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Localization in band random matrix models with and without increasing diagonal elements
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It is shown that localization of eigenfunctions in the Wigner band random matrix model with increasing
diagonal elements can be related to localization in a band random matrix model with random diagonal ele-
ments. The relation is obtained by making use of a result of a generalization of Brillouin-Wigner perturbation
theory, which shows that reduced Hamiltonian matrices with relatively small dimensions can be introduced for
nonperturbative parts of eigenfunctions, and by employing intermediate basis states, which can improve the
method of the reduced Hamiltonian matrix. The latter model deviates from the standard band random matrix
model mainly in two aspectsi) the root mean square of diagonal elements is larger than that of off-diagonal
elements within the band, ar{d) statistical distributions of the matrix elements are close to they Idistri-
bution in their central parts, except in the high top regions.
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[. INTRODUCTION not dominate in the determination of the positions of the
central parts in the corresponding NPT regions of the eigen-
One of the most important discoveries in the field of functions. _ _
quantum chaos is dynamical localization in time-dependent In this paper, we shall show that the analytical expression
systemg 1]. Recently, a similar phenomenon has also beerfor the PT parts of the eigenfunctions in the GBWPT can be
found in conservative systeniz—6]. Among them, the sim- Made use of in investigation of the properties of the corre-
plest model employed is the so-called Wigner band randongPonding NPT parts. For each eigenfunction of a perturbed
matrix (WBRM) model[2], consisting of matrices with in- Hamiltonian, one can introduce a reduced Hamiltonian ma-
creasing diagonal elements and random off-diagonal elelfix which has an eigenfunction possessing the same compo-
ments within a band, which was introduced in the study offents as the NPT part of the eigenfunction. A direct applica-
complex systems, such as complex nu§@iand complex tion of the method of reduced Hamiltonian matrices to the
atoms[8]. Even for such a simple model, the mechanism ofVBRM model gives no insight into the mechanism of local-
localization is still unclear. Unlike the average shape of théZation in it, since such matrices still have increasing diago-
so-called local spectral density of states in the model, whicti@l elements. To solve this problem, we will convert the
can be established analyticallg], the properties of eigen- Original basis states to some intermediate basis states, in
functions have been determined mainly numerically. Makingvhich the sizes of the NPT parts of the eigenfunctions are
use of a so-called generalization of Brillouin-Wigner pertur-much reduced and the diagonal elements of the reduced
bation theory(GBWPT) [10], which separates energy eigen- Hamiltonian matrices fluctuate around their mean values.
functions into perturbatiVePT) and nonperturba’[ivéNPT) Then it becomes possible to relate localization in the WBRM
parts, localization in the WBRM model has been found tomodel to some BRM model with random diagonal elements,
appear in fact in NPT parts of eigenfunctidid]. Since the ~ Which is in fact close to a so-called superimposed BRM
present form of the GBWPT supplies quite limited informa- (SBRM) model introduced and investigated in RE¥8].
tion on properties of NPT parts of eigenfunctions, an expla- The paper is organized as follows. In Sec. Il, the reduced
nation for localization in them is still absent. Hamiltonian matrices are introduced. Section IIl is devoted

A possible way of deepening the understanding of localf0 an investigation of properties of the WBRM model in the
ization in the WBRM model is to relate it to localization in intermediate basis states. In particular, the reduced Hamil-
some other models, similar to the case for the model of théonian matrices are shown to be related to a BRM model, in
kicked rotator on the torus and the one-dimensional tightWhich it is reasonable to expect localization to appear. It is
binding mode[12]. For example, one may consider the stan-shown that, if the eigenfunctions of the reduced Hamiltonian
dard band random matriBRM) model, the theory of which matrices in intermediate basis states are localized, the eigen-
has been well developedee, e.g.[13—17). The main dif- functions of the WBRM model in the original basis states
ference between the two models is that the former has inshould be localized as well. Conclusions and discussion are
creasing diagonal elements and the latter has random diagélven in Sec. V.
nal elements. However, in view of the GBWPT, the
differgnce is not so large yvhen only the NPT parts of eigen'— Il. REDUCED HAMILTONIAN MATRICES
functions are of interest, since the nL!mbers_ of components in R NONPERTURBATIVE PARTS OF EIGENSTATES
them are usually smaller than the dimension of the random
matrices. In fact, the central parts of the eigenfunctions in the Consider a Hamiltonian of the foril=Hy+V, where
WBRM model have been found possibly lying in any regionH, is an unperturbed Hamiltonian aMdrepresents a pertur-
of their NPT parts, which suggests that diagonal elements dbation. The eigenstates of the Hamiltoniagdsand H, are
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denoted by a) and|k), respectively,

