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We use the uniform semiclassical approximation in order to derive the fidelity decay in the regime of large
perturbations. Numerical computations are presented which agree with our theoretical predictions. Moreover,
our theory allows us to explain previous findings, such as the deviation from the Lyapunov decay rate in cases
where the classical finite-time instability is nonuniform in phase space.
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The stability of quantum motion under a system’s pertur-
bation can be measured by the so-called quantum Loschmidt
echo or fidelity f1–3g. It is defined as the overlapMstd
= umstdu2 of two states obtained by evolving the same initial
stateuC0l under two slightly different Hamiltonians:

mstd = kC0uexpsiHt/"dexps− iH0t/"duC0l. s1d

Here H0 is the Hamiltonian of a classically chaotic system
andH=H0+eV is the perturbed Hamiltonian, withe a small
quantity andV a generic perturbing potential. This quantity
can also be seen as a measure of the accuracy to which an
initial quantum state can be recovered by inverting, at timet,
the dynamics with the perturbed HamiltonianH.

This quantity has attracted much attention recently,
mainly in relation to the field of quantum computation and in
connection to the corresponding classical motionf4–13g. Fo-
cusing on systems with chaotic classical limit, one may iden-
tify, by increasing the perturbation strength, three different
regimes of fidelity decay:sid The perturbative regime, in
which the fidelity has a Gaussian decay.sii d The Fermi
golden rule regime, with an exponential decay of fidelity,
Mstd~exps−Gtd. Here the decay rateG is the half width of
the local spectral density of statessLDOSd f5g, which can
also be calculated semiclassicallyf7g. siii d The Lyapunov
regime, in whichMstd~exps−ltd, with l being thesmaxi-
mumd Lyapunov exponent of the underlying classical dy-
namicsf4g.

However, the above picture remains unsatisfactory. This is
particularly the case in the deep Lyapunov regime withs
@1, where s=e /" is the parameter characterizing the
strength of quantum perturbation, and" the seffectived
Planck constant. In systems with nonconstant finite-time
Lyapunov exponentswhich is the typical situationd, fidelity
decays with a rate different froml f11g. Indeed, a semiclas-
sical analysisf11g leads to an exponential decay of fidelity
with a ratel1,l. The relation between this semiclassical
treatment and that along the lines of Refs.f4,6,7,12,13g is
unclear. Moreover, an extremely fast, superexponential decay
of fidelity has been found within a quite short initial time for

initial Gaussian wave packetsf11g. In view of the importance
of fidelity for the characterization of the stability of quantum
motion under a system’s perturbation, it is necessary to pro-
vide a clear theoretical understanding of its behavior and, in
particular, to account for the seemingly disconnected and
sometimes contradictory results.

In this paper, we focus on the behavior of fidelity fors
@1 and we treat this problem in full generality. We derive
the general semiclassical formula which correctly reproduces
the two limiting cases of exps−ltd and exps−l1td decays. We
also show that under certain conditions the exponential rate
of fidelity decay can be equal totwice the classical Lyapunov
exponent.

Our starting point is the semiclassical approximation to
the fidelity for an initial Gaussian wave packet given in Ref.
f12g,

mscstd . sj2/p"2dd/2E dp0 expfiDSsp0, r̃ 0;td/"

− sp0 − p̃0d2/s"/jd2g, s2d

where DSsp0, r̃ 0; td is the action difference along the two
nearby trajectories starting atsp0, r̃ 0d in the two systemsH
andH0,

DSsp0, r̃ 0;td . eE
0

t

dt8Vfr 8st8dg s3d

with V evaluated along the trajectory in theH0 system. The
initial Gaussian wave packet, centered atsr̃ 0,p̃0d, is

c0sr 0d = spj2d−d/4expfip̃0 · r 0/" − sr 0 − r̃ 0d2/s2j2dg. s4d

For simplicity, we will consider here kicked systems with
d=1 and set the domains ofr and p to be f0,2pd. The ef-
fective Planck constant is taken as"=2p /N, whereN is the
dimension of the Hilbert space.

