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Crossover of quantum Loschmidt echo from golden-rule decay to perturbation-independent decay
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We study the crossover of the quantum Loschmidt e@hrofidelity) from the golden-rule regime to the
perturbation-independent exponential decay regime by using the kicked top model. It is shown that the devia-
tion of the perturbation-independent decay of the averaged fidelity from the Lyapunov decay results from
quantum fluctuations in individual fidelity, which are caused by the coherence in the initial coherent states.
With an averaging procedure suppressing the quantum fluctuations effectively, the perturbation-independent
decay is found to be close to the Lyapunov decay. We also show that the Fourier transform of the fidelity is
determined directly by the initial state and the eigenstates of the Floquet operators of the two classically chaotic
systems concerned. The absolute value part and the phase part of the Fourier transform of the fidelity are found
to be divided into several correlated parts, which is a manifestation of the coherence of the initial coherent
state. In the whole crossover region, some important properties of the fidelity, such as the exponent of its
exponential decay and the short initial time within which the fidelity almost does not change, are found to be
closely related to the properties of the central part of its Fourier transform.
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l. INTRODUCTION creased, the exponential decay Mf(t) deviates from exp

) (=TI'.t), whenI'| becomes comparable to the bandwidth of
The quantum Loschmidt echid (t) measures the overlap y andp deviates from the Lorentzian form notably. A

OT the evolutiqn OT the_same initia! state }Jnder two slightly decay with the Lyapunov exponextof the underlying clas-
different Hamiltonians in the classical limit, sical chaotic dynamicsl (t)exp(—\t), can appear in this
M (1) =|(Do|exp(iHt)exp — iH gt)| Do) |2. (1) regime of the pe_rturbation parameter Wh_e_n_ tleé‘ectiv_e
Planck constant is small enough and the initial state is cho-
HereH, is the Hamiltonian of a classically chaotic system Sen suitably, e.g., a narrow wave packgl An interesting

and feature of this decay o (t) is that it is perturbation inde-
pendent, in the sense that it is irrelevant to the strength of the
H=Hy+ «V, 2 perturbationxV, and is determined by the classical behavior
_ ) ) of the systenH, (and also that oH due to the smallness of
with « being a small quantity. the perturbation in the classical limitBased on the semi-

~ This quantity characterizes the stability of quantum mo-g|assical theory and the random matrix theory analysis, a
tion under a small change of the Hamiltonian, e.g., by th&ransition ofM(t) from thel', decay to thex decay has been
interaction with the environment, it is thus called “fidelity” conjectured to occur dt, =X\ [4]. Numerical results in sev-
and is of great interest in the fast developing field of quany,a; models support the conject7,d.
tum information[1,2]. _ _ _ The validity of results of the semiclassical theory depends
Moreover, a relationship between this quantity and theyn the value of the(effective Planck constant. When the
Lyapunov exponent that characterizes the classical chaos h ective Planck constant is not small enough, the validity
been established analytically by using the Semi(’"”‘SSicﬁT)uId be checked by direct quantum mechanical calcula-
theory by Jalabert and Pastaw$Ri, which has been con- {ions. In fact, the behavior of the fidelity in this case is stil
firmed numerically in several modefé—9). Therefore, this ot quite clear. For example, whether there is a sharp transi-
quantity has attracted a great attention from the community,s, from the T, decay to thex decay, or the transition
of quantum chaog10-13. , , occurs in a finite regime of the perturbation parameter. It is
It has been shown that several regimes exist. In th@yen ynclear whethev (t) could decay with the Lyapunov
golden-rule regime of the perturbation parameter, above @,nonent. Indeed, a perturbation-independent, but slower
pgrturbative k_)order, thg fidelity has been found to have g,,n expEt), decay has been observed in the kicked top
simple decaying behavioM (t)<exp(-T't) [4.6,14, where  q46|[4], the mechanism of which is still not clear. Mean-
I is the half-width of the local density of stat€sDOS)  hjle, the random matrix theory seems unsuitable for such