Hla)=E,la), Holky=EQlk), (1)

with the labelsa,k=1,2,... anda in energy order. Here,
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; HikCok=EoCai ®)

we have an eigenequation for the componedyts of |i) in

the perturbatiorV is assumed to have zero diagonal elementsSa »

in the H? representatior{fNonzero diagonal elements f if
there are any, can be attributedHg.) Components ofa) in
|k) are denoted a€ . =(k|a). In the GBWPT, for each
perturbed statéa), the set of unperturbed statde is di-

vided into two subsets, denoted By, andga, and conse-

quently the perturbed state itself is divided into two parts,

|as)=Ps |a) and|a5)=Qg |@), respectively, by two pro-
jection operators

Ps,= > |kikl, Qs= 2 [kNk|=1-Ps. (2

‘k>ESa \k}eSa
When the condition

lim (a|(TH)"Th|a)=0

n—oe

)

is satisfied, wherd ,=[1/(E,— Ho)]anV, it can be shown

rigorously[10] that the parfas) can be expanded in a con-

vergent perturbation expansion,
lag) =T+ Tolag+- - +Tolag+---.

4

For an unperturbed statg) belonging to the sega,

C,j=(jlas) can be expressed in a form making use of the

concept of a patii10]. To define a path, consider—1 un-
perturbed statefk) (1=1,...,g—1) in S, and two unper-

turbed stategk,) and|k,) in eitherS, or S,. The sequence
Ko—ky— -+ —Kq_1—Kq is termeda path of q paces from
Ko to kg, denoted bys, if the direct coupIinngl,k|+1
=(k{|V|k ;1) is nonzero for each pace. To each pdge
—k,1, we attribute a factoD ,(ki—k;,,), defined by
Du(ki—ki+1)=Vi i ,/(E.—E}). Then, defining the con-
tribution of a paths from k to kq as

q-1

falko—ke) = I1 Datki—ki 0, (5)

the expansion o€,; on the right hand side of E¢4) can be
written in the form

Caj: 2 Aa(jﬁi)cai )
[iyeS,

(6)

where

> T
n=1

Aa<1ai>=<1 i>=23 fS(j—i), (7)

with s denoting possible paths frojro i.
Substituting Eq(6) into the Schrdinger equation

>

li")es,

Hii/Cuir=E,Cai, 9)

where thereduced Hamiltonian matrix B H%+V is defined

AI=EP+ 2, Vi AL—i), (10)
liYeS,
Vi=Vii+ 2, VijAj—i"). (11)

li)eS,

That is, the component,; compose an eigenfunction of the
reduced Hamiltonian matri¥l with the same eigenenergy.
The two summations in Eq$10) and(11) can be expressed
in simple forms as E,—EY)A, (i—i) and E,—E’)A (i
—1'"), respectively, wherd ,(i—i') is defined by

A i—i)=> f5(i—i"). (12)

The dimension ofH is the number of states in the set
S, - Note thatA,(j—1i) is a function ofE,. The reduced
Hamiltonian matrices are Hermitian, since for a patlof
O P Pl

Vi
q
_E° E —E°

a it a iq

Vijle(jl_’il):Vile

= (Virj f3 (Iq=1))*, (13

wheres’ denotes the patiy,— - - - —ji—i.

The matrix elements ofl are closely related ta\,(j
—1). When the Hamiltoniatl has a band structure in tl,
representation, with zero coupling outside the bafg(j
—1) usually has an exponential-type decay with increase of
the smallest number of paces frgnto i. To show this, we
expand the stat®s V|i) in |v,), the(right) eigenvectors of
the operator

U,=QsV E_HO Qs, (14

with eigenvaluesu,,,, which gives Qg V|i)=3,h|v,).
Then we have
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i
v

1=y e

>

A (j—i)=
(J—=1) E. E0 %

(Ug,)™ 1,

(19

wherem is the smallest positive integer fdj|(Qs V)™i)

not equal to zero, i.e., the smallest number of paces friam
i. As shown in Ref[11], |u,,|<1, except for some very
occasional cases, namefy;,|Qs V|a)=0.

