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Abstract

With suitably chosen unperturbed Hamiltonians, we show numerical evidence of convergence of Rayleigh–Schrödinger
perturbation expansions for low-lying eigenstates and the corresponding eigenenergies of the quartic, sextic, and octic
anharmonic oscillators, when the anharmonic terms are not very strong. In obtaining the perturbation expansions, unperturbed
Hamiltonians are taken as the diagonal parts of the Hamiltonian matrices of the anharmonic oscillators in intermediate basis
states and perturbations are taken as the off-diagonal parts. Intermediate basis states are calculated by part diagonalization of
the total Hamiltonians in small subspaces of the underlying Hilbert space. In some strong-coupling regimes of the quartic and
sextic anharmonic oscillators, the very simple approach of this Letter gives much more accurate results than previously used
techniques.
 2002 Elsevier Science B.V. All rights reserved.
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In Rayleigh–Schrödinger (RS) perturbation theory,
an eigenvalue of a HamiltonianH is expressed in a
perturbation expansion in power of some perturbation
parameterλ. In most cases, perturbation expansions
give divergent results [1]. Various summation meth-
ods, e.g., the Borel and Padé methods which are suit-
able to cases of not largeλ, have been developed to
extract physically meaningful results from divergent
expansions [2,3]. In recent years, techniques such asδ

expansion [4], variational perturbation theory [5], and
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renormalized strong coupling expansion [6,7], have
been developed for largeλ. For the quartic, sextic, and
octic anharmonic oscillators, which are well suited to
illustrate the problem of divergent expansions, these
techniques give results with impressive accuracy for
ground-state energies. The techniques can also be gen-
eralized to calculate ground-state eigenfunctions [8],
but, the accuracy of the results obtained is much lower
than for ground-state energies. Recently, both the ordi-
nary [9,10] and the renormalized strong coupling ex-
pansion methods have been made use of in the inves-
tigation of low-lying excited-states of anharmonic os-
cillators [11,12].
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Various partition methods have been used in sum-
mation techniques in separating a HamiltonianH into
a solvable partH0 and a perturbationV , H = H0 +V .
For example,V may be chosen by the principle of
minimal sensitivity [13]. It is also possible forH0 to
be chosen to have a tri-diagonal matrix form, which
has been shown to be useful in the study of the sex-
tic anharmonic oscillators with double-well shapes
[14]. Usually,H0 is chosen to be analytically solvable.
However, the analytical solvability ofH0 is in fact un-
necessary for the purpose of summation techniques,
which is to calculate eigenenergies and eigenfunctions
(if applicable) as accurate as possible. Indeed, in both
the ordinary and the renormalized strong coupling ex-
pansion methods, the most singular part of the total
HamiltonianH is included in the unperturbed Hamil-
tonianH0, which makes it possible to construct con-
vergent perturbation expansions, guaranteed by Kato
boundedness [15,16]. In such divisions of the total
Hamiltonian, the most difficult problem is the calcu-
lation of the expanding coefficients, since even nu-
merical solution of the eigenenergies and eigenvectors
of H0 is usually quite difficult. For the case of anhar-
monic oscillators, efficient techniques for the evalua-
tion of the coefficients have been developed in recent
years, which have confirmed the convergence of the
expansions numerically [11,12,17].

The purpose of this Letter is to investigate the
possibility of constructing convergent perturbation
expansions, for which numerical solution ofH0 can
be carried out easily. For this purpose, the unperturbed
HamiltonianH0 is obtained by part diagonalization
of the total HamiltonianH in finite dimensional
subspaces of the underlying Hilbert space. Suppose
H has a partition(H

(a)
0 ,V (a)), with H

(a)
0 being

analytically solvable. A new partition(H0,V ) can
be achieved by part diagonalization ofH in small
subspaces of the Hilbert space, each of which is
spanned by a small number of the eigenstates ofH

(a)
0 .

At least in some cases, the geometric mean of|fkk′ |
associated withH0 andV , wherefkk′ = Vkk′/(E0

0 −
E0

k ) with E0
k being eigenenergies ofH0 and Vkk′

being couplings, can be smaller than that of|f (a)

nn′ |
associated withH(a)

0 and V (a), and the sign offkk′

can be more irregular than the sign off
(a)

nn′ . Since
RS perturbation expansions are mainly composed
of products of factors likefkk′ , it is of interest to

investigate whether the partition(H0,V ) could be
better than(H (a)

0 ,V (a)), in giving useful perturbation
expansions.