pu. which has a Lorentzian forrBreit-Wigner form), problems, since perturbation-independent decaw¢f) is
usually initial-state dependent, the feature of which is hard to
pL(E)= U\ /2m 3) be captured by the random matrix theory treatment.
E2+T2/4’ The quantity used in this paper in analyzing properties of

the fidelity M (t) is its Fourier transform, denoted 15, (E)
with T’ =2mpU?2. Herep is the density of states arld is  in what follows. As will be shown in Sec. Il thdy(E) is
the typical transition matrix element otV between the determined directly by properties of the initial state and of
eigenstates oH,. As the perturbation parametar is in-  the (quasjenergy eigenstates of the two classically chaotic
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systems concerned. The role played By (E) in under- s just the survival probabilit?(t) in this case. However, as
standing the behavior ol (t) is similar to that by the LDOS shown in Ref. [8], the LDOS cannot explain the
for the survival probabilityP(t) = |( a|exp(—iHt)|a)|*. perturbation-independent decay dfl(t). In fact, the

In this paper, properties df(E) and their relations to perturbation-independent decay bf(t) appears only for
those ofM(t) will be investigated numerically in the kicked some special set of initial states, that is, it is initial-state
top model[15]. The fidelity in this model has been studied in dependent. Although a rigorous condition is still lacking, a
Refs.[4,14,13, and here we will concentrate on the issuessufficient condition for such initial states is expressed in a
unaddressed in the previous work. Specifically, in addition toough way that an initial state should be a narrow wave
properties ofM(t) related to the functiorr,(E), we focus packet[3]. When the decay oM(t) is initial-state depen-

ourself on the following problems: dent, one should use a quantity that is more general than the
(i) The mechanism of the perturbation-independent decaDOS in analyzing the properties & (t).
slower than exp{At). The functionF,, [the Fourier transform of the fidelity

(ii) Due to the small difference betweéty, andH in the  M(t)] is a suitable candidate, which is introduced as the
classical limit, the classical counterpart of the fidely(t) follows. Let us first express the fidelity amplitud€t) in the
should change quite slowly wheris small enouglisee Ref.  form
[9] for numerical results in another mogleln the quantum
mec_hanical case, a similar pher_womenon shou!d_be of practi- m(t)=f f(e)e e, @)
cal interest in quantum computing. However, it is not clear
whether or not the phenomenon exists.

The paper is organized as the follows. The functigpis where
introduced in Sec. Il. In Sec. lll, we shall present our nu-
merical investigation of the problems mentioned above, in f(€)=> A.pdle—(E,—Ep)], 8
particular, for properties of the amplitude and the phase of B

the function Fy(E) with initial coherent states. The .

perturbation-independent decay slower than e will Aup=(Po| B)(a|Po)CF, . )

be shown to be due to large quantum fluctuations in indi- . ' : - .

vidual fidelity, which are caused by the coherence possess Nnéirt?r?é ttrh;ns%?:]g?@ ;'_‘13 defined in Eq.(9) is invariant

by the initial coherent states, when tlieffective Planck

ponstant is not small enough. It will _be' shown th'at. 'Fhe .f|del- |a>ﬁei<pa|a>, |13>_,ei¢ﬁ|/3>, |<Do>—>e“"0|fbo>,

ity M(t) does not decay obviously within a short initial time,

the length of which is determined by some properties of the _ S

function Fyy(E). The relationship between the decaying rateWhere ¢, ¢z, and ¢, are arbitrary phases. That is, it is

of M(t) after the short initial time and some properties of theirrelevant to the relative phases among the stpigs |3),

functionFy,(E) will also be shown numerically. Conclusions and|®). The fidelity M(t) can be expressed as

and discussions will be given in Sec. IV.