Ill. RELATION BETWEEN LOCALIZATION IN THE
WBRM MODEL AND IN A BRM MODEL

A. The WBRM model in intermediate basis states

The Hamiltonian matrix of the WBRM model studied in
this paper is chosen of the form

Hea= (HE+AVY) cg=E"dca+ Moy (16)
(c,d=1,... N),where E?"=c are eigenenergies dfi}}.

The off-diagonal matrix elementgly= v, are random num-
bers with Gaussian distribution forljc—d|<b [(v{y)=0
and((vey)?)=1] and are zero otherwise. Helods the band-
width of the Hamiltonian matrix andll is its dimension. The
eigenstates off{, denoted byc), are taken as the original
basis states. The eigenstatesHoéire also denoted bjyy).

For this model, th&NPT regionof a perturbed statgy) in
the basis statele) is defined as the smallest set

S.={lcy),lei+1), ... |co)} (17

satisfying the condition(3), with the rest of the statelc)
defined as th@T regionof | ). To avoid confusion with the

PH/SICAL REVIEW E 65 066207

. s
T o

1 L 1 L 1 ) | L
150 200 250 300
k,c

350 400

I
1
|
1
|
1
I
1
1
I
1
|
I
1
|
|
1
|
]
5

50 100 450

FIG. 1. Shape of the eigenfunction of an eigenstatein the
original basis statefc) (solid line) and its counterpart in interme-
diate basis statefk) of n;=7 (doty, whenb=4 and\=25. w
=|(x|@)|?, with x beingc or k. The two vertical dashed lines indi-
cate the positions of; andc,, respectively, of the NPTregion of

|a).

and off-diagonal parts of the matrix f in the intermediate
basis states are denoted by and V, with elementsE}
=(k|H|k) and V- =(k|H|k"), respectively. In this paper,
with the parameterd =25 andb=4, except for the case of
n;=1 in which|k)=|c), we are interested in;=b only, the
reason for which will be clear from the numerical results
presented below. In this case, for two staesand|k’) in

PT and NPT regions in intermediate basis states which wiltwo subspaces,k andg,k,, respectivelyVy,: is nonzero only
be introduced below, we denote the above PT and NPT r§ynhena| =1, —1,,|=1; therefore, the matrikl, has a band

gions as the PJ and NPT regions, respectively. Corre-
spondingly, the statfa) and its components itc) are di-
vided into NPT and PT parts, respectively. For a given
value of b, the eigenfunctions ofa) in |c) are localized,
when the perturbation paramet&r and dimensionN are
large enough(see the detailed condition given in RE2]),
e.g., when\=25b=4, andN=500, which are the param-
eters taken in our numerical calculation and giwg<c;)

structure as well. The number of paces of the shortest path
from k to k" with respect toV, is justAl, whenAl#0. As
a result,V;;, in Eq. (11) has an exponential-type decay with
increasingAl=|l;—1;/|, whenAl>2 [see Eq(15)].

When the value ofy; is obviously smaller than the local-
ization length of|@) in the original basis statek), the
change of basis states will have no influence on whether the

>b. A direct application of the results given in Sec. Il does€igenfunctions are localizetee Fig. 1 for the example of
not give any clue to the explanation of the localization inni=7). In the case of the parameters in our calculation, the

the model, sincdd.4=H.q for labelsc andd in the region
[c;+b,co—Db].

The method of the reduced Hamiltonian matrix can be
improved by employing intermediate basis states. To con
struct a set of intermediate basis states , we first choose

positive integem; which is much smaller thaN and subdi-

average localization length of the eigenfunctions of the ma-
trices in Eq.(16), calculated by information entropy, has
been found to be 33.7. Note th&f are not in energy order.

