo.

Let us first discuss the fidelity for a single initial state.
Neglecting a quite short initial time, the main contribution to
the right hand side of Eq2) comes from the integration
over the regiod Po—W,, Po+W,], wherew,=%/¢ is the width The right hand side of Eq9) can be expressed as an
of the initial Gaussian in the, space. Let us define a time integration of 1/k;|. For this, we introduced, to denote the
scaler such that at=7, AS(po,To;t) completes one full os- region  [pg,,Poa— &) U[Poa*8,P5.),  Where  pg,=(Po,
cillation period asp, runs overPo—w,, Po+W,]. In @ system  +Po.a-1)/2, Po,=(PoatPor1)/2, and wheres is a small
possessing a constant local Lyapunov exponerihe num-  quantity. In the neighborhood ofy,, k, satisfies ek,
ber of oscillations ofASincreases exponentially age' and = AS/(Po—Po.)- For small enoughs, we have
we obtain the average estimate for

1 2Iné
J dpy ~£09 (10)
An

kol |AS]|

— :—zzif” 1
M(t) §|ma(t)| 2, dFoa Ag) (9)

_ 1
T~ N In(7r/cow,). (6)

Substituting the expression &S| obtained from Eq(10)

Taking, e.g.&= VA, one can clearly see thatis of the order into Eq. (9), we have

of the Ehrenfest tim&l/\)In 271, In the general case of sys-
tems with fluctuation in the finite-time Lyapunov exponent, — £ 2m 1
the number of the oscillations &S increases as*®", with M(t) = Mf dfof dpom. (13)
some time-dependent rate(t) <\. 0 Ps P

We consider first the behavior of fidelity fd<7 and  wherePs=U_A,.
denote With~kp the value ofk, in the center(p,,To) of the Since the value of is irrelevant for the decay rate, we
initial Gaussian. For such times, the phas®/#, on the right ~may write
hand side of Eq(2), as a function ofp,, can usually be
approximated by a straight line with a slopﬁp, within the M(t) o 14(t) = f d?of dpo
region pg € [Po—Wp, Po+W,]. Due to both the fast increasing Ps

i. (12

Kyl

of |k with time and the largec value, one hagoki|  An accurate numerical evaluation bft) is not easy since

>/ wj, for most initial states and, as a result, the change opne muyst find out all stationary poingsfor each value oF,.

the phaseAS/# within the intervalp € [Bo~Wp, Bo+Wol IS An approximate numerical result can be obtained by using
much larger than 2. Note that the largest slope of the term the Monte Carlo method in which, in order to perform the
(Po=Po)?/W> within this interval of py is 2/wp, which is integral(12) over the regiorP;, i.e., with the neighborhoods
much smaller thamakp|. The right hand side of Eq2) can  of stationary points excluded, we neglect the small set of
now be calculated approximately within the intervgy  points that have the smallest values|iof.

€ [Po—Wp, Po+W,] and gives Actually, one can make a further approximation by using
- the following arguments. The main contribution to the inte-
Mgdt) &« 1/(oky)?. (7)  gralin Eq.(11) comes from small values gi,| in the region

~ Ps. Forpge Ps close to a stationary poimd,, k, in Eq. (5
For timest> 7, or when|ky| is small enough fot< 7, the an be g?)proiimated by Y poiff., ky In Eq. (3

stationary phase approximation can be used in calculating
mg(t) in Eq. (2). If we denote bya the stationary points and CoL AV a2 VP
by po, the momenta at whichk,=0, we have mt) kp%J dt a2\ apg + ?Tpg (Po=Poa)- (13
=X, m,(t), where
i Due to exponential divergence of neighboring trajectories in
f-_exp|:_Angw’F0;t) - (pOa_bo)Z/W2:| phase space, the main contribution to the right hand side of
_\2ih h P Eq. (13) comes from timed’ ~t. The time evolution of the
N W \f'| AS)] quantity inside the bracket in Eq13) is given by the dy-
. namics of the system described bl. On average it in-
with creases a$ox(t)/ ox(0)]?, where 8(x) denotes distance in
PAS(Po,Tort) phase space. With increasing time, the number of the station-
B — . (8) ary points ofASincreases exponentially, roughly in the same
0% Po=Pou way as &X(t)/ 5x(0), since the oscillation ofAS is mainly

Next we turn to the behavior of average fidelity and firstinduced by local instability of trajectories. Then, substituting

consider the long time decay, namely; 7. Due to the large  Eq. (13) into Eq.(11), we haveM(t) «|&(t)/ &x(0)|™*, which
o value and to the classically chaotic motion, the phasean be written as

m,(t)

AS =
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FIG. 1. Decay of averaged fidelity in the m&}b), with K=1, FIG. 2. Same as Fig. 1, but foy=0.85, for which\ =0.92 and
7=0.987.1s and |, are the theoretical predictior{d2) and (14),  \;~0.81.