In this Letter, for the quartic, sextic, and octic
anharmonic oscillators, we will show numerically
that, with suitably chosenH0 by part diagonalization
of the total Hamiltonians, it is possible for the RS
perturbation expansions to give convergent results for
low-lying eigenenergies and eigenstates, when the
anharmonic terms are not very strong. The method
used here is easier to be carried out numerically than
the methods such as the variational perturbation theory
and the renormalized strong coupling expansions.
Another advantage of the method is that it gives
eigenstates with an accuracy similar to that of the
eigenenergies.

Let us first discuss the quartic anharmonic oscilla-
tor with a Hamiltonian

(1)H = 1

2
p2 + 1

2
x2 + µx4,

or written in terms of creation and annihilation opera-
tors,a+ = (x − ip)/

√
2 anda = (x + ip)/

√
2,

H = a+a + 1

2
+ 3

4
µ

(
2
(
a+a

)2 + 2a+a + 1
)

(2)+ µ

[
3

2

(
a+)2 + (

a+)3
a + 1

4

(
a+)4 + H.c.

]
.

Since the eigenstates of the harmonic oscillatorHh =
p2/2 + x2/2 with eigenenergies(2n + 1/2) (n =
0,1,2, . . .) are not coupled to those with eigenenergies
(2n + 3/2) by the termµx4, here we discuss the for-
mer states only, denoted by|n〉. The elements〈n|H |n′〉
are denoted byHnn′ . As is known, RS perturbation
theory gives expanding coefficientsCm growing asm!
for the ground-state energy, whenHh is taken as the
unperturbed Hamiltonian [18]. If the diagonal and off-
diagonal parts ofH in theHh-representation are taken
as the unperturbed Hamiltonian and the perturbation,
respectively, expanding terms in the resulting diver-
gent RS perturbation expansion for the ground-state
energy will grow much slower thanm!, usually expo-
nentially with increasingm, sinceHnn has an2-term
(see Eq. (2)).

The critical step of our approach is to employin-
termediate basis states, denoted by|k〉, which are ob-
tained by part diagonalization ofH in a series of
small subspaces of the Hilbert space, denoted byGl ,
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with the labell being integers 0,1,2 . . . . Concretely,
the first subspaceG0 is spanned by states|0〉, |1〉, . . . ,
|ni − 1〉; G1 is spanned by states|ni〉, |ni + 1〉, . . . ,
|2ni − 1〉; . . .; Gl is spanned by states|nil〉, |ni l + 1〉,
. . . , |ni l + ni − 1〉; . . . , whereni is a small positive
integer for the dimension of the subspaces. The in-
termediate basis states|k〉 in the subspaceGl , with
k = ni l, ni l + 1, . . . , ni l + ni − 1, are just the eigen-
states ofH in the subspace in energy order, respec-
tively. Note thatE0

k are in energy order only within a
subspaceGl . In our partition ofH , H0 andV are taken
as

(3)H0 =
∑

k

|k〉E0
k 〈k|,

(4)V =
∑
k,k′

|k〉Vkk′ 〈k′|,

respectively, whereE0
k = 〈k|H |k〉, Vkk′ = 〈k|H |k′〉 for

k �= k′ and Vkk′ = 0 for k = k′. That is, H0 is the
diagonal part of the matrix ofH in states|k〉 andV

is the off-diagonal part. In cases ofni � 5, although
there is generally no analytical expression for the non-
zero elements ofH0 andV , their numerical calculation
is quite easy, whenni is not large. Denoting the
eigenstates and eigenenergies of the HamiltonianH

by |α〉 (α = 0,1,2, . . .) andEα , respectively, we use
the following form of the RS perturbation theory for
α = k in the low-energy region.

(5)Eα = E0
k +

∞∑
m=1

εm, |α〉 = |k〉 +
∞∑

m=1

|φm〉,

whereεm = 〈k|V |φm−1〉, |φ0〉 = |k〉, |φ1〉 = Qk(V −
ε1)|k〉 and

(6)|φm〉 = Qk

[
(V − ε1)|φm−1〉 −

m−2∑
m′=1

εm−m′ |φm′ 〉
]

for m > 1. HereQk = ∑
k′ �=k |k′〉〈k′|/(E0

k − E0
k′).

