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Localization in band random matrix models with and without increasing diagonal elements
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It is shown that localization of eigenfunctions in the Wigner band random matrix model with increasing
diagonal elements can be related to localization in a band random matrix model with random diagonal ele-
ments. The relation is obtained by making use of a result of a generalization of Brillouin-Wigner perturbation
theory, which shows that reduced Hamiltonian matrices with relatively small dimensions can be introduced for
nonperturbative parts of eigenfunctions, and by employing intermediate basis states, which can improve the
method of the reduced Hamiltonian matrix. The latter model deviates from the standard band random matrix
model mainly in two aspects:~i! the root mean square of diagonal elements is larger than that of off-diagonal
elements within the band, and~ii ! statistical distributions of the matrix elements are close to the Le´vy distri-
bution in their central parts, except in the high top regions.
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I. INTRODUCTION

One of the most important discoveries in the field
quantum chaos is dynamical localization in time-depend
systems@1#. Recently, a similar phenomenon has also be
found in conservative systems@2–6#. Among them, the sim-
plest model employed is the so-called Wigner band rand
matrix ~WBRM! model @2#, consisting of matrices with in-
creasing diagonal elements and random off-diagonal
ments within a band, which was introduced in the study
complex systems, such as complex nuclei@7# and complex
atoms@8#. Even for such a simple model, the mechanism
localization is still unclear. Unlike the average shape of
so-called local spectral density of states in the model, wh
can be established analytically@9#, the properties of eigen
functions have been determined mainly numerically. Mak
use of a so-called generalization of Brillouin-Wigner pertu
bation theory~GBWPT! @10#, which separates energy eige
functions into perturbative~PT! and nonperturbative~NPT!
parts, localization in the WBRM model has been found
appear in fact in NPT parts of eigenfunctions@11#. Since the
present form of the GBWPT supplies quite limited inform
tion on properties of NPT parts of eigenfunctions, an exp
nation for localization in them is still absent.

A possible way of deepening the understanding of loc
ization in the WBRM model is to relate it to localization i
some other models, similar to the case for the model of
kicked rotator on the torus and the one-dimensional tig
binding model@12#. For example, one may consider the sta
dard band random matrix~BRM! model, the theory of which
has been well developed~see, e.g.,@13–17#!. The main dif-
ference between the two models is that the former has
creasing diagonal elements and the latter has random di
nal elements. However, in view of the GBWPT, th
difference is not so large when only the NPT parts of eig
functions are of interest, since the numbers of componen
them are usually smaller than the dimension of the rand
matrices. In fact, the central parts of the eigenfunctions in
WBRM model have been found possibly lying in any regi
of their NPT parts, which suggests that diagonal elements
1063-651X/2002/65~6!/066207~8!/$20.00 65 0662
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not dominate in the determination of the positions of t
central parts in the corresponding NPT regions of the eig
functions.

In this paper, we shall show that the analytical express
for the PT parts of the eigenfunctions in the GBWPT can
made use of in investigation of the properties of the cor
sponding NPT parts. For each eigenfunction of a pertur
Hamiltonian, one can introduce a reduced Hamiltonian m
trix which has an eigenfunction possessing the same com
nents as the NPT part of the eigenfunction. A direct appli
tion of the method of reduced Hamiltonian matrices to t
WBRM model gives no insight into the mechanism of loca
ization in it, since such matrices still have increasing diag
nal elements. To solve this problem, we will convert t
original basis states to some intermediate basis states
which the sizes of the NPT parts of the eigenfunctions
much reduced and the diagonal elements of the redu
Hamiltonian matrices fluctuate around their mean valu
Then it becomes possible to relate localization in the WBR
model to some BRM model with random diagonal elemen
which is in fact close to a so-called superimposed BR
~SBRM! model introduced and investigated in Ref.@18#.

The paper is organized as follows. In Sec. II, the reduc
Hamiltonian matrices are introduced. Section III is devot
to an investigation of properties of the WBRM model in th
intermediate basis states. In particular, the reduced Ha
tonian matrices are shown to be related to a BRM model
which it is reasonable to expect localization to appear. I
shown that, if the eigenfunctions of the reduced Hamilton
matrices in intermediate basis states are localized, the ei
functions of the WBRM model in the original basis stat
should be localized as well. Conclusions and discussion
given in Sec. IV.