M(t)=|m(t)|2=f Fu(E)e™'F'dE, (11)

Il. FUNCTION Fy(E) AS THE FOURIER TRANSFORM

OF M (1) where

In this paper, the eigenstates of the two Hamiltonikigs

and H are denoted byle) and |B), respectively, with Fm(E)Zf f(€)f*(e—E)de. (12
eigenenergieg, andEg,

Hola)=E,la), H|B)=EglB). (4)  The quantityFy(E) is, in fact, the correlation function of
fm(€). Note thatFy(E) can be calculated directly from
The expanding coefficient ¢8) in |a) is indicated byCg,,  properties of the statés), | 8), and the initial stat¢d). In
Cz.=(a|B). The LDOSp| (E) of an eigenstatgr) of Hyis  the following section, we will investigate numerically the
determined directly by the eigensolutions of the two Hamil-relationship between properties d¥i(t) and those of
tonians concerned, Fm(E). To this end, it is convenient to writéy,(E) as

Fu(E)=pr(E)e'%®), (13
pL(E)=2 |Cpal S E~ (Eg—Eo)]. 5 . -

k Some arguments can be given to the reason why the ran-
As is known, when the initial statab,) is an eigenstate of dom matrix theory can be used to predict the decaying be-

H,, the fidelity amplitudem(t), _havior of the fidelityM (t) in the gold_en-_rule regime, but not
in the regime where the perturbation-independent decay of
m(t)={(dy|exp(iHt)exp(—iHyt)|®o), (6) M (t) appears. The initial states, whose fidelities are found to

have perturbation-independent exponential decay controlled
is just the Fourier transform of the LDO& (E), and the by the Lyapunov exponent, such as narrow wave packets in
form of the LDOS is important in the study ®(t), which  the configuration spacis], coherent statef4], momentum
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eigenstate$9], etc., usually have wide spreading in the cha-which gives the time evolution of an initial state,

otic statega) (| 8)). Such initial states, which are regular in

the classical limit, possess certain kind of coherence. It must |D(1))=F'|®y), (18)
be pointed out that the semiclassical theory does not predict . . . .
the perturbation-independent decay of the fidelity for an arVheret=0,1,2.. .. . Forthis model, discussions in Sec. Il

bitrary initial state[14]. As shown in the previous paragraph, &€ Still valid, with the eigenstates éf, andH changed to
the functionF (E), equivalently,M(t), is basically deter- those of the Floquet operatoFg, andF, respectively, with

mined by the quantityd, ; in Eq. (9). In the golden-rule theI correspc_)nollingI ei?epenerfgieshcharllgedfto quas_ienergie;]s.
regime, the LDOSp, (E) is narrow, i.e.,C, has many n numerical calculations, for the sake of convenience, the

small components; as a result, for the quanity;, compo- perturbation parametex is written as
nents of the initial states in the chaotic states, namely Kk=]Xx1073 (19)
(®o| B)Y(a|Py), are not equally effective in the whole '

(quasjenergy region oH, andH. This should suppress the ynless addressed explicitly, the value $fis 500 for the
coherence of the initial states, which makes it possible tqumerical calculations discussed in this paper. Since the time
treat the components of the initial state taking part in thet in the evolution equatior{18) takes integer values only,
evolution ofM(t) effectively as random numbers, like in the according to Eq(11), the domain of the variabl€& in the
random matrix theory treatment in Refs},6,14. On the  function Fy,(E), which is[—4,47] in the general case,
other hand, when the perturbation is so strong that the widtean be reduced tp— =, ], with the definition ofFy(E)
of the LDOS is comparable to thguasjenergy bandwidth  changed accordingly, namely,

of Hy, the coherence possessed by the initial states should

play a non-negligible role in the evolution of the fidelity. The fold

random matrix theory cannot be applied in this case, since it Fu (E)ZE Fm(E+2nm), (20)
cannot describe the coherence in the initial states.

wheren takes the possible values in ¢0]1,+2). The func-

I1l. NUMERICAL STUDY OF FIDELITY AND ITS FOURIER tion Fﬁ'd(E) is more closely related to properties bf(t)
TRANSFORM than the basic one in EQL2). It is this function that will be
A. The model used in what follows in the numerical investigation of the

kicked top model and, for brevity, it will be denoted by
The unperturbed Hamiltonia, of the kicked top model F,,(E).
used in this paper is Initial states studied in this paper are in most cases coher-
ent states of the S2) group[16,17),

Hom S+ 23 st (14
=5, 2552n (t=nm). |Z)=Ae”"S|M),M=~S (21)

whereSis the total angular momentum,is the period, and 0
K is a parameter adjusting the strength of the kicks. Without z= —tané e'? (22
loss of generality, the period is set to be unitys=1. The
model describes a vector spin that undergoes a free prec
sion around the axis and is periodically perturbed by kicks
around thez axis. The time evolution of an initial staté)
att=0 is governed by the Floquet operator

LT
ex I2

where# has been set to be unity. The classical limit of the
system, which is obtained by lettir— o, with 1/S serving
as the effective Planck constant, is fully chaotic Ko 9.