For ground states of the quartic anharmonic os-
cillator, we have studied the parameter regime of
µ � 2. Numerically it has been found that|εm| de-
crease rapidly with increasingm (Fig. 1) and partial
sums of the two expansions in Eq. (5) approach to fi-
nite limits, respectively, whenni = 2 is taken. With
the m-axis in Fig. (1) changed to logarithm scale as
well, it has been found that|εm| decrease faster than
power decay. Table 1 shows some values ofE0 calcu-

Fig. 1. Values of|εm| in logarithm scale for some ground states of
the quartic anharmonic oscillator. (Half of theεm, which are equal
to zero, are not plotted.)ni = 2 for intermediate basis states.

Table 1
Ground-state energiesE0 calculated by Rayleigh–Schrödinger per-
turbation expansions in intermediate basis states withni = 2. The
expansions are truncated atms numerically. The lines labeled “JK”
are results of Ref. [19]. The lines labeled “lb” and “ub” are the lower
and upper bounds of Ref. [6]

µ ms E0

0.1 152 0.559 146 327 183 519 576 715 406 576 920
JK 0.559 146 344 373 873 126 9
lb 0.559 146 327 183 519 576 3
ub 0.559 146 327 183 519 576 7

0.3 500 0.637 991 783 171 278 529 452 523 197 990
JK 0.637 991 783 171 280 381 8
lb 0.637 991 783 171 278 528 3
ub 0.637 991 783 171 278 529 6

0.5 922 0.696 175 820 765 145 927 828 753 938 305
JK 0.696 175 820 765 145 928 8
lb 0.696 175 820 765 145 925 1
ub 0.696 175 820 765 145 928 5

2.0 5268 0.951 568 472 729 500 011 146 925 361 101
JK 0.951 568 472 729 500 011 146 930 52
lb 0.951 568 472 729 499 9
ub 0.951 568 472 729 500 1

lated by partial sums in Eq. (5).ms are the values ofm
after which the summation ofεm does not change in
numerical calculation, where double-double precision
was used for data. Forµ between 0.1 and 2.0, results
of this Letter are much more accurate than those of
Vinette andČížek [6] and of Janke and Kleinert [19].
Calculation of the eigenfunctions of ground states by
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Fig. 2. Shapes of the eigenfunctions of some ground states of
the quartic anharmonic oscillator in logarithm scale,w = |〈k|α〉|2.
ni = 2 for intermediate basis states.

making use of Eq. (5) is as accurate as for the ener-
gies, which is much easier and more accurate than the
method of Hatsuda, Kunihiro, and Tanaka [8]. Shapes
of the eigenfunctions of some ground states are plotted
in Fig. 2, wherewαk = |〈k|α〉|2. Note that such eigen-
functions are localized, therefore, approximate results
can in fact be obtained by numerical diagonalization
of sub-matrices of the total Hamiltonian in states|n〉
of n below some valuesnm.

In the calculations discussed above, only states
|k〉 of not largek are involved. Whenni = 2, part
diagonalization ofH in subspacesGl can be done
analytically and it is possible to discuss the influence
of quite largek on the summation ofεm. Whenn is
large enough, onlyn2 terms inHnn′ are of interest,
which areHnn ≈ 6µn2, Hn,n+1 ≈ 4µn2 andHn,n+2 ≈
µn2. For states|k〉 and |k + 1〉 with large k in a
subspaceGl spanned by two states|n〉 and|n + 1〉,
E0

k ≈ 2µn2,

(7)E0
k+1 ≈ 10µn2, Vk,k+2 ≈ −µn2,

Vk,k+3 ≈ −2µn2,

(8)Vk+1,k+2 ≈ 2µn2, Vk+1,k+3 ≈ 3µn2,

as a result, the dependence of the related factorsfkk′ =
Vkk′/(E0

0 −E0
k ) onn andµ is negligible. An advantage

of taking intermediate basis states is that, for factors
in a non-zero productfk1k2fk2k3fk3k4 · · · , the limit of
the largest geometric mean of|fkk′ | is 0.5, smaller

Fig. 3. Same as in Fig. 1, for the 4th excited states of even parity,
with ni = 20.

than that of|fnn′ | = |Hnn′/(H00 − Hnn)| with n �= n′,
which is 2/3. Another advantage is thatVkk′ have both
positive and negative signs andHnn′ have positive sign
only. We have studied RS perturbation expansion for
the ground-state energy of a HamiltoniañH whose
non-zero elements are exactly those on the right-hand
sides of the approximations in (7) and (8), with the
unperturbed Hamiltonian and perturbation taken as the
diagonal and off-diagonal parts of̃H , respectively. It
has been found that non-zero|εm| for the ground state
of H̃ has an exponential-type decay, which is close
to (3/4)m.

