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Crossover of quantum Loschmidt echo from golden-rule decay to perturbation-independent deca

Wen-ge Wang and Baowen Li
Department of Physics, National University of Singapore, 117542 Singapore

~Received 18 July 2002; published 26 November 2002!

We study the crossover of the quantum Loschmidt echo~or fidelity! from the golden-rule regime to the
perturbation-independent exponential decay regime by using the kicked top model. It is shown that the devia-
tion of the perturbation-independent decay of the averaged fidelity from the Lyapunov decay results from
quantum fluctuations in individual fidelity, which are caused by the coherence in the initial coherent states.
With an averaging procedure suppressing the quantum fluctuations effectively, the perturbation-independent
decay is found to be close to the Lyapunov decay. We also show that the Fourier transform of the fidelity is
determined directly by the initial state and the eigenstates of the Floquet operators of the two classically chaotic
systems concerned. The absolute value part and the phase part of the Fourier transform of the fidelity are found
to be divided into several correlated parts, which is a manifestation of the coherence of the initial coherent
state. In the whole crossover region, some important properties of the fidelity, such as the exponent of its
exponential decay and the short initial time within which the fidelity almost does not change, are found to be
closely related to the properties of the central part of its Fourier transform.

DOI: 10.1103/PhysRevE.66.056208 PACS number~s!: 05.45.Mt, 05.45.Pq, 42.50.Md, 76.60.Lz
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I. INTRODUCTION

The quantum Loschmidt echoM (t) measures the overla
of the evolution of the same initial state under two sligh
different Hamiltonians in the classical limit,

M ~ t !5u^F0uexp~ iHt !exp~2 iH 0t !uF0&u2. ~1!

Here H0 is the Hamiltonian of a classically chaotic syste
and

H5H01kV, ~2!

with k being a small quantity.
This quantity characterizes the stability of quantum m

tion under a small change of the Hamiltonian, e.g., by
interaction with the environment, it is thus called ‘‘fidelity
and is of great interest in the fast developing field of qu
tum information@1,2#.

Moreover, a relationship between this quantity and
Lyapunov exponent that characterizes the classical chaos
been established analytically by using the semiclass
theory by Jalabert and Pastawski@3#, which has been con
firmed numerically in several models@4–9#. Therefore, this
quantity has attracted a great attention from the commu
of quantum chaos@10–13#.

It has been shown that several regimes exist. In
golden-rule regime of the perturbation parameter, abov
perturbative border, the fidelity has been found to hav
simple decaying behavior,M (t)}exp(2GLt) @4,6,14#, where
GL is the half-width of the local density of states~LDOS!
rL , which has a Lorentzian form~Breit-Wigner form!,

rL~E!5
GL/2p

E21GL
2/4

, ~3!

with GL52prU2. Herer is the density of states andU is
the typical transition matrix element ofkV between the
eigenstates ofH0. As the perturbation parameterk is in-
1063-651X/2002/66~5!/056208~9!/$20.00 66 0562
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creased, the exponential decay ofM (t) deviates from exp
(2GLt), whenGL becomes comparable to the bandwidth
H0, and rL deviates from the Lorentzian form notably.
decay with the Lyapunov exponentl of the underlying clas-
sical chaotic dynamics,M (t)}exp(2lt), can appear in this
regime of the perturbation parameter when the~effective!
Planck constant is small enough and the initial state is c
sen suitably, e.g., a narrow wave packet@3#. An interesting
feature of this decay ofM (t) is that it is perturbation inde-
pendent, in the sense that it is irrelevant to the strength of
perturbationkV, and is determined by the classical behav
of the systemH0 ~and also that ofH due to the smallness o
the perturbation in the classical limit!. Based on the semi
classical theory and the random matrix theory analysis
transition ofM (t) from theGL decay to thel decay has been
conjectured to occur atGL5l @4#. Numerical results in sev-
eral models support the conjecture@4,7,9#.