In the calculation of the NPT region ¢#&) in intermediate

basis states, denoted as the NRF&gion, we relabelk) in
energy order, denoted B®), and usek® instead ofc in Eq.

vide the Hilbert space into a series of subspaces, denoted ) 7)- The sizes of the NRTregions thus obtained, denoted

G (1=1,2,...],), whereg, is spanned by statds) of c
=n(I-1)+1n(-21)+2,...nl. [Forl,, c=n(l,—1)

by N,=k3—ki+1, have been found to decrease rapidly,
when n; increases from 1 to some valug . Figure Za)

+1,... N.] Second, we calculate the eigenstates of theshows the average behaviorNf,, where(n,)~7. A major

Hamiltonian in each of the subspacgs, denoted by|k)
[k=ni(I-21)+1n;(1-1)+2,...nl for G]. The stategk)
with k=1,2,... N are taken asntermediate basis states

reason for the reduction of NPT regions is that, for each
subspacej,, the region of magnitude occupied tﬁﬁ en-
larges with increasing; (see Fig. 3 fon;=7). The average

For convenience in using the results in Sec. Il, the diagonatoupling strengthv = \/<V2kk,>, with averaging taken over
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FIG. 2. (a) Values of(N,), the average size of NRTegions of
|@), as a function ofn;. (b) Variation of the average coupling

strengtho = \(VZ,,) with n; .

nonzeroV,,: , also decreases with increasing[Fig. 2(b)],
which is another reason of for reduction of NPT regions.
Numerically, a feature oE{ has been found related to
some properties of the NRTegions of statelr). In the case
of the original basis statesi(=1), the points (;,Eg) lieina
straight line in thec-E° plane. With increasing; , the rough
boundary of the region occupied by the pointsl_{ﬁ) ex-
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=20. An interesting feature shown in Fig. 3 is that, when one
draws a horizontal dotted line meeting tE& axis at E°
=E, of a statel@) and two vertical dash-dotted lines meet-
ing the k axis atk=c; and c,, respectively, the crossing
points of the three lines are quite close to the rough boundary
of the region of ((,EE). This property OEE should be useful

in the approximate calculation of NRTegions.

B. Reduced Hamiltonian matrices in intermediate basis states

In this subsection, we discuss the properties of reduced
Hamiltonian matrices in intermediate basis states. In our nu-
merical calculation, we choosg=7, because of its proper-
ties discussed in the previous subsection. Since matridds of
in the labelk have a simpler coupling structure than the ones
in the energy-ordered labkf, we return to the labet when
the NPT, regions of statesa) have been calculated.

For the sake of convenience, we Useto denote states
|k) in the NPT, region of|a) and|j) to denote those in the
PT, region. Equation$10) and(11) show that bothtlﬂ and
V,» associated with a stafer) are composed of two parts
with different origins. One is the corresponding elements of
H, the other is the contribution from the Pfiegion. To show
this more clearly, we introduce

x”,:; ViiAl(i—i"), (18)

yi:; Vi AL —i). (19)

Unperturbed energieg? in the NPT region of a statéa)
are those that are close K),, e.g., the 80 points closest to

pands in the direction perpendicular to the straight linethe dotted line in Fig. 3. For perturbed states in the
However, the expansion of the rough boundary has beepiddle of the energy region, the upper and lower bounds of

found to slow down obviously, when; reaches some value
depending o and\, which is equal to 7 for the parameters
in our calculation(Fig. 3. In fact, almost the same rough
boundaries have been observed whgr7 and whenn;
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FIG. 3. Values ofE)=(k|H"|k) obtained withn,=7. The hori-
zontal dotted straight line indicates the positiongyf, the energy

Ei0 are on average symmetric with respecttp; as a result,
the average ofE?— E,) is zero. In studying statistical prop-
erties of the reduced Hamiltonian matrices associated with
such perturbed states, it would be better to shift their diago-

0
nal partsH;;, to

e=el+y;, (20
wheree’=E?—E, .

As discussed in the previous subsectidf);, has an
exponential-type decay wheh,—1;:|>2. As a result, the
reduced Hamiltonian matrices should, on average, have a
band structure with an effective bandwidih, which is ap-
proximately (3N,—1)/2, whereN, is the average number of
states|i) in a subspacj,, found to be about 2.06 in our
numerical calculation, giving.~4.65. This prediction ob,
is in agreement with that obtained from a direct calculation

of u(Ai)= \/(T/ﬁ,), whereAi=(i—i"), which is shown in
Fig. 4, with averaging taken overof 550 reduced Hamil-

of a statd @), on the vertical axis. Vertical dash-dotted straightlinestonian matrices coming from 50 matricék.4 of different

indicate positions of the values of andc,, the boundaries of the
NPT, region of| @), on the horizontal axis.

