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We study, analytically and numerically, the stability of quantum motion for a classically chaotic system. We
show the existence of different regimes of fidelity decay. In particular, when the underlying classical dynamics
is weakly chaotic, deviations from Fermi-golden-rule and Lyapounov regimes are observed and discussed.
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The nature of correlations decay is an important subject isimple, well-known, sawtooth map modéP]. The classical
different fields of physics. In particular, after the discovery of map writes
the so-called dynamical chaos, a large effort has been de- o _ o
voted to understand their behavior in relation to dynamical p=p+Ko(f—m), 6=6+p (mod2m). 2

properties. The main reason is to know the precise conditionlgOr Ko>0, the motion is completely chaotic, with Lyapunov

under which a statistical description is legitimate and to es- - 2
timate the nature of the approximations which are involved.eXponem}‘_In{(2+K°+[(2+K°) 41"9/2}. The quantum

Another important characteristic of dynamical systems isGVOIUtIon on one map iteration is described by
the stability of their solutions under slight variation of the o — _ a2 e (D2
Hamiltonian. A quantitative measure of this stability is given y=Uoy=exi ~ip™/(2h)Jexiiko(6=m) /214, (3)
by the so-called fidelity or quantum Loschmidt echo. Thewhere p=—i%d/d0 and ko=Ky/#x, with the effective
fidelity M(t)=|m(t)|> measures the overlap of two states Planck constant =27/N andN being the dimension of the
started from the same initial state and evolved under slightlHilbert space. For the perturbed systelkw= K+ e and k
different HamiltoniandH, andH=Hy+ €V, which are clas- =ky+ o, whereo=¢/f and e<K,,.
sically chaotic, In Fig. 1 we show the fidelity decay in the expected FGR
regime 14/N<o=1. In spite of the fact that the classical
motion is chaaotic, it is clearly seen that the behavior does not
obey the FGR which, according to Ref4,12], should be
xexp(—TI't) with ['~2.20%. The same conclusion can be

Quite surprisingly, in spite of its physical relevance, thedrawn from Fig. 2 where we plot the decay rageof the
behavior of fidelity has been scarcely considered and onl§idelity as a function ofo. Indeed atk,=0.4 the decay rate
recently, in connection with quantum computation, a largey versuso appears quite different from the quadratic one
number of papers appeared. Some important features of fi16].
delity are now understood even though we are still far from Deviations are present even Ey=1, and only atK,
the detailed level of knowledge we have about related quan=2 one has good FGR decay. Moreover, above the FGR
tities such as correlations functions and escape probabilitiesegime, where one expects Lyapunov decay, there are strong
So far, above the perturbative regime of small with  oscillations above and below the decay natdor Ko=1 and
Gaussian-type decdyl—3], two main types of exponential 2). Only at largero values, one enters the Lyapunov regime.
decay of the fidelity have been identified) The Fermi- In order to explain the above numerical results, we start
golden-rule(FGR) decay, with the exponent given by the from the standard semiclassical approgi4]. For simplic-
half-width of the corresponding local spectral density ofity, we consider a finite configuration space, with dimension
states[3-6] (this decay has been related to the decay ofd and volumeV= [dr. The momentum space is also finite,
autocorrelation function [9]; (ii) the Lyapunov regime, with a volumeV,. In the semiclassical approach, an initial
above the FGR regime, with decay rate given by thestatey(ry) is propagated by the semiclassical Van Vleck—
Lyapunov exponent of the underlying classical dynamicsGutzwiller propagator, ¢(r;t)=droK{r,ro;t)o(ro),
[4,7-15. whereK {r,rq;t)=2Kq(r,rq;t), with

In this paper we show that for classically chaotic systems,
in particular those with weak chaos, the behavior of fidelity
can be much more rich and complex than expected. In par-
ticular we study perturbation borders which separate differ-
ent types of decay. The labels in Eg. (4) [more exactlys(r,rq;t)] indicates

We start by displaying numerical results which strongly classical trajectories starting igf and ending at in a timet;
deviate from the expected behavior. We consider here thg(r,r,;t) is the time integral of the Lagrangian along the

m(t) =(Wo|exp(iHt/A)exp —iHt/A)| V). (1)

12 i i
Ks(r!ro;t) XF{%SS(rer;t)_7IU'S . (4)
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FIG. 1. Fidelity M(t) as a function ofc?t for K,=0.4, €
~7.67<1075, and N=N,,2N,,4Ny,8N, (from bottom to top

whereNy=4096. (r=0.05,0.1,0.2,04 The FGR decay=e 22"