The validity of results of the semiclassical theory depen
on the value of the~effective! Planck constant. When th
~effective! Planck constant is not small enough, the valid
should be checked by direct quantum mechanical calc
tions. In fact, the behavior of the fidelity in this case is s
not quite clear. For example, whether there is a sharp tra
tion from the GL decay to thel decay, or the transition
occurs in a finite regime of the perturbation parameter. I
even unclear whetherM (t) could decay with the Lyapunov
exponent. Indeed, a perturbation-independent, but slo
than exp(2lt), decay has been observed in the kicked t
model @4#, the mechanism of which is still not clear. Mea
while, the random matrix theory seems unsuitable for su
problems, since perturbation-independent decay ofM (t) is
usually initial-state dependent, the feature of which is hard
be captured by the random matrix theory treatment.

The quantity used in this paper in analyzing properties
the fidelity M (t) is its Fourier transform, denoted byFM(E)
in what follows. As will be shown in Sec. II thatFM(E) is
determined directly by properties of the initial state and
the ~quasi!energy eigenstates of the two classically chao
©2002 The American Physical Society08-1
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systems concerned. The role played byFM(E) in under-
standing the behavior ofM (t) is similar to that by the LDOS
for the survival probabilityP(t)5u^auexp(2iHt)ua&u2.

In this paper, properties ofFM(E) and their relations to
those ofM (t) will be investigated numerically in the kicke
top model@15#. The fidelity in this model has been studied
Refs. @4,14,13#, and here we will concentrate on the issu
unaddressed in the previous work. Specifically, in addition
properties ofM (t) related to the functionFM(E), we focus
ourself on the following problems:

~i! The mechanism of the perturbation-independent de
slower than exp(2lt).

~ii ! Due to the small difference betweenH0 andH in the
classical limit, the classical counterpart of the fidelityM (t)
should change quite slowly whent is small enough~see Ref.
@9# for numerical results in another model!. In the quantum
mechanical case, a similar phenomenon should be of pr
cal interest in quantum computing. However, it is not cle
whether or not the phenomenon exists.

The paper is organized as the follows. The functionFM is
introduced in Sec. II. In Sec. III, we shall present our n
merical investigation of the problems mentioned above
particular, for properties of the amplitude and the phase
the function FM(E) with initial coherent states. The
perturbation-independent decay slower than exp(2lt) will
be shown to be due to large quantum fluctuations in in
vidual fidelity, which are caused by the coherence posse
by the initial coherent states, when the~effective! Planck
constant is not small enough. It will be shown that the fid
ity M (t) does not decay obviously within a short initial tim
the length of which is determined by some properties of
functionFM(E). The relationship between the decaying ra
of M (t) after the short initial time and some properties of t
functionFM(E) will also be shown numerically. Conclusion
and discussions will be given in Sec. IV.

II. FUNCTION F M„E… AS THE FOURIER TRANSFORM
OF M „t…

In this paper, the eigenstates of the two HamiltoniansH0
and H are denoted byua& and ub&, respectively, with
eigenenergiesEa andEb ,

H0ua&5Eaua&, Hub&5Ebub&. ~4!

The expanding coefficient ofub& in ua& is indicated byCba ,
Cba5^aub&. The LDOSrL(E) of an eigenstateua& of H0 is
determined directly by the eigensolutions of the two Ham
tonians concerned,

rL~E!5(
b

uCbau2d@E2~Eb2Ea!#. ~5!

As is known, when the initial stateuF0& is an eigenstate o
H0, the fidelity amplitudem(t),

m~ t !5^F0uexp~ iHt !exp~2 iH 0t !uF0&, ~6!

is just the Fourier transform of the LDOSrL(E), and the
form of the LDOS is important in the study ofM (t), which
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is just the survival probabilityP(t) in this case. However, a
shown in Ref. @8#, the LDOS cannot explain the
perturbation-independent decay ofM (t). In fact, the
perturbation-independent decay ofM (t) appears only for
some special set of initial states, that is, it is initial-sta
dependent. Although a rigorous condition is still lacking,
sufficient condition for such initial states is expressed in
rough way that an initial state should be a narrow wa
packet@3#. When the decay ofM (t) is initial-state depen-
dent, one should use a quantity that is more general than
LDOS in analyzing the properties ofM (t).

The function FM @the Fourier transform of the fidelity
M (t)] is a suitable candidate, which is introduced as t
follows. Let us first express the fidelity amplitudem(t) in the
form

m~ t !5E f m~e!e2 i etde, ~7!

where

f m~e!5(
a,b

Aabd@e2~Ea2Eb!#, ~8!