realizations of random numbers. For comparison, the values
of ug= \/<ei2> are also presented in Fig. 4, at the position of
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FIG. 4. Values ofu(Ai)=(V3,) and Inu, showing the band- ) ©
like structure of the off-diagonal elements of reduced Hamiltonian 00251 j
matrices, where the average is taken owevith i'=i—Ai. For Chady ]
comparison, the values af.=/(e?) and Inu, for the diagonal = o015 - ]
elements are shown at the positionsAdf=0. 0.01 :

0.005 - -
Ai=0, which is larger than @(Ai) of Ai==1. In the cal- 00 AT
culation of the elements of the reduced Hamiltonian matri- 80 -60 -40 20 0 20 40 60 80
e, e,y

ces, the expansion &&,(j—i) in Eq. (7) was truncated at
the firstn satisfying|(j| T7|i)|<10 4

FIG. 5. (a) The histogram is the distribution of diagonal ele-

Now let us discuss the distributions of elements of theéments of the reduced Hamiltonian matrices, calculated from
reduced Hamiltonian matrices. Due to the random signs 0000 reduced Hamiltonian matrices belonging to 500 realizations of

Vi » Yi also has random signs, with zero mean. Figua 5
shows that the central part of the distributionefcan be
fitted well by both a Gaussian distribution and a stableyLe
distribution

1 [+e
L(p)=;fo exp(—yq*)cogqp)dq, (21

for Lévy flights with infinite variance(see, e.g., Ref§19—
21]). The fitting of the Ley distribution is in fact a little

better than that of the Gaussian distribution. In the tail re-

gion, the distributionf(e) is obviously closer to the Twy
distribution than to the Gaussi@hig. 6(a)]. Sincea=1.7 for
the best fitting Lgy distribution, the distributiorf(e) is far

from the Lorentzian distribution, which is a special case of

the Levy distribution witha=1.

The distributions of the two constituents gfin Eq. (20)
have also been studied. The distribution &ff is close to
neither a Gaussian distribution nor awyedistribution. In
fact, its central part has a platforfirig. 5b)] and its long

tails decrease faster than a Gaussian distribution. These two
properties off (e°) are simply due to the requirement of the

GBWPT thatE? in the NPT, region of |«) are thoseE]
which are close td&,. An estimation of the width of the

central part off(e°) is given in the Appendix. We should

mention that, although the mean valueeffis zero, there is

still some small remnant of the influence of the increasing
diagonal elements dfi§ in the original basis, for example, in

the original random matrices. The dotted curve is the best fitting
Lévy distribution, witha=1.7 andy=94.1. The solid curve is the
best fitting Gaussian distributiofb) Same as ir(a), for the distri-
bution ofeio, without fitting of the Lery distribution.(c) Same as in
(@), for the distribution ofy;, with «=1.22 andy=18.8 for the
best fitting Levy distribution.
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Fig. 3 most of the points close to the left vertical dash-dotted F|G, 6. (a) Same as in Fig. ), on a logarithmic scale(b)
line are below the horizontal dotted line, but those close tdsame as in Fig. &), on a logarithmic scale.
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. FIG. 8. Shape of an eigenfunction of a reduced Hamiltonian
7 matrix, which is the NP part of the eigenfunction shown in Fig. 1,
7 with respect to a labdl’ shifted fromi.

gest a BRM model with an effective bandwidth, which
has statistical properties more complicated than the standard
] BRM model. Although a fraction of the diagonal elements of
1 the reduced Hamiltonian matrices, namely, the ones close to
P the two edges of the matrices, are not completely random,
S '1%,, Ov, o L diagonal elements in the BRM model suggested here are set
random. It is reasonable to expect that the small difference in
_FIG. 7. (&) Same as in Fig. @), for the distribution ofw  dijagonal elements does not affect whether eigenfunctions of
=V,;» within the effective bandwidth of reduced Hamiltonian ma- the matrices are localized.

trices, witha=1.21 andy=9.33 for the best fitting Ley distribu- In the BRM model suggested here,, the root mean
tion. (b) Same as ina), for the distribution of nonzer®;;,, with  square(rms) of the diagonal elements, is different from the
a=1.49 andy=17.3.(c) Same as infa), for the distribution ok;;:  rms of the off-diagonal elements within the band, denoted by
with |I;—1;,|=0. For the best fitting Ley distribution,a=1.11 and Uy Such a difference is a feature of the SBRM, which is
y=4.1. the sum of a random diagonal matrix and a conventional