The main feature ofDS as a function ofp0 is its oscilla-
tions, the number of which increases exponentially with time
t. Indeed, the variance ofDS increases linearly witht f7g,
while the slope ofDS/e, denoted bykp,
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kp =
1

e

]DSsp0,r0;td
]p0

. E
0

t

dt8
]V

]r8

]r8st8d
]p0

, s5d

increases on average exponentially witht, due to the factor
]r8 /]p0.

Let us first discuss the fidelity for a single initial state.
Neglecting a quite short initial time, the main contribution to
the right hand side of Eq.s2d comes from the integration
over the regionfp̃0−wp, p̃0+wpg, wherewp=" /j is the width
of the initial Gaussian in thep0 space. Let us define a time
scalet such that att=t, DSsp0, r̃0; td completes one full os-
cillation period asp0 runs overfp̃0−wp, p̃0+wpg. In a system
possessing a constant local Lyapunov exponentl, the num-
ber of oscillations ofDS increases exponentially asc0e

lt and
we obtain the average estimate fort,

t̄ <
1

l
lnsp/c0wpd. s6d

Taking, e.g.,j=Î", one can clearly see thatt̄ is of the order
of the Ehrenfest times1/ldln "−1. In the general case of sys-
tems with fluctuation in the finite-time Lyapunov exponent,
the number of the oscillations ofDS increases aseLstdt, with
some time-dependent rateLstd,l.

We consider first the behavior of fidelity fort,t and

denote withk̃p the value ofkp in the centersp̃0, r̃0d of the
initial Gaussian. For such times, the phaseDS/", on the right
hand side of Eq.s2d, as a function ofp0, can usually be

approximated by a straight line with a slopesk̃p, within the
regionp0P fp̃0−wp, p̃0+wpg. Due to both the fast increasing

of uk̃pu with time and the larges value, one hasusk̃pu
@p /wp for most initial states and, as a result, the change of
the phaseDS/" within the intervalp0P fp̃0−wp, p̃0+wpg is
much larger than 2p. Note that the largest slope of the term
sp0− p̃0d2/wp

2 within this interval of p0 is 2/wp, which is

much smaller thanusk̃pu. The right hand side of Eq.s2d can
now be calculated approximately within the intervalp0
P fp̃0−wp, p̃0+wpg and gives

Mscstd ~ 1/ssk̃pd2. s7d

For timest.t, or whenuk̃pu is small enough fort,t, the
stationary phase approximation can be used in calculating
mscstd in Eq. s2d. If we denote bya the stationary points and
by p0a the momenta at whichkp=0, we have mscstd
.oamastd, where

mastd =
Î2i"

wp

expF i

"
DSsp0a, r̃0;td − sp0a − p̃0d2/wp

2G
ÎuDSa9 u

,

with

DSa9 = U ]2DSsp0, r̃0;td
]p0

2 U
p0=p0a

. s8d

Next we turn to the behavior of average fidelity and first
consider the long time decay, namely,t.t. Due to the large
s value and to the classically chaotic motion, the phase

DSsp0a , r̃0; td /" in Eq. s8d can be regarded as random with

respect toa and r̃0. Then, the averaged fidelityM̄std, with
average taken overr̃0 and p̃0, can be approximated by its
diagonal partf13g,

M̄std . o
a

umastdu2 .
j

s2pd3/2E
0

2p

dr̃0o
a

1

uDSa9 u
. s9d

The right hand side of Eq.s9d can be expressed as an
integration of 1/ukpu. For this, we introduceAa to denote the
region fp0a

− ,p0a−dgø fp0a+d ,p0a
+ g, where p0a

− =sp0a

+p0,a−1d /2, p0a
+ =sp0a+p0,a+1d /2, and whered is a small

quantity. In the neighborhood ofp0a, kp satisfies ekp
.DSa9sp0−p0ad. For small enoughd, we have

E
Aa

dp0
1

uekpu
. −

2 ln d

uDSa9 u
. s10d

Substituting the expression ofuDSa9 u obtained from Eq.s10d
into Eq. s9d, we have