Aab5^F0ub&^auF0&Cba* . ~9!

Note that the quantityAab defined in Eq.~9! is invariant
under the transformation

ua&→eiwaua&, ub&→eiwbub&, uF0&→eiw0uF0&,
~10!

where wa , wb , and w0 are arbitrary phases. That is, it
irrelevant to the relative phases among the statesua&, ub&,
and uF0&. The fidelity M (t) can be expressed as

M ~ t !5um~ t !u25E FM~E!e2 iEtdE, ~11!

where

FM~E!5E f m~e! f m* ~e2E!de. ~12!

The quantityFM(E) is, in fact, the correlation function o
f m(e). Note that FM(E) can be calculated directly from
properties of the statesua&, ub&, and the initial stateuF0&. In
the following section, we will investigate numerically th
relationship between properties ofM (t) and those of
FM(E). To this end, it is convenient to writeFM(E) as

FM~E!5rF~E!eiuF(E). ~13!

Some arguments can be given to the reason why the
dom matrix theory can be used to predict the decaying
havior of the fidelityM (t) in the golden-rule regime, but no
in the regime where the perturbation-independent decay
M (t) appears. The initial states, whose fidelities are found
have perturbation-independent exponential decay contro
by the Lyapunov exponent, such as narrow wave packet
the configuration space@3#, coherent states@4#, momentum
8-2
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CROSSOVER OF QUANTUM LOSCHMIDT ECHO FROM . . . PHYSICAL REVIEW E66, 056208 ~2002!
eigenstates@9#, etc., usually have wide spreading in the ch
otic statesua& (ub&). Such initial states, which are regular
the classical limit, possess certain kind of coherence. It m
be pointed out that the semiclassical theory does not pre
the perturbation-independent decay of the fidelity for an
bitrary initial state@14#. As shown in the previous paragrap
the functionFM(E), equivalently,M (t), is basically deter-
mined by the quantityAab in Eq. ~9!. In the golden-rule
regime, the LDOSrL(E) is narrow, i.e.,Cba has many
small components; as a result, for the quantityAab , compo-
nents of the initial states in the chaotic states, nam
^F0ub&^auF0&, are not equally effective in the whol
~quasi!energy region ofH0 andH. This should suppress th
coherence of the initial states, which makes it possible
treat the components of the initial state taking part in
evolution ofM (t) effectively as random numbers, like in th
random matrix theory treatment in Refs.@4,6,14#. On the
other hand, when the perturbation is so strong that the w
of the LDOS is comparable to the~quasi!energy bandwidth
of H0, the coherence possessed by the initial states sh
play a non-negligible role in the evolution of the fidelity. Th
random matrix theory cannot be applied in this case, sinc
cannot describe the coherence in the initial states.

III. NUMERICAL STUDY OF FIDELITY AND ITS FOURIER
TRANSFORM

A. The model

The unperturbed HamiltonianH0 of the kicked top model
used in this paper is

H05
p

2t
Sy1

K

2S
Sz

2(
n

d~ t2nt!, ~14!

whereS is the total angular momentum,t is the period, and
K is a parameter adjusting the strength of the kicks. With
loss of generality, the periodt is set to be unity,t51. The
model describes a vector spin that undergoes a free pre
sion around they axis and is periodically perturbed by kick
around thez axis. The time evolution of an initial stateuF0&
at t50 is governed by the Floquet operator

F05expF2 i
K

2S
Sz

2GexpF2 i
p

2
SyG , ~15!

where\ has been set to be unity. The classical limit of t
system, which is obtained by lettingS→`, with 1/S serving
as the effective Planck constant, is fully chaotic forK*9.

The perturbationkV is chosen in the same way as in Re
@4#, i.e., a slightly delayed periodic rotation of constant an
around thex axis,

V5
p

2t
Sx(

n
d~ t2nt2e!. ~16!