The perturbation<V is chosen in the same way as in Ref.

[4], i.e., a slightly delayed periodic rotation of constant angle o o
around thex axis, B. Perturbation-independent decay of fidelity and quantum

fluctuations

e\ﬁhere|M> is the eigenvector 08,, with the eigenvalueV
(M=-S,—-S+1,....,5), andA s the normalization coeffi-
cient. The coherence in a coherent stite can be easily
seen when it is expanded in the staltély. However, in the
study of the fidelity,|z) is required to be expanded in the

, (15)  eigenstates of the Floquet operatéigandF. Although the
expanding coefficients in such chaotic states must contain
information on the coherence possessed by the coherent
state, manifestation of the information is not so easy. In Sec.
Il D, we will show numerically that the functiorF(E)
introduced in Sec. Il can supply some information.

Fo= Ko
o=6€x |2—SSZ

_ Basic properties of the fidelityi(t) in the kicked top
V=_— S(t—n7—e). 16
273"; ( 7€) (16 model have been studied in R¢&]. Here, as mentioned in
. the Introduction, we are interested in a perturbation-
The Floquet operator of the systethis independent decay of the averadé(t) with initial coherent
states, which decays more slowly than the exponential decay
- . . .
_ LT predicted by the semiclassical theory. In order to understand
F ex;{ '3 SX}FO’ (A7) this phenomenon, we study the individudl(t). In the re-
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FIG. 1. The fidelityM (t) of three initial coherent states chosen 01
arbitrarily, whenK=13.1 andj =6. The dotted straight line shows E
the exponential decay with the corresponding Lyapunov exponent "
A=1.65. 4
= 0.01 o
gime of the perturbation parameter where the perturbation- 3
independent decay appears, individivg(t) is found to have ]
large fluctuations. See Fig. 1 for some examplesKof

scale. On the other hand, in the golden-rule regime, Kg.,
=13.1 andj=1, no obvious fluctuation in individua¥ (t)
is observed. The large fluctuations are, in fact, quantum ef-

0.001
=13.1 andj=6, whereM(t) are plotted in the logarithm -i
L]
0

fects caused by the coherence in the coherent states. Accort t #
ing to the arguments given in Sec. Il, they should appear
when the expanding coefficients of the stal@$ in |a) FIG. 2. Decay of averagell (t) of initial coherent states, from

spread in the whole quasienergy band-gfeffectively, that the golden-rule regimej& 1) to the perturbation-independent re-
is, when the half-width of the LDOS becomes comparable t@ime, forK=13.1. The difference betweevl; andM, lies in the
the bandwidth of the quasienergy, which is found numeri-averaging procedurgsee Eqgs(23) and(24)]. The dotted straight
cally for j=3. In the classical limitS—<«, the fluctuations lines represent the exponential decay with the Lyapunov exponent
should disappear. A=1.65.
As shown in Fig. 1, eacM(t) has a “shoulder” in a short
initial time, denoted byt in what follows, within which it  HereM(t,®;) is the fidelity of an initial coherent stateb;)
changes slowly. The exponential-type decayift) appears defined in Eq.(1), with the dependence on the initial state
only aftert,. In order to study the average decaying behaviorl®;) written explicitly.
of M(t), their shoulders should be subtracted. To this end, Numerical results foiM(ty) (upped and M,(ty) (bot-
we shift the time variabléto ty=t—t and take average over tom) are shown in Fig. 2, with increasing (j from 1 to 8,
M(ty). Here we meet a problem, since individM(t) has whenK=13.1. In calculating the two quantitiel, for each
large fluctuations. The averagsti(ty) may be mainly deter- M(t) of j=1 and 1.5 was taken to be the fitsat which
mined by a small fraction of th#(ty) taken for averaging, M(t+1)<<0.9. Forj=2, tg was determined by the firstat
if they have extraordinarily large values. Therefore, in addi-which M(t)/M(t+1)>1.5. Only states satisfyindM (t)
tion to the standard averagddi(ty), denoted byM(ty), >0.85 were used in averaging. The reason of taking two
methods in calculating is that M(t) decays slowly af
=1 and 1.5. The numbeX of coherent states taken for av-
td)_ E M(tq, ®i), (23 eraging is 1000. Results in Fig. 2 fdf,(ty) are in consis-
tence with those in Refl4], namely, the decay o (ty)
saturates at an exponential decay that is slower than the one
we also calculate another averagéd(t), denoted by with the Lyapunov exponent. However, when the large fluc-
M(tg), by taking the logarithm oM (ty) before performing tuations in individualM(t) are suppressed by the second