RAPID COMMUNICATIONS

PHYSICAL REVIEW E 69, 025201R) (2004

12 16 20 24 28
[}

00 04 08

FIG. 2. The exponential decay rajevs perturbation strengtér,

calculated from the best fit of Iﬁ(t). Gaussian wave packets are
taken as initial states. The solid curve shows the Fate2.20? of

is shown by the dashed line. Full circles represent the semiclassicétie FGR decay. The dashed horizonal lines correspond to the

vaIuesI\Wa(t) at 0=0.4, computed with expressig#). The numeri-
cally computed semiclassical valugk(t) turn out to be negligible

o) thatl\W(t) is well approximated bW 4(t), as clearly seen from
the figure ato=0.4. Averages were performed over 400 initial point
sources, withd, taken randomly in the intervdD,2m). (The same

decaying behaviors are observed for initial Gaussian wave packets.

trajectory's, Sy(r,ro;t)=/odt' £, Ce=|det(@?Ss/drgar;)|,
and ug is the Maslov index counting the conjugate points.

In Ref.[14], it is shown that the semiclassical approxima-

Lyapunov exponents=0.62,0.96, and 1.32 fak,=0.4,1, and 2,
respectively. HerdN=131 072.

1
P(AS)= [ drodnoal AS—AS(po10:0)].

f drodpo
®

It is usually assumed that for chaotic systeR(QS) is
close to a Gaussian with a varianf8e’K(E)t], where

tion to m(t) for initial Gaussian wave packets has a simpleK(E)=/odt{V[r(t)IV[(r(0)]) is the classical action diffu-
and convenient expression in the initial momentum spacesion constant[3]. As a result, M (t)=e ", where T

Following similar arguments for initial point sources,

(r|wo)= \/(th)a/vpé(r—ro) (the theory can be extended
to general initial statgsone can writem(t) as

1 )
m(ro,t)zv—pj deeX[{;i—AS(po,ro;t) , 5

whereAS(pg,ro;t) is the action difference along the trajec-
tory starting at €g,pg) for the two systemsl, andH. In the
first-order classical perturbation theoryAS(pg,ro;t)
= ef})dt’V[r(t’)], with V evaluated along the trajectory.
The averagedover ry) fidelity can be separated into a
mean-value part and a fluctuating p4ftl], denoted by
M,(t) and M(t), respectively, M(t)=|m(t)|?=M(t)
+M¢(t), where

_ o o 1
M,(t)=|m(t)|?> with m(t)=)—)f drom(rg,t).  (6)

From Egs.(5) and (6), it is seen that the mean-value part

M,(t) can be expressed in terms of the distributR S)
of the action differenc@sS,

2

()

Ma(t)=j dASEAYEP(AS)

where,

=20%K(E). At small o, the fluctuation is small compared
with the average value, because the phase on the right-hand
side of Eq.(5) is proportional too; then,M (t)=M,(t) has
the FGR decay.

Let us now consider a fixed),, and divide the space of the
initial momentap, into connected, disjoint subspaces, de-
noted byA,, where eacld,, is the largest possible subspace
such that the correspondence betwpgrand the final posi-
tionr is one to one, i.e., different, inside each single com-
ponentA, gives different final positions. It is always pos-
sible to make such a division. The number of subspates
is denoted byN,. Note also that the sizes of, decrease
exponentially with increasing time Whenp, runs over a
subspaced,, , r may run over part of the configuration space,
denoted byV, . Note that, with this division of th@y sub-
space, the trajectories starting & are divided intoN,
groups and “near” trajectories typically belong to the same
group.

The amplitudem(ry,t) in Eq. (5) can now be written as
m(rg,t)=%,m,(rq,t), where

ma(ro,t)zvipfv drCSex;{%—ASS(r,rO;t)} 9)

with integration over the subspatg,, in which the change
of variable po—r within the subspacesl, has been done
and AS((r,rg;t) coincides withAS(pg,rq;t) for the same
trajectorys starting at (q,pg) with poe A, . M¢(t) is writ-
ten as

025201-2
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FIG. 3. Comparison between the exaz(t), its semiclassical
mean-value pa ,, calculated by using Eq$5) and (6), and the
fluctuation parﬂ\Wf= I\WSC— I\Wa, wherel\WSC is the semiclassical ap-
proximation to the fidelity, computed by the expressiéh Here
N=131072,Ky,=2, and c=0.9 (left pane), =3 (right panel.
The exacM (t) is in good agreement with its semiclassical approxi-
mationM ¢(t). The average is taken over 500 initial point sources.

2 m(t)

Mi(t)=|2 My with me=m,(ro,t) =

a

(10

When o is large enough, above a critical bordef;,
m,(ro,t) can be regarded as possessing random phase, a

thereforeM; can be approximated by its diagonal part

Mi(0)= 2 Imqr|?=~ 2 m(ro,0)]”
i 2
f drCSex;<%ASS) , (11
Va

- J ore3

t

FIG. 4. Similar to Fig. 3, folKy=1 ando=6. At this largeo,
M ,(t) is negligible compared witiv (t).