The Floquet operator of the systemH is

F5expF2 ik
p

2
SxGF0 , ~17!
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which gives the time evolution of an initial state,

uF~ t !&5FtuF0&, ~18!

where t50,1,2, . . . . For this model, discussions in Sec.
are still valid, with the eigenstates ofH0 andH changed to
those of the Floquet operatorsF0 and F, respectively, with
the corresponding eigenenergies changed to quasienerg

In numerical calculations, for the sake of convenience,
perturbation parameterk is written as

k5 j 31023. ~19!

Unless addressed explicitly, the value ofS is 500 for the
numerical calculations discussed in this paper. Since the t
t in the evolution equation~18! takes integer values only
according to Eq.~11!, the domain of the variableE in the
function FM(E), which is @24p,4p# in the general case
can be reduced to@2p,p#, with the definition ofFM(E)
changed accordingly, namely,

FM
fold~E!5(

n
FM~E12np!, ~20!

wheren takes the possible values in (0,61,62). The func-
tion FM

fold(E) is more closely related to properties ofM (t)
than the basic one in Eq.~12!. It is this function that will be
used in what follows in the numerical investigation of th
kicked top model and, for brevity, it will be denoted b
FM(E).

Initial states studied in this paper are in most cases co
ent states of the SU~2! group @16,17#,

uz&5Aez* S1uM &,M52S ~21!

z52tan
u

2
eif, ~22!

whereuM & is the eigenvector ofSz , with the eigenvalueM
(M52S,2S11, . . . ,S), andA is the normalization coeffi-
cient. The coherence in a coherent stateuz& can be easily
seen when it is expanded in the statesuM &. However, in the
study of the fidelity,uz& is required to be expanded in th
eigenstates of the Floquet operatorsF0 andF. Although the
expanding coefficients in such chaotic states must con
information on the coherence possessed by the cohe
state, manifestation of the information is not so easy. In S
III D, we will show numerically that the functionFM(E)
introduced in Sec. II can supply some information.

B. Perturbation-independent decay of fidelity and quantum
fluctuations

Basic properties of the fidelityM (t) in the kicked top
model have been studied in Ref.@4#. Here, as mentioned in
the Introduction, we are interested in a perturbatio
independent decay of the averagedM (t) with initial coherent
states, which decays more slowly than the exponential de
predicted by the semiclassical theory. In order to underst
this phenomenon, we study the individualM (t). In the re-
8-3
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gime of the perturbation parameter where the perturbat
independent decay appears, individualM (t) is found to have
large fluctuations. See Fig. 1 for some examples ofK
513.1 andj 56, whereM (t) are plotted in the logarithm
scale. On the other hand, in the golden-rule regime, e.gK
513.1 andj 51, no obvious fluctuation in individualM (t)
is observed. The large fluctuations are, in fact, quantum
fects caused by the coherence in the coherent states. Ac
ing to the arguments given in Sec. II, they should app
when the expanding coefficients of the statesub& in ua&
spread in the whole quasienergy band ofF0 effectively, that
is, when the half-width of the LDOS becomes comparable
the bandwidth of the quasienergy, which is found nume
cally for j >3. In the classical limitS→`, the fluctuations
should disappear.

As shown in Fig. 1, eachM (t) has a ‘‘shoulder’’ in a short
initial time, denoted byts in what follows, within which it
changes slowly. The exponential-type decay ofM (t) appears
only afterts . In order to study the average decaying behav
of M (t), their shoulders should be subtracted. To this e
we shift the time variablet to td5t2ts and take average ove
M (td). Here we meet a problem, since individualM (t) has
large fluctuations. The averagedM (td) may be mainly deter-
mined by a small fraction of theM (td) taken for averaging,
if they have extraordinarily large values. Therefore, in ad
tion to the standard averagedM (td), denoted byM1(td),

M1~ td!5
1

N (
i 51

N

M ~ td ,F i !, ~23!

we also calculate another averagedM (t), denoted by
M2(td), by taking the logarithm ofM (td) before performing
the summation,

lnM2~ td!5
1

N (
i 51

N

ln M ~ td ,F i !. ~24!

FIG. 1. The fidelityM (t) of three initial coherent states chose
arbitrarily, whenK513.1 andj 56. The dotted straight line show
the exponential decay with the corresponding Lyapunov expon
l51.65.
05620
n-

f-
rd-
r

o
i-

r
,

-

HereM (t,F i) is the fidelity of an initial coherent stateuF i&
defined in Eq.~1!, with the dependence on the initial sta
uF i& written explicitly.