the summation, averaging procedure, Fig. 2 shows that the decay of the av-
eraged fidelityM ,(ty) saturates at an exponential decay that

N is close to the Lyapunov decay. The deviation of the satura-
INM o(ty) = % Z InM(ty,®;). (24) tion decay oM (t,) from the one predicted by the semiclas-

= sical theory is caused by the large fluctuations in individual
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FIG. 3. Values ofy, andy, of the exponential decay ofl ,(ty) t
and M,(ty), respectively, at different values of the perturbation d

parameter, together with, , the half-width of the averaged LDOS,
andl'¢, half of the averaged half-width of the best fitting Lorent-
zian form to the central part gfc(E)=|Fy(E)|. The value of the
Lyapunov exponent of the underlying classical dynamias,
=1.65, is indicated by the horizontal dotted line.

FIG. 4. Comparison of the decay of the averaged fidelity of
initial coherent states and that of initial random states in(Ed).

C. Dependence of fidelity on initial states

In different regimes of the perturbation parameter, the ini-
tial state can play different roles in influencing the behavior
of the fidelity. In the golden-rule regime, the LDOS is narrow
and, as discussed in Sec. Il, the random matrix theory can be
used to predict the behavior of the fidelity. In this regime,
there should be no difference between the decaying behavior
of the fidelity of an initial coherent state and that of an arbi-
M (tg)xexp — yitg), Ma(tg)=exp—yoty), (25  trary initial state, that is, the decay of the fidelity should be

initial-state independent. Indeed, in a study of the influence
of sub-Planck scale structur¢&8] on the fidelity in Ref.
[14], the averaged fidelity of the initial states,

M (t). In fact, this can also be seen roughly in Fig. 1.

To show the difference between the decaywbf(ty) and
that of M,(ty) in Fig. 2 in a quantitative way, we calculate
their decaying exponentg; and s,

the values of which are presented in Fig. 3. Numerically,
(i=1,2) are calculated by the best linear fitting taM(ty), _ . c

with the fitting lines fixed to the values of M,(0) at tg |Po(T))=exp(—iHoT)| ), (26)
=0. The pointsty used in fitting are those satisfying 1
=M,(ty)=0.008. In Fig. 3, we see that, in the golden-rule
regime (=1 and 1.3, y; is close toy, because of the small
fluctuation in individualM (t), and both of them are close to
the half-width of LDOS,I',, as predicted by the random
matrix theory. The difference of the three quantities become
obvious whenj=2. In the parameter regime=6, vy, fluc-
tuates around the Lyapunov exponent 1.65, while y, is |¢,(r)andorr>:2 Cala), (27)
obviously smaller tham.. The value ofy, at j=14 is obvi- a

ously larger than the Lyapunov exponent. This may be due to

the reason that the perturbation cannot be regarded as smalherec, are random complex numbers satisfying the nor-
at this perturbation value. In fact, when the perturbation is senalization condition. It is found that the former ones have
strong that the classical perturbation theory breaks dowrshoulders, while the latter ones do not. With the shoulders of
M(t) may decay faster than the Lyapunov ded&y. As the former ones subtracted, the decay of the corresponding
discussed above, whedis increased and we are more and averaged fidelity is found to be close to each other in the
more close to the classical limit, the fluctuations Nh(t) golden-rule regime. Some of the results are plotted in Fig. 4,
shown in Fig. 1 should become smaller and smaller, whiclwhere 1000 initial states were used in averaging for each
would makey, approachy,. Indeed, we calculate the case case.