BRM. The localization length in the SBRM model, denoted

the right dash-dotted line are above the horizontal dottedby I, can be fitted well by the expressioh8]
line. The distribution ofy; is shown in Fig. %c). Its central
part is quite close to a lvy distribution with a=1.22, ex- lsp=1.6(b+ 0.5)/In[1+2.5(1.25N§+ L)/b], (22
cept in the region of small. Consistently with the fact that
f(y) is higher than the best fitting Mg distribution in the  where b is the bandwidth of the SBRM andw,
top region, its tails, which also have a power-law decay fea= \/(u_/uys)Z—1//2b+ 1. Using the parameters of the re-
ture, are lower than the ones of thewedistribution[Fig.  quced Hamiltonian matricels,~4.65 andu/Uye~2.8, we
6(b)]. havel,,~12.0. Noticing that the average dimension of the

In a statistical study of off-diagonal elements of reducediequced Hamiltonian matrices is approximately 80, the
Hamiltonian matrices, one should distinguish between thosggrM has localized eigenfunctions when it has the same
within the effective bandwidth and those outside. The dism'parameters as the BRM suggested here. Since the main dif-
bution of V;;, within the effective bandwidth, namely, for ference between the SBRM model and the BRM suggested
which Al=|l;—1;,|<2, is shown in Fig. 7). Again, it is  here lies in the types of distributions of matrix elements in
close to the best fitting vy distribution in the central part, them, it is reasonable to expect that eigenfunctions in the
except in the high peak region, but cannot be fitted well byBRM model suggested here will be localized as well. Nu-
the Gaussian distribution. A similar relation to theviyedis-  merically, the eigenfunctions of the reduced Hamiltonian ma-
tribution has also been found for the distributions of nonzerdrices have indeed been found localized; see Fig. 8 for an
V;i» [Fig. 7(b)] and of x;;» with different Al. In fact, the  example, where the values of the labélave been shifted to
central parts off (x) (except in the high peak regionkave i'=1,2,...N,, with order unchanged, for the sake of
been found to be fitted quite well by the \edistribution,  clearness in plotting. The similarity between the rough shape
e.g., see Fig. (£) for Al=0. The width of the distribution of the eigenfunction show in Fig. 8 and that of the Npart
f(x) decreases with increasinil, consistent with the fea- of the original eigenfunction in Fig. 1 is quite obvious.
ture of u(Ai) shown in Fig. 4. Finally, we show that, if the NRTpart of a statd«),

The reduced Hamiltonian matrices discussed above sugramely, the componen&,;, form a localized eigenfunction
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of a reduced Hamiltonian matrix, the eigenfunctionj@f in  close to(even exactly a Lorentzian distribution, which is a

the original basis statgs) must be localized as well, when special case of the g distribution, in both the central part

n;<N. In fact, since the componen,; in the PT, part of ~ and the tail regior{24]. The reason is still unclear for the

|a@) can be expressed in terms of the compon&)s[Eq.  deviations of some of the distributions investigated here

(6)] and, due to the band structure of the Hamiltonian matrixfrom their best fitting Ley distributions in the top regions.

Hwe » A,(j—1) has an exponential-type decay with increas-One possibility is that the definition of the NPT parts of the

ing [I;—1;| [Eq. (15)], the eigenfunction ofe) in the inter-  eigenfunctions used here is not the best one. Indeed, there is

mediate basis staték) must be localized as well. There is no problem in using the definition here in the investigation of

no need to discuss the casemphbeing close to or larger than the structure of eigenfunctiorjd1], but distributions of ra-

the localization length ofa) in |c), which means that the tios are more sensitive to the parts of the eigenfunctions con-

eigenfunction is localized. For the other case, as discussed kidered than is the structure of the eigenfunctions.