Numerical results forM1(td) ~upper! and M2(td) ~bot-
tom! are shown in Fig. 2, with increasingk ( j from 1 to 8!,
whenK513.1. In calculating the two quantities,ts for each
M (t) of j 51 and 1.5 was taken to be the firstt at which
M (t11),0.9. For j >2, ts was determined by the firstt at
which M (t)/M (t11).1.5. Only states satisfyingM (ts)
.0.85 were used in averaging. The reason of taking t
methods in calculatingts is that M (t) decays slowly atj
51 and 1.5. The numberN of coherent states taken for av
eraging is 1000. Results in Fig. 2 forM1(td) are in consis-
tence with those in Ref.@4#, namely, the decay ofM1(td)
saturates at an exponential decay that is slower than the
with the Lyapunov exponent. However, when the large flu
tuations in individualM (t) are suppressed by the seco
averaging procedure, Fig. 2 shows that the decay of the
eraged fidelityM2(td) saturates at an exponential decay th
is close to the Lyapunov decay. The deviation of the satu
tion decay ofM1(td) from the one predicted by the semicla
sical theory is caused by the large fluctuations in individ

nt

FIG. 2. Decay of averagedM (t) of initial coherent states, from
the golden-rule regime (j 51) to the perturbation-independent re
gime, for K513.1. The difference betweenM1 andM2 lies in the
averaging procedure@see Eqs.~23! and ~24!#. The dotted straight
lines represent the exponential decay with the Lyapunov expo
l51.65.
8-4
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CROSSOVER OF QUANTUM LOSCHMIDT ECHO FROM . . . PHYSICAL REVIEW E66, 056208 ~2002!
M (t). In fact, this can also be seen roughly in Fig. 1.
To show the difference between the decay ofM1(td) and

that of M2(td) in Fig. 2 in a quantitative way, we calculat
their decaying exponentsg1 andg2,

M1~ td!}exp~2g1td!, M2~ td!}exp~2g2td!, ~25!

the values of which are presented in Fig. 3. Numerically,g i
( i 51,2) are calculated by the best linear fitting to lnMi(td),
with the fitting lines fixed to the values of lnMi(0) at td
50. The pointstd used in fitting are those satisfying
>M2(td)>0.008. In Fig. 3, we see that, in the golden-ru
regime (j 51 and 1.5!, g1 is close tog2 because of the sma
fluctuation in individualM (t), and both of them are close t
the half-width of LDOS,GL , as predicted by the random
matrix theory. The difference of the three quantities becom
obvious whenj >2. In the parameter regimej >6, g2 fluc-
tuates around the Lyapunov exponentl51.65, whileg1 is
obviously smaller thanl. The value ofg2 at j 514 is obvi-
ously larger than the Lyapunov exponent. This may be du
the reason that the perturbation cannot be regarded as s
at this perturbation value. In fact, when the perturbation is
strong that the classical perturbation theory breaks do
M (t) may decay faster than the Lyapunov decay@6#. As
discussed above, whenS is increased and we are more a
more close to the classical limit, the fluctuations inM (t)
shown in Fig. 1 should become smaller and smaller, wh
would makeg1 approachg2. Indeed, we calculate the cas
of S51000 (k reduced to half to those ofS5500), whereg2
are found to be fluctuating aroundl as well andg1 a little
larger than the values atS5500. However,g1 of S51000
are still obviously smaller thanl, showing thatS51000 is
still not in the deep semiclassical regime.