of S=1000 (x reduced to half to those &=500), wherey, In the perturbation-independent regime of the fidelity of
are found to be fluctuating aroundas well andy, a litle initial coherent statesM(t) of |®(T)) is found to be de-
larger than the values &=500. However,y; of S=1000 caying in part of the evolution time in a way similar to that
are still obviously smaller thak, showing thatS=1000 is  of initial coherent stategl4]. This implies that, although the
still not in the deep semiclassical regime. systemH,, is classically chaotic, the time evolution operator

where|®g) are coherent states, has been found numerically
to be independent of the parameleand almost the same as
that of initial coherent states. We compare the averaged fi-
delity of initial coherent states with that of initial random
gtates of the form
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o/

FIG. 5. The averaged fidelity withPg(n.)), a random super- d
position of coherent states, being the initial states. The average i
taken in the same way as ftM(ty). The solid squares connected
by the solid line show the averaged fidelity of initial random states
in Eq. (27). The dotted straight line indicates the exponential decay
with the Lyapunov exponent. j=6 for the perturbation parameter.

=

~n
exp(~iHT) does not destroy the coherence possessed by .
coherent state. Indeed, we find that random superpositions ¢

coherent states defined by 45 5 T O . . —————
40 06 0D 05 10 40 A6 0D 05 10
Ne . E/fz E/x
|DF(ne))= 2 enlz,), (28) _
n=1 FIG. 6. Typical shapes gi-(E) and 6-(E) of the same coher-

ent state, foj=1, 2, 3, 4.p(E) are plotted in the logarithm scale
where ¢,, are random phases aiz},) are coherent states in for j=1 and 2.
Eq.(21), still have some coherence properties of the coherent _ _ _
states. The averaged fidelity withbS(no)) being initial D. Properties of F,(E) and relation to properties of M (t)
states at the perturbation paramejer6 are presented in As shown in Sec. Il, the Fourier transform bf(t), the
Fig. 5. We see that the averagkiqt) with n.>1 has arapid function F(E), is directly determined by the statés),
decrease betweet=0 and 1, which is faster than the |gB), and|®,). In this section, we study properties of the
Lyapunov decay fom.=8. This indicates that part of the functionF,(E) in the kicked top model numerically, in par-
coherence in the coherent compondajsof the initial states  ticular, its absolute value pame(E) and its phase part
|PG(ne)) is destroyed by the random phases in the initial(E). Unless addressed explicitly, initial stateB,) stud-
states. In fact, whetiw|®), the components of initial states ied in this section are coherent states. It will be shown that
in the eigenstatelsy) can be treated as random numbers, theproperties of the central part &, (E) are closely related to
random matrix theory analysis predicts that the decay of théhe decaying rate and the width of the shoulder of the aver-
averagedVi (t) is controlled by the averaged LDQ%$4], the  aged fidelityM(t).
half-width of which is larger than the Lyapunov exponent at  Typical shapes op:(E) and 6:(E) in cases of different
j=6 (Fig. 3. values of the perturbation parameter are shown in Fig. 6,

After the initial transient rapid decrease, the remanent cowhere the same coherent state is used. gz¢E) of j=1

herence in the initial stategPg(n.)), plays a role similar to and 2, the values ope are plotted in the logarithm scale.
that of initial coherent states. Indeed, the averaygt) Eachpg(E), symmetric with respect t&=0, is composed
changes slowly in some short time intervals after1, of three or more parts, with a main central part. A manifes-
which are analogs of the shoulders of the fidelity of initial tation of the coherence in the coherent siag) is that the
coherent states, then, decreases exponentially in a way siniorresponding phase functiods(E) have related divisions,
lar to that of initial coherent states, until they become closeas can be seen in Fig. Bf |®,) is taken as a random state
to the saturation value, which is about 1%)2 The larger the  |®2"%°™ in Eq. (27), values of the functiorfg(E) will be
value ofn; is, the smaller the remanent coherence will be.close to zerd.
The fidelity of random superpositions pf) in Eq. (27) de- The central part of eachg is found to be fitted well by
cays faster than the Lyapunov decay shown by the dottethe Lorentzian form, with a width denoted by'g2, to be
straight line in Fig. 5, as predicted by the random matrixdistinguished fron1", for the width of the LDOS. See Fig. 7
theory. for an example of the Lorentzian fit to the central part of the
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1 . . . : FIG. 9. Change of,(E) with t, for the <(E) of j =4 in Fig. 6.
04 02 00 0.2 04
Efn Distributions ofk, are shown in Fig. 8 for some perturbation