M̄std <
j

s2pd3/2s− 2 ln ddeE0

2p

dr̃0E
Pd

dp0
1

ukpu
, s11d

wherePdªøaAa.
Since the value ofd is irrelevant for the decay rate, we

may write

M̄std ~ Isstd ªE dr̃0E
Pd

dp0
1

ukpu
. s12d

An accurate numerical evaluation ofIsstd is not easy since
one must find out all stationary pointsa for each value ofr̃0.
An approximate numerical result can be obtained by using
the Monte Carlo method in which, in order to perform the
integrals12d over the regionPd, i.e., with the neighborhoods
of stationary points excluded, we neglect the small set of
points that have the smallest values ofukpu.

Actually, one can make a further approximation by using
the following arguments. The main contribution to the inte-
gral in Eq.s11d comes from small values ofukpu in the region
Pd. For p0PPd close to a stationary pointp0a, kp in Eq. s5d
can be approximated by

kp < E
0

t

dt8F ]2V

]r82S ]r8

]p0
D2

+
]V

]r8

]2r8

]p0
2 Gsp0 − p0ad. s13d

Due to exponential divergence of neighboring trajectories in
phase space, the main contribution to the right hand side of
Eq. s13d comes from timest8< t. The time evolution of the
quantity inside the bracket in Eq.s13d is given by the dy-
namics of the system described byH0. On average it in-
creases asfdxstd /dxs0dg2, where dsxd denotes distance in
phase space. With increasing time, the number of the station-
ary points ofDS increases exponentially, roughly in the same
way as dxstd /dxs0d, since the oscillation ofDS is mainly
induced by local instability of trajectories. Then, substituting

Eq. s13d into Eq.s11d, we haveM̄std~ udxstd /dxs0du−1, which
can be written as
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M̄std ~ ILstd = expf− L1stdtg, with

L1std = −
1

t
lim

dxs0d→0
lnU dxstd

dxs0d
U−1

. s14d

In systems with constant local Lyapunov exponents, Eq.s14d
reduces to the usual Lyapunov decay withL1std=l. On the
other hand, when fluctuations in local Lyapunov exponent
cannot be neglected,ILstd coincides with thee−l1t decay in
Ref. f11g with l1= limt→` L1std,l, only in the limit t→`.
Therefore, the actual decay, which can be observed in finite
times, can be considerably different from thee−l1t decay.

For timest,t, the main contribution to the averaged fi-

delity M̄std comes, in fact, from initial states withk̃p close to
zero. WhenDS is not too flat, one can still use the stationary
phase approximation for these initial states. Hence also for
t,t we obtain the same expressions as in Eqs.s12d ands14d
for the decay of averaged fidelity.

We have tested the above predictions by considering the
map

pn+1 = pn + Kfsrn − pd + h sin rng smod 2pd,

rn+1 = rn + pn+1 smod 2pd, s15d

with two parametersK ,hP f0,1g. ForK.0 andh=0, this is
the piecewise linear sawtooth mapf10g, which is hyperbolic
with constant local sfinite timed Lyapunov exponent.
For the particular caseK=1, the map reduces to the
perturbed cat map, which is known to be Anosov for 0,h
,1 shaving nonconstantld, whereas forh=1 it acquires a
marginally stablesparabolicd fixed point. This map is quan-
tized in a Hilbert space of dimensionN. The one period
quantum evolution is given by the Floquet operator,U

=expf−ip̂2/ s2"dgexpf−iUsr̂d /"g, with Usrd=−Kfsr −pd2/2
−h cosrg. In order to compute fidelity, we choose to perturb
the parameterK→K+e. Figure 1 shows that numerical data
accurately fit our theoretical predictions in Eqs.s12d and
s14d. In Fig. 2, it is seen that with decreasingh, since the
values ofl andl1 become closer, our predictions approach
that of Ref.f11g. At h=0, the classical map has a constant
local Lyapunov exponent and the standard Lyapunov decay
is recovered.