FIG. 3. Values ofg1 andg2 of the exponential decay ofM1(td)
and M2(td), respectively, at different values of the perturbati
parameter, together withGL , the half-width of the averaged LDOS
andGF , half of the averaged half-width of the best fitting Loren
zian form to the central part ofrF(E)5uFM(E)u. The value of the
Lyapunov exponent of the underlying classical dynamics,l
51.65, is indicated by the horizontal dotted line.
05620
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C. Dependence of fidelity on initial states

In different regimes of the perturbation parameter, the i
tial state can play different roles in influencing the behav
of the fidelity. In the golden-rule regime, the LDOS is narro
and, as discussed in Sec. II, the random matrix theory ca
used to predict the behavior of the fidelity. In this regim
there should be no difference between the decaying beha
of the fidelity of an initial coherent state and that of an ar
trary initial state, that is, the decay of the fidelity should
initial-state independent. Indeed, in a study of the influen
of sub-Planck scale structures@18# on the fidelity in Ref.
@14#, the averaged fidelity of the initial states,

uF0~T!&5exp~2 iH 0T!uF0
c&, ~26!

whereuF0
c& are coherent states, has been found numeric

to be independent of the parameterT and almost the same a
that of initial coherent states. We compare the averaged
delity of initial coherent states with that of initial random
states of the form

uF0
random&5(

a
caua&, ~27!

whereca are random complex numbers satisfying the n
malization condition. It is found that the former ones ha
shoulders, while the latter ones do not. With the shoulder
the former ones subtracted, the decay of the correspon
averaged fidelity is found to be close to each other in
golden-rule regime. Some of the results are plotted in Fig
where 1000 initial states were used in averaging for e
case.

In the perturbation-independent regime of the fidelity
initial coherent states,M (t) of uF0(T)& is found to be de-
caying in part of the evolution time in a way similar to th
of initial coherent states@14#. This implies that, although the
systemH0 is classically chaotic, the time evolution operat

FIG. 4. Comparison of the decay of the averaged fidelity
initial coherent states and that of initial random states in Eq.~27!.
8-5
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exp(2iH0T) does not destroy the coherence possessed
coherent state. Indeed, we find that random superposition
coherent states defined by

uF0
rs~nc!&5 (

n51

nc

eiwnuzn&, ~28!

wherewn are random phases anduzn& are coherent states i
Eq. ~21!, still have some coherence properties of the cohe
states. The averaged fidelity withuF0

rs(nc)& being initial
states at the perturbation parameterj 56 are presented in
Fig. 5. We see that the averagedM (t) with nc.1 has a rapid
decrease betweent50 and 1, which is faster than th
Lyapunov decay fornc>8. This indicates that part of th
coherence in the coherent componentsuz& of the initial states
uF0

rs(nc)& is destroyed by the random phases in the ini
states. In fact, when̂auF0&, the components of initial state
in the eigenstatesua& can be treated as random numbers,
random matrix theory analysis predicts that the decay of
averagedM (t) is controlled by the averaged LDOS@14#, the
half-width of which is larger than the Lyapunov exponent
j 56 ~Fig. 3!.

After the initial transient rapid decrease, the remanent
herence in the initial states,uF0

rs(nc)&, plays a role similar to
that of initial coherent states. Indeed, the averagedM (t)
changes slowly in some short time intervals aftert51,
which are analogs of the shoulders of the fidelity of init
coherent states, then, decreases exponentially in a way
lar to that of initial coherent states, until they become clo
to the saturation value, which is about 1/(2S). The larger the
value of nc is, the smaller the remanent coherence will b
The fidelity of random superpositions ofua& in Eq. ~27! de-
cays faster than the Lyapunov decay shown by the do
straight line in Fig. 5, as predicted by the random mat
theory.

FIG. 5. The averaged fidelity withuF0
rs(nc)&, a random super-

position of coherent states, being the initial states. The averag
taken in the same way as forM1(td). The solid squares connecte
by the solid line show the averaged fidelity of initial random sta
in Eq. ~27!. The dotted straight line indicates the exponential de
with the Lyapunov exponentl. j 56 for the perturbation paramete
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D. Properties ofF M„E… and relation to properties of M „t…

As shown in Sec. II, the Fourier transform ofM (t), the
function FM(E), is directly determined by the statesua&,
ub&, and uF0&. In this section, we study properties of th
functionFM(E) in the kicked top model numerically, in par
ticular, its absolute value partrF(E) and its phase par
uF(E). Unless addressed explicitly, initial statesuF0& stud-
ied in this section are coherent states. It will be shown t
properties of the central part ofFM(E) are closely related to
the decaying rate and the width of the shoulder of the av
aged fidelityM (t).