Numerically, partial sums of the expansions in
Eq. (5) have been found to converge for low-lying
excited states of the quartic anharmonic oscillator as
well, when µ � 2. As an example, Fig. 3 shows
ln |εm| for the 4th excited states of some values ofµ,
calculated withni = 20, where the decrease of|εm|
is quite close to exponential decay. Similar to the
case of ground states, exponential-type decay with
increasingk has also been found for the eigenfunctions
of low-lying excited states. Relatively high excited
states usually need relatively large values ofni , when
µ is fixed.

For the sextic anharmonic oscillator with the term
µx4 in Eq. (1) replaced byµx6, similar results have
also been obtained numerically for both low-lying
states and their energies. The convergence of partial
sums of the expansions in Eq. (5) for the sextic
anharmonic oscillator has been found much slower
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Table 2
Same as in Table 1, for 2E0 of the sextic and octic anharmonic
oscillators, with ni = 10. The lines labeled “W” are results of
Ref. [7]

µ ms 2E0

sextic 0.1 18000 1.173 889 345 125 433 152 981 850 087 81
W 1.173 889 345
lb 1.173 889 345 117
ub 1.173 889 345 130

sextic 0.5 18000 1.435 624 619 003 392 316
W 1.435 624 619
lb 1.435 624 618 9
ub 1.435 624 619 1

sextic 2.0 30000 1.830 437 343 750
W 1.830 437 344
lb 1.830 437 343 6
ub 1.830 437 344 4

octic 0.1 30000 1.241 027 91
W 1.241 03
lb 1.241 027 88
ub 1.241 027 94

than in the case of the quartic anharmonic oscillator.
Table 2 shows that results of the method here are more
accurate than the results of Weniger [7] for ground-
state energies of the sextic anharmonic oscillator. The
values ofms in Table 2 were not determined in the
same way as in Table 1, but, were taken to be 15000,
18000, and 30000, respectively, due to the slow decay
of |εm|. (For µ = 2.0, double precision was used for
data in the calculation.) Calculation of low-lying states
and their energies of the octic anharmonic oscillator,
with µx4 in Eq. (1) replaced byµx8, can be carried out
as well, with results obtained less accurate than for the
sextic anharmonic oscillator, due to the even slower
decay of |εm|. When µ is not large, e.g.,µ = 0.1,
it is still possible to obtain results a little better than
those in Ref. [7], with the summation ofεm truncated
atms = 30000. Generally to say, when the values ofµ

are large enough for the three anharmonic oscillators,
respectively, methods in Refs. [7,19] should be better
than the one here in the calculation of eigenenergies,
since the convergenceof the expansions there becomes
faster, but, the decrease of|εm| here becomes slower
(see Figs. 1 and 3), with increasingµ.

In summary, for the quartic, sextic, and octic an-
harmonic oscillators with not very strong anharmonic
terms, we have shown numerical evidence of conver-
gence of the simple Rayleigh–Schrödinger (RS) per-

turbation expansions for both low-lying eigenstates
and the corresponding eigenenergies, when unper-
turbed Hamiltonians and perturbations are taken as the
diagonal and off-diagonal parts of the total Hamiltoni-
ans, respectively, in the representation of suitably cho-
sen intermediate basis states. Unperturbed Hamiltoni-
ans used here for RS perturbation expansions may be
unsolvable analytically, but, numerical calculation can
be carried out easily for the elements of both the unper-
turbed Hamiltonians and the perturbations in interme-
diate basis states. Rigorous proof of the results found
numerically in this Letter is still absent. It should also
be worth investigating whether the method used here
could be useful in other models where RS quantum
mechanical perturbation theory gives divergent expan-
sions.
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