Sec. Il A, localization of the eigenfunction df) in the When intermediate basis states are used, the sizes of the

original basis statee) would follow; in particular, whem; NPT parts of the eigenfunctions can be reduced considerably,

is obviously smaller than the localization length of the eigen-which makes the GBWPT more effective. A shortcoming of

function of | @) in |c), the NPT part of «) in |c) should be this approach is that it is generally impossible to write down

localized as well. the elements of Hamiltonian matrices in intermediate basis

states analytically. Usually this causes no problem in numeri-

cal calculations, since the sizes of the submatrices for calcu-

lating intermediate basis states are small. Reduced Hamil-
In this paper, we have shown that localization in thetonian matrices may also be useful in improving the method

Wigner band random matrix model can be related to local©f calculating approximate eigenenergies and eigenfunctions

ization of eigenfunctions of the corresponding reduced®f large matrices by diagonalization of some relatively small

Hamiltonian matrices. First, for an arbitrary Hamiltonian Mmatrices[25-27. A difficulty met in this direction is that

composed of an unperturbed Hamiltonian and a perturbatiordlifferent original eigenfunctions correspond to different re-

making use of a generalization of Brillouin-Wigner perturba-duced Hamiltonian matrices. This problem may be partly

tion theory, it has been shown that a reduced Hamiltoniarsolved, if in some models the reduced Hamiltonian matrices

matrix can be introduced for each perturbed state, which ha@ssociated with close energies have similar elements.

an eigenfunction sharing the same components as the non-

perturbative part of the perturbed state in the representation ACKNOWLEDGMENT

of the unperturbed Hamiltonian. The reduced Hamiltonian

matrices introduced here may be unsuitable to the calculation Partial support from the Academic Research Fund of NUS

of exact eigenfunctions and eigenenergies, but are useful it gratefully acknowledged.

the study of properties of eigenfunctions such as localization.

Secondly, intermediate basi_s states hav_e been useo! to make  ApPPENDIX: ESTIMATION OF THE WIDTH

the method of reduced Hamiltonian matrices more suitable to OF THE CENTRAL PART OF F(E?)

the study of localization in the WBRM maodel. It has been

shown that eigenfunctions of the WBRM model should be Note that the half-width of the central part 6(e°) is

localized, if eigenfunctions of the corresponding reducedapproximately equal to the average distance between the up-

Hamiltonian matrices in intermediate basis states are locaper and lower bounds cEin in NPT, regions of the perturbed

ized. ol the reduced o os have b states| @), denoted byse, 5e=(Eg§—EEi>. In the general

found related 1o a BRM model with random aiagonal ele.Case thaft,,| <1, the eft hand side of Ed3) i either zero

ments, which is close to a superimposed BRM model. The' infinity. For the purpose of an estimation of the left hand

main difference between the two BRM models rests in theSlde of Eq.(3), one can consider

distribution forms of the matrix elements. It has been found o \"

that parameters of the BRM suggested here lie in the local- In:Np(_) , (A1)

ization regime of the SBRM model. Eigenfunctions in the (AE)

BRM suggested here have indeed been numerically found to o

be localized. whereN, is the effective number of paths involved, and
The distributions of the elements of reduced Hamiltonianand{AE) are the geometric means of nonzero coupling and

matrices have been found to be close to theyLdistribution  of |E,,— EJQ| in the paths, respectively. Suppose the average

numerically (except in the high top regions for off-diagonal number of nonzero couplings of a stdi¢ to other states

elements Presently, there is no analytical explanation for|j’) is b.. An estimation ofN, gives

the closeness. However, a possible relationship would not be

strange, sincé\ ,(j—i) are composed of factors of ratios of Npo(B'be)", (A2)

Vi and E,— E(k)). As is know, when a distribution of ratios

is of interest, one may meet power-law decaying tailswith 8’ being an undetermined parameter less than 1. Since

[22,23, which is a specific feature of the' g distribution.  |E,—E[| is usually larger thanse/2, we write (AE) as

In fact, it is possible for a distribution of ratios to be very g”de/2, with B”>1 undetermined. Taking a parameter

IV. CONCLUSIONS AND DISCUSSION
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B=2pB'1B", we have an estimation for the average size ofresults given in Ref{11] for the WBRM model in the origi-
the NPT regions, nal basis states can be used to calcuf@tevhich givesp
~0.7, with e~ 140 whenv =10 andb.=2b=20. Here the
root mean square of nonzero off-diagonal elemants is

by using the condition €lim,_, .| ,<o. used forv, with the difference absorbed 8. For the Hamil-
The above arguments leading to F43) hold generally tonian matrices of the WBRM model in intermediate basis

for Hamiltonian matrices with band structure. In cases wheretates discussed in this papes,=2(n;—N,)=~9.9, v

the nonzero off-diagonal elements are random, the values of 11.5; as a resulife~76.2, close to the half-width df(e°)

B should be the same or close. Therefore, the numericahown in Fig. %b).

se~ b, (A3)
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