Typical shapes ofrF(E) anduF(E) in cases of different
values of the perturbation parameter are shown in Fig
where the same coherent state is used. ForrF(E) of j 51
and 2, the values ofrF are plotted in the logarithm scale
EachrF(E), symmetric with respect toE50, is composed
of three or more parts, with a main central part. A manife
tation of the coherence in the coherent stateuF0& is that the
corresponding phase functionsuF(E) have related divisions
as can be seen in Fig. 6.@If uF0& is taken as a random stat
uF0

random& in Eq. ~27!, values of the functionuF(E) will be
close to zero.#

The central part of eachrF is found to be fitted well by
the Lorentzian form, with a width denoted by 2GF , to be
distinguished fromGL for the width of the LDOS. See Fig. 7
for an example of the Lorentzian fit to the central part of t

is

s
y

FIG. 6. Typical shapes ofrF(E) anduF(E) of the same coher-
ent state, forj 51, 2, 3, 4.rF(E) are plotted in the logarithm scal
for j 51 and 2.
8-6
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rF in Fig. 6 of j 54. The Lorentzian form used in the fittin
is rL(E)1a, whererL(E) is the function on the right-hand
side of Eq. ~3! and a is a fitting constant. Therefore, th
closeness of the central part ofrF(E) to the fitting Lorentz-
ian form does not predict directly an approximate expon
tial decay ofM (t) with an exponentGF . In fact, the contri-
bution of the central part ofFM(E) to M (t) in Eq. ~11! gives
both positive and negative results. The final positive res
for M (t) come out, only when the contributions of the oth
parts of FM are taken into account. However, the avera
values ofGF , which are shown by solid squares in Fig. 3, a
found numerically to be close to the values ofg1 for M1(td),
in the whole parameter regime ofj from 1 to 14. WhenS is
taken equal to 1000, the change of the corresponding re
of GF are found to be smaller than that ofg1. Since g1
increases only a little, whenS is changed from 500 to 1000
it is not clear at the present stage whether or notGF can
approachg1 in the classical limit.

Numerical results for the phase functionuF(E) show that
it is approximately linear in the region ofE corresponding to
the central part ofrF ~see Fig. 6 for examples!,

uF~E!'kuE, ~29!

where ku is the slope of the approximate linear behavi

FIG. 7. Lorentzian fit to the central part of therF(E) in the j
54 case in Fig. 6.

FIG. 8. Distributions ofku ; the slope of the approximate linea
behavior ofuF(E) in the central region ofFM(E).
05620
-

ts
r
e
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Distributions ofku are shown in Fig. 8 for some perturbatio
parameters. The positions of the peaks of the distributi
are close toku51, while the distribution ofj 54 has another
small peak atku51.5. To illustrate the influence ofuF(E) on
behaviors ofM (t) clearly, let us writeM (t) in the form

M ~ t !5E rF~E!eiu t(E)dE, ~30!

whereu t(E)5uF(E)2Et. Some examples of the behavio
of u t(E) are shown in Fig. 9. With increasingt, the approxi-
mate slope ofu t(E) in the central region ofFM(E) changes
from positive to negative. Fort>2, the larger thet, the
steeperu t(E) will be. As shown below, this feature ofu t(E)
can be used to estimate the width of the shoulder ofM (t).

In order to give an estimation of the shoulder width
M (t), we note that the exponential decay ofM (t) should
appear whenu t(E) is steep enough, specifically, whenu t
(2WF/2) is comparable top, whereWF is the width of the
region ofE occupied by the main central part ofrF . Quan-
titatively, we usetsu to denote the average of the largestt,
satisfying

uku2tu
WF

2
<Rcp, ~31!

FIG. 9. Change ofu t(E) with t, for theuF(E) of j 54 in Fig. 6.