In the above discussion of the average fidelity, the exis-
tence of stationary phase is assumed. It may happen, in some
circumstance, e.g., with some special perturbation, that there
is no stationary phase forDS. In this case it turns out that a
decay with a rate of double Lyapunov exponent may appear
for t,t, when the classical system has a constant local
Lyapunov exponent. Indeed, fort,t, the main contribution

to the averaged fidelityM̄std comes from initial states for

which the values ofuk̃pu are close to local minimum ofukpu.
When the values of local minimum ofukpu are large enough,
the decay of the fidelity is given by Eq.s7d. Then, sinceukpu
increases on average aselt, the averaged fidelity has a
double-Lyapunov-exponent decay,

FIG. 1. Decay of averaged fidelity in the maps15d, with K=1,
h=0.987. Is and IL are the theoretical predictionss12d and s14d,
respectively. It is seen that after a short initial time, bothIsstd and

ILstd are close to the exact fidelityM̄std suntil saturation is reachedd.
For comparison, the decaye−l1t is shown. We also plot the average
classical fidelity, which was calculated by taking initial points
within circles with radiusÎ" in the phase spacef10,14g. For this
map, l<0.9 andl1<0.35. Here and in the following figures,s
=100, N=131 072,j=Î", and averages are performed over 2000
initial Gaussian packets.

FIG. 2. Same as Fig. 1, but forh=0.85, for whichl<0.92 and
l1<0.81.

FIG. 3. Decay of averaged fidelity in the sawtooth mapsh=0d
with K=1 and i =3 in Eqs. s15d and s17d, showing e−2lt decay
followed by the Lyapunov decaysl=0.96d. The arrow indicates the
theoretical estimate of the crossover timet̄.
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M̄std ~ e−2lt, t , t. s16d

For t.t, one can use arguments given in Ref.f13g, showing

that M̄std still follows the standard Lyapunov decay,M̄std
~e−lt.

Finally, in systems possessing stationary phase inDS and
constant local Lyapunov exponents, although the averaged
fidelity has Lyapunov decay, a double-Lyapunov-exponent
decaye−2lt may appear fort,t, for the fidelity of those
single initial states, for whichukpu happens to increase expo-
nentially aselt fsee Eq.s7dg.

In order to check the above predictions, we consider the
sawtooth mapsh=0d which has a constant local Lyapunov
exponent, l=ln(h2+K+fs2+Kd2−4g1/2j /2). We consider
here the following perturbed map:

pn+1 = pn + Ksrn − pd + eiNisrn − pdi−1, i = 2,3,

rn+1 = rn + pn+1, s17d

with N2=1/2 andN3=Î1.4/3p. These two valuesNi give
the same decay rate in the Fermi golden rule regime. How-
ever, while fori =2 stationary phase ofDS exists, in the case
i =3 there is no stationary phase inDS vs p0. In the latter
case, as shown in Fig. 3, the average fidelity has an initial
double-Lyapunov-exponent decay followed by the standard
Lyapunov decay, as predicted by the theory. The crossover of
the two decays is in agreement with the theoretical estimate
t̄<6.5. Figure 4sleft paneld shows instead that a double-
Lyapunov-exponent decay may appear for the fidelity of
some particular single initial state, while the average fidelity
has the Lyapunov decaysright paneld.

In summary, we have derived general semiclassical ex-
pressions for the fidelity decay, at strong perturbations,
which reproduce, as two particular limiting cases, previous
results leading to the Lyapunov decay and to thee−l1t decay.

In particular we have discussed the relevance of fluctuations
in the finite-time Lyapunov exponent and we have shown
that fidelity decay depends on the strength of such fluctua-
tions in the Lyapunov regime.
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FIG. 4. Fidelity decay in the sawtooth mapsh=0d with K=1
andi =2. Left panel:Mstd of a single initial Gaussian, showing large
fluctuation att,4, approximatee−2lt decay within 4ø tø7, and
approximate Lyapunov decay attù8 sbefore saturationd. Right

panel: averaged fidelityM̄std, showing the Lyapunov decay.
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