respectively. It is seen that after a short initial time, bhgh) and
1,(t) are close to the exact fidelitvi(t) (until saturation is reached . o )
FAor comparison, the decay™! ist!hown. We also plot the average =exf-ip?/ (2h) lexd -iU (F) /1], with U(r)=-K[(r-m?/2
classical fidelity, which was calculated by taking initial points — 7 COSr]. In order to compute fidelity, we choose to perturb
within circles with radius\% in the phase spadd0,14. For this ~ the parameteK — K+e. Figure 1 shows that numerical data
map, A~0.9 and\;~0.35. Here and in the following figures; ~ accurately fit our theoretical predictions in Ed42) and
=100, N=131072,£=\#%, and averages are performed over 2000(14). In Fig. 2, it is seen that with decreasing since the
initial Gaussian packets. values ofA and\; become closer, our predictions approach
that of Ref.[11]. At =0, the classical map has a constant
local Lyapunov exponent and the standard Lyapunov decay
is recovered.
- In the above discussion of the average fidelity, the exis-
() |7t tence of stationary phase is assumed. It may happen, in some
m (14) circumstance, e.g., with some special perturbation, that there
is no stationary phase f&S. In this case it turns out that a
In systems with constant local Lyapunov exponents,(E4.  decay with a rate of double Lyapunov exponent may appear
reduces to the usual Lyapunov decay wiki(t)=\. On the  for t<r7, when the classical system has a constant local
other hand, when fluctuations in local Lyapunov exponentyapunov exponent. Indeed, fox 7, the main contribution

—\qt H . . L
tdecay in {5 the averaged fidelitp(t) comes from initial states for

cannot be neglected,(t) coincides with thes
which the values 0f|~<p| are close to local minimum dky|.

Ref. [11] with N;=lim_.. A;(t) <X\, only in the limit t— oo,
Therefore, the actual decay, which can be observed in f|n|t9Vhen the values _Of cha.l mi_nimum difp| are large lenough,
the decay of the fidelity is given by E7). Then, sincgk|

times, can be considerably different from 21! decay.
For timest< 7, the main contribution to the averaged fi- increases on average @, the averaged fidelity has a
double-Lyapunov-exponent decay,

M(t) o 1 ,(t) = exd— A, (Dt],  with

1
A)==— lim In
1 5x(0)—0

delity M(t) comes, in fact, from initial states wit, close to
zero. WhemASis not too flat, one can still use the stationary
phase approximation for these initial states. Hence also for
t< 7 we obtain the same expressions as in E4j8) and(14)
for the decay of averaged fidelity.

We have tested the above predictions by considering the
map

»»»»» O M(t)
------ exp(-At)
exp(-2xt)

Pn+1 = Pn+ K[(ry =) + 7sinry]  (mod 2m),

log, M(t)

(mod 27), (15)

with two parameter&, » [0, 1]. ForK>0 and =0, this is
the piecewise linear sawtooth mg0], which is hyperbolic
with constant local (finite time) Lyapunov exponent.
For the particular casekK=1, the map reduces to the
perturbed cat map, which is known to be Anosov for §
<1 (having nonconstant), whereas forp=1 it acquires a FIG. 3. Decay of averaged fidelity in the sawtooth nfag=0)
marginally stablgparabolig fixed point. This map is quan- with K=1 andi=3 in Egs.(15) and (17), showinge 2 decay
tized in a Hilbert space of dimensioN. The one period followed by the Lyapunov decaj.=0.96. The arrow indicates the
guantum evolution is given by the Floquet operatbr, theoretical estimate of the crossover time

M+1=n ¥ Pnet

12 14 16
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M(t) o e—ZM, t < r (16) O_QO T ¥) T T T T T ] Q T T T T T T T i
_ I A O M(t) 1o O averaged M(t)
Fort> 7, one can use arguments given in &3], showing 14 ‘\ 7o et LN |- - - exp(a)
that M(t) still follows the standard Lyapunov decayi(t) RN exp(-2at) | o
-\ 24 o i 4
x @ -t_ - - - 2 5 QO
Finally, in systems possessing stationary phas&Srand 1 °
constant local Lyapunov exponents, although the average& -3 1 *Q 1
fidelity has Lyapunov decay, a double—Lyapunov—exponent8? 4_' ] ° A
decaye ! may appear fot<r, for the fidelity of those = ™ ] Qo
singleinitial states, for Whichp| happens to increase expo- 54 5 0o
nentially aseM [see Eq(7)]. ] \Q\O ] \Q? o3
In order to check the above predictions, we consider the g | o | N
sawtooth mag »=0) which has a constant local Lyapunov i A —— :

exponent, A=In({2+K+[(2+K)?2-4]Y2/2). We consider 0 246 8101214 0 2 4 8 10 12 14 16
here the following perturbed map: t t
) FIG. 4. Fidelity decay in the sawtooth mag=0) with K=1
Pr1= P+ K(ry = m) + éNi(r,—m)'™h, 1=2,3, andi=2. Left panel:M(t) of a single initial Gaussian, showing large
fluctuation att<4, approximates ! decay within 4t<7, and
(17) approximate Lyapunov decay &t 8 (before saturation Right

panel: averaged fideliti(t), showing the Lyapunov decay.

Mm+1= T+ Pnets
with A,=1/2 andN,=11.4/37. These two values\; give

the same decay rate in the Fermi golden rule regime. HOWp, o rticylar we have discussed the relevance of fluctuations
ever, while fori=2 stationary phase afSexists, in the case i, the finite-time Lyapunov exponent and we have shown

i=3 there is no stationary phase &5 vs po. In the latter ¢ figelity decay depends on the strength of such fluctua-
case, as shown in Fig. 3, the average fidelity has an '”'t'agions in the Lyapunov regime.

double-Lyapunov-exponent decay followed by the standar
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