FIG. 10. Two examples of the relationship betweentsM andtsu .
They are close to each other, whenj is not too large, namely, 1
< j <8.
8-7
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whereRc is a quantity used to show the closeness top. The
average width of the shoulders ofM (t), denoted bytsM, are
calculated from the averagedM (t) directly. Sincet has inte-
ger values only in the fidelityM (t) of the kicked top model,
we use the linear interpolation in calculatingtsM by M (tsM)
5Mc , whereMc is a quantity measuring the lower border
the shoulder of the averagedM (t). In studying the relation
betweentsM and tsu , for a given value ofMc , the value of
Rc is determined by the smallest value of

(
j 51

8

~ tsu2tsM!2, ~32!

in the parameter regime 1< j <8. Figure 10 shows two ex
amples of Mc50.9 with Rc.0.75 andMc50.8 with Rc
.0.9, where we see thattsu'tsM for j between 1 and 8. The
difference betweentsu and tsM becomes increasingly large
when j is larger than 8, which is related to the fact that t
perturbationkV is not quite small forj .8. Variation ofRc
with respect toMc is presented in Fig. 11, whereRc is seen
to be almost linear withMc for Mc between 0.7 and 0.95.

IV. CONCLUSIONS AND DISCUSSIONS

In this paper, we study the crossover of the fidelity fro
the golden-rule regime to the perturbation-independent de
regime. We show that the deviation of the perturbatio
independent decay of the averaged fidelity from the pre
tion of the semiclassical theory is due to large quantum fl
tuations in individual fidelities, caused by the coherence
the initial coherent states. When the quantum fluctuations
suppressed by an appropriate averaging procedure,
perturbation-independent decay of the fidelity is found to
close to the semiclassical prediction.

FIG. 11. Dependence ofRc on Mc , required by the smalles
value of Eq.~32!.
-
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We also show that when the effective Planck constan
not small enough to guarantee the validity of the semicla
cal theory, the crossover does not occur at a point of
perturbation parameter, but takes place in a region of
parameter~Fig. 3!. The crossover in this case can neither
analyzed by the semiclassical theory, because the effec
Planck constant is not small enough, nor the random ma
theory, since the perturbation-independent decay of the fi
ity is initial-state dependent.

Furthermore, a functionFM(E) that is, in fact, the Fourier
transform of the fidelity, is introduced to study the fidelity
the crossover region. This function is determined directly
the initial state and the eigenstates of the two Floquet op
tors concerned. Numerically, for initial coherent states,
absolute value part and the phase part of the functionFM(E)
are found to have related division into several subpa
which is a manifestation of the coherence possessed by
initial coherent states. In the whole crossover region, pr
erties of the central part ofFM(E) are found to be closely
related to both the exponent of the exponential decay of
averaged fidelity and the length of the short initial time p
riod, within which the fidelity almost does not change due
the coherence possessed by the initial coherent state an
smallness of the perturbation in the classical limit.

The functionFM(E) is studied mainly numerically in this
paper. A detailed analytical analysis of the function, e.g.,
making use of its expression as the correlation function
f m(e) given in Sec. II, would supply further understandin
of the behaviors of the fidelity, in analogy with the relatio
between the LDOS and the survival probability. Informati
of the coherence in a coherent state may be hidden in
expanding coefficients in the eigenstates of classically c
otic systems. Numerical results in this paper show that
function FM supplies a useful method of extracting such
formation. We would like to mention that some other qua
tities discussed in this paper may serve this purpose as
in other situations, e.g., the quantityAab introduced in Sec.
II, which is irrelevant to the arbitrary phases that can
given to the initial coherent state and the quasienergy eig
states of the two classically chaotic systems.

Note added in proof. After finishing the paper, the author
were made aware of the paper by Silvestrov, Tworzydlo, a
Beenakker@19#, in which the same definition as Eq.~24! is
also introduced and studied in the kicked rotator model.
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@14# Ph. Jacquod, I. Adagideli, and C.W.J. Beenakker, Report

nlin.CD/0203052~unpublished!.
@15# F. Haake,Quantum Signatures of Chaos, 2nd ed.~Springer-

Verlag, Berlin, 2001!.
@16# A. Perelomov,Generalized Coherent States and Their App

cations~Springer-Verlag, Berlin, 1986!.
@17# K.T. Hecht,Quantum Mechanics~Springer-Verlag, New York,

2000!.
@18# W.H. Zurek, Nature~London! 412, 712~2001!; Z.P. Karkusze-

wski, C. Jarzynski, and W.H. Zurek, e-print quant-ph/01110
@19# P.G. Silvestrov, J. Tworzydlo, and C.W.J. Beenakker, Rep

No. nlin.CD/0207002.
8-9