o . ] parameters. The positions of the peaks of the distributions
FIG. 7. Lorentzian fit to the central part of the(E) inthej  4ye close tak,= 1, while the distribution of =4 has another
=4 case in Fig. 6. small peak ak,=1.5. To illustrate the influence @-(E) on

pr in Fig. 6 of j =4. The Lorentzian form used in the fitting behaviors oM(t) clearly, let us writeM(t) in the form

is p_(E) +a, wherep  (E) is the function on the right-hand
side of Eq.(3) and a is a fitting constant. Therefore, the
closeness of the central part @f(E) to the fitting Lorentz-
ian form does not predict directly an approximate exponen-

tial _decay ofM (t) with an exponent'¢. In_ fact, the cqntri- where 6,(E) = 6-(E) — Et. Some examples of the behavior
bution of the central part dfyy(E) to M(t) in Eq.(11) gives o g (E) are shown in Fig. 9. With increasirigthe approxi-
both positive and negative results. The final positive result$, ;e slope of,(E) in the central region of (E) changes
for M(t) come out, only when the contributions of the other ¢4, positive {0 negative. Fot=2, the larger thet, the
parts of Fy, are .taken into account.' However, 'the_ averagesteeperat(E) will be. As shown below, this feature @(E)
values ofl'g, _Whlch are shown by solid squares in Fig. 3, are.on pe used to estimate the width of the shouldeef).
found numerically to be close to the values)gffor My(ty), In order to give an estimation of the shoulder width of
in the whole parameter regime pfrom 1 to 14. Whe.rS|s M(t), we note that the exponential decay Mf(t) should
taken equal to 1000, the change of the correspo_ndlng res“'%ﬁ)pear wheng,(E) is steep enough, specifically, wheh

of I'z are found to be smaller than that oh. Since y, (—WEe/2) is comparable ter, whereWr. is the width of the
increases only a little, whe8is changed from 500 to 1000, region of E occupied by the main central part p§ . Quan-

It Is not clee_;lr at the pr.esen_t §tage whether or Figtcan titatively, we usetg, to denote the average of the largést
approachy; in the classical limit.

M(t)= f pe(E)e B dE, (30)

) ) satisfying
Numerical results for the phase functiép(E) show that
it is approximately linear in the region & corresponding to W
the central part opg (see Fig. 6 for examples |k(,—t|7F<Rcw, (31)
0r(E)~k4E, (29)
where k, is the slope of the approximate linear behavior. 5'0, ' ' ' ' ' ) ) ) ]
4.5 —0—t_ (M =09) J
12 T T 1 1 ' 1 T T T T 1 T 1 1 : Al t..(Re=°-75) 1
1 1 4.0 \ —o—t (M =08) .
1.0 A . :
= = 354 ]
08— E - b 4
B 3.0 i
RLLE . — % 25 J
= |
T o4 1 T 204 4
0.2- . _ 1_5: 4
00 ] i 104 —— 1
: : : : : : : : : : o 2 4 ] 8 10 12 14 18
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kﬂ kB