The deviation from FGR decay observed in Figs. 1 and 2
is due to the deviation d?(AS) from the Gaussian behavior.
Indeed, when chaos in the underlying classical dynamics is
strong enough K,>1), correlations between nonoverlap-
ping parts of a trajectory decay very rapidly and the distri-
bution P(AS/€) reaches, in a relatively short time, the
Gaussian distribution. This is the case of Fig. 5 ky=2,
where K (E) = 7#/90=1.08 with I'=2K(E)o?=2.160, in
agreement with the numerical results in Rd2] and in Fig.

2. However, whenK, is not sufficiently large, e.g.Kq
P-4, a considerable deviation B{AS/€) from the Gauss-

ian distribution appears for times comparable to the fidelity
decay timegFig. 5. According to Eq.(7), this leads to de-
viations from the FGR decay as observed in Fig. 1. We
would like to draw the reader’s attention to the fact that for
Ky<1 the saw-tooth map, even though completely chaotic,
possesses a structure of cantori which, in the quantum case,
can act as perfect barriers to quantum motion thus leading to
localization of wave functions.

Notice that the deviation oP(AS/€) from the Gaussian

where the second approximation is obtained by noticing thagistribution depends oK, but not one or o. Therefore, by

|m(t)/N,|<|m,| at largeo.

increasingo, the effect of this deviation becomes more and

When the phase space is homogeneous with constant locglore important, since the FGR exponential decay has a de-

(maximum Lyapunov exponenk, as in the sawtooth map,
the numbeNg(rq,r) of trajectories connecting two pointg
andr in the configuration space is approximatély=N,
=¢eM [17]. The summation ovew in Eq. (11) gives a con-
tribution approximately proportional tdNg. At t large
enough, the main time dependence|ff drC.el"45 is
given byC,xe M. Combining these results, it is seen that at
o>oy, M¢(t) has the Lyapunov decal)(t)xe M.

In order to have the Lyapunov decay fur(t), the term

I\Wa(t) must be small. To this end one needs to further in-

creaser above a critical value, , so that the variance of the
phase oin(rq,t) with respect ta will become so large that

M ,(t) is negligible. -
The right panel of Fig. 3 gives an example bf4(t)

~M(t). This explains the fluctuation of versuso shown in
Fig. 2 atK,=2 ando<3. Figure 4 instead gives an example

with o large enough ¢> o), so thatM 4(t) is negligible
and M (t) =Mq(t).

cay rate proportional tar® while the deviation from the
Gaussian remains unchanged. Therefore, for a given system,
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FIG. 5. DistributionP[(AS—(AS))/e] of the classical action
differenceAS, att=10, calculated by taking randomly Aitial
points in the phase space, whéreS)= et(V(6))= — w2et/6, with
an average over the phase space.
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thbere ij a cr:itical &/aluerd, belowdwrzjich thehFC;R dGecat))/ is k[7] is the following. At ¢ small enoughM(t)=M 4(t)
obeyed with good accuracy and above which FGR breaks_, ,nd e d s

down. This case is Jlustrated in Fig. 2 for the cdsg=1, () With M¢(t) andM (1) negligible; while at farge
which coincides with the well-known Amold cat map, the €NPUGNM (1) =M (t) =M"(t), with M4(t) andM™(t) neg-
paradigmatic model of chaos. Here the distributR{n\ S/ €) ligible. In the intermediate regime af, in particular, in the
(att=10) is slightly different from the Gaussian distribution crossover from the FGR decay to the Lyapunov decay, there
and the decay rate of fidelity deviates from the FGR decay May be a considerable difference between the two divisions.
for 0=0.3. In cases of weak classical chaos, the valueof In this paper, by using the sawtooth map, we have dem-
can be so small that FGR is never observedy., the case onstrated that the fidelity decay in a generic chaotic system
with K,=0.4). The left panel in Fig. 3 shows instead a casecan have a very complex behavior. In particular, deviations

atKy=2 ande=0.9, in whichl\Wa(t) obeys the FGR decay from the Fermi-golden-ruléfor weak chaosand Lyapunov
and M (t) is negligible decay have been discussed as well as the existence of pertur-

To summarize, above the perturbative border, the fidelit)Pation borders separating different regimes. It is our opinion
has a FGR decay for<oy, while for o>o,, it has the that fidelity is an important quantity which characterizes the
Lyapunov decay. In the iﬁtermediate regEo’n foy<o stability of classical and quantum systems. It therefore de-

<oy, the fidelity deviates from FGR and can decay everSerVes deeper analytical and numerical studies in order to
faster than Lyapunov. Fot<o<o M (t)~IW (t) and fully understand its behavior in different dynamical regimes.
. f r a f
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