FIG. 10. Two examples of the relationship betwegpandts, .
FIG. 8. Distributions ok, ; the slope of the approximate linear They are close to each other, whgtis not too large, namely, 1
behavior ofd:(E) in the central region oF ,(E). <j=<8.
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T T T T T T T We also show that when the effective Planck constant is
10d “Poo i not small enough to guarantee the validity of the semiclassi-
%o, cal theory, the crossover does not occur at a point of the
O'°o.o_ ! perturbation parameter, but takes place in a region of the
0‘000O parametefFig. 3). The crossover in this case can neither be
0.8+ o, 1 analyzed by the semiclassical theory, because the effective
o O, y Planck constant is not small enough, nor the random matrix
] Q, ] theory, since the perturbation-independent decay of the fidel-
064 J ity is initial-state dependent.
Furthermore, a functiok,(E) that is, in fact, the Fourier
transform of the fidelity, is introduced to study the fidelity in
p the crossover region. This function is determined directly by
0.4 070 075 080 085 080 085 100 the initial state and the eigenstates of the two Floquet opera-
tors concerned. Numerically, for initial coherent states, the
M,, absolute value part and the phase part of the fundfig(E)
are found to have related division into several subparts,
FIG. 11. Dependence d®. on M., required by the smallest \yhjch is a manifestation of the coherence possessed by the
value of Eq.(32). initial coherent states. In the whole crossover region, prop-

) ) erties of the central part df),(E) are found to be closely
whereR: is a quantity used to show the closenessrtoThe  (g|5ted to both the exponent of the exponential decay of the
average width of the shoulders bf(t), denoted bytqy, are  ayeraged fidelity and the length of the short initial time pe-
calculated from the averaged(t) directly. Sincet has inte-  yioq within which the fidelity almost does not change due to
ger values only in the fidelitj () of the kicked top model, he coherence possessed by the initial coherent state and the
we use the linear interpolation in calculatings by M(tsw)  smaliness of the perturbation in the classical limit.
=M., whereM_ is a quantity measuring the lower border of  The functionF,,(E) is studied mainly numerically in this
the shoulder of the averaged(t). In studying the relation  haner. A detailed analytical analysis of the function, e.g., by
betweentgy andts,, for a given value oM, the value of  making use of its expression as the correlation function of

.

Rc is determined by the smallest value of fm(€) given in Sec. Il, would supply further understanding
8 of the behaviors of the fidelity, in analogy with the relation
E (tyy—tew) (32) between the LDOS and the survival probability. Information

i=1 of the coherence in a coherent state may be hidden in its

expanding coefficients in the eigenstates of classically cha-
in the parameter regime<lj<8. Figure 10 shows two ex- otic systems. Numerical results in this paper show that the
amples ofM:=0.9 with R;=0.75 andM.=0.8 with R.  function F), supplies a useful method of extracting such in-
=0.9, where we see thég,~tgy for j between 1 and 8. The formation. We would like to mention that some other quan-
difference betweerntg, andtg, becomes increasingly large, tities discussed in this paper may serve this purpose as well
whenj is larger than 8, which is related to the fact that theijn other situations, e.g., the quantity, ; introduced in Sec.
perturbationxV is not quite small forj >8. Variation ofR; |1, which is irrelevant to the arbitrary phases that can be
with respect toM. is presented in Fig. 11, wheR; is seen  given to the initial coherent state and the quasienergy eigen-
to be almost linear wittM for M. between 0.7 and 0.95.  states of the two classically chaotic systems.

Note added in proofAfter finishing the paper, the authors
IV. CONCLUSIONS AND DISCUSSIONS were made aware of the paper by Silvestrov, Tworzydlo, and
Beenakkel19], in which the same definition as E(R4) is

In this paper, we study the crossover of the fidelity from 55 introduced and studied in the kicked rotator model.
the golden-rule regime to the perturbation-independent decay

regime. We show that the deviation of the perturbation-

independent decay of the averaged fidelity from the predic- ACKNOWLEDGMENTS

tion of the semiclassical theory is due to large quantum fluc-

tuations in individual fidelities, caused by the coherence in The authors are grateful to G. Casati for valuable discus-
the initial coherent states. When the quantum fluctuations arsions. The work was supported in part by the Academic Re-
suppressed by an appropriate averaging procedure, tleearch Fund of the National University of Singapore and the
perturbation-independent decay of the fidelity is found to beDSTA of Singapore. We also thank Wang Jiao for providing
close to the semiclassical prediction. the program for diagonalization of unitary matrix.
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