II. REDUCED HAMILTONIAN MATRICES
FOR NONPERTURBATIVE PARTS OF EIGENSTATES

Consider a Hamiltonian of the formH5H01V, where
H0 is an unperturbed Hamiltonian andV represents a pertur
bation. The eigenstates of the HamiltoniansH and H0 are
©2002 The American Physical Society07-1
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denoted byua& and uk&, respectively,

Hua&5Eaua&, H0uk&5Ek
0uk&, ~1!

with the labelsa,k51,2, . . . anda in energy order. Here
the perturbationV is assumed to have zero diagonal eleme
in theH0 representation.~Nonzero diagonal elements ofV, if
there are any, can be attributed toH0.! Components ofua& in
uk& are denoted asCak5^kua&. In the GBWPT, for each
perturbed stateua&, the set of unperturbed statesuk& is di-
vided into two subsets, denoted bySa and S̄a , and conse-
quently the perturbed state itself is divided into two par
uas&[PSa

ua& and ua s̄&[QS̄a
ua&, respectively, by two pro-

jection operators

PSa
5 (

uk&PSa

uk&^ku, QS̄a
5 (

uk&PS̄a

uk&^ku512PSa
. ~2!

When the condition

lim
n→`

^au~Ta
† !nTa

n ua&50 ~3!

is satisfied, whereTa5@1/(Ea2H0)#QS̄a
V, it can be shown

rigorously @10# that the partua S̄& can be expanded in a con
vergent perturbation expansion,

ua S̄&5Tauas&1Ta
2 uas&1•••1Ta

n uas&1•••. ~4!

For an unperturbed stateu j & belonging to the setS̄a ,
Ca j5^ j ua S̄& can be expressed in a form making use of
concept of a path@10#. To define a path, considerq21 un-
perturbed statesukl& ( l 51, . . . ,q21) in S̄a and two unper-
turbed statesuk0& and ukq& in eitherSa or S̄a . The sequence
k0→k1→•••→kq21→kq is termeda path of q paces from
k0 to kq , denoted bys, if the direct couplingVkl ,kl 11

5^kl uVukl 11& is nonzero for each pace. To each pacekl
→kl 11, we attribute a factorDa(kl→kl 11), defined by
Da(kl→kl 11)5Vkl ,kl 11

/(Ea2Ekl

0 ). Then, defining the con

tribution of a paths from k0 to kq as

f a
s ~k0→kq!5 )

l 50

q21

Da~kl→kl 11!, ~5!

the expansion ofCa j on the right hand side of Eq.~4! can be
written in the form

Ca j5 (
u i &PSa

Aa~ j→ i !Ca i , ~6!

where

Aa~ j→ i !5K jU(
n51

`

Ta
nU i L 5(

s
f a

s ~ j→ i !, ~7!

with s denoting possible paths fromj to i.
Substituting Eq.~6! into the Schro¨dinger equation
06620
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HikCak5EaCa i , ~8!

we have an eigenequation for the componentsCa i of u i & in
Sa ,

(
u i 8&PSa

H̃ ii 8Ca i 85EaCa i , ~9!

where thereduced Hamiltonian matrix H˜ 5H̃01Ṽ is defined
by

H̃ ii
0 5Ei

01 (
u j &PS̄a

Vi j Aa~ j→ i !, ~10!

Ṽii 85Vii 81 (
u j &PS̄a

Vi j Aa~ j→ i 8!. ~11!

That is, the componentsCa i compose an eigenfunction of th
reduced Hamiltonian matrixH̃ with the same eigenenergy
The two summations in Eqs.~10! and~11! can be expressed
in simple forms as (Ea2Ei

0)Aa( i→ i ) and (Ea2Ei
0)Aa( i

→ i 8), respectively, whereAa( i→ i 8) is defined by

Aa~ i→ i 8!5(
s

f a
s ~ i→ i 8!. ~12!

The dimension ofH̃ is the number of states in the s
Sa . Note thatAa( j→ i ) is a function ofEa . The reduced
Hamiltonian matrices are Hermitian, since for a paths of
j 1→ j 2•••→ j q→ i 8,

Vi j 1
f a

s ~ j 1→ i 8!5Vi j 1

Vj 1 j 2

Ea2Ej 1

0
•••

Vj qi 8

Ea2Ej q

0

5„Vi 8 j q
f a

s8~ j q→ i !…* , ~13!

wheres8 denotes the pathj q→•••→ j 1→ i .
The matrix elements ofH̃ are closely related toAa( j

→ i ). When the HamiltonianH has a band structure in theH0
representation, with zero coupling outside the band,Aa( j
→ i ) usually has an exponential-type decay with increase
the smallest number of paces fromj to i. To show this, we
expand the stateQS̄a

Vu i & in una&, the ~right! eigenvectors of
the operator

Ua[QS̄a
V

1

Ea2H0
QS̄a

~14!

with eigenvaluesuan , which gives QS̄a
Vu i &5(nhn

i una&.
Then we have
7-2
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Aa~ j→ i !5
1

Ea2Ej
0 (

n
F hn

i

12uan
^ j una&G~uan!m21,

~15!

wherem is the smallest positive integer for^ j u(QS̄a
V)mu i &

not equal to zero, i.e., the smallest number of paces fromj to
i. As shown in Ref.@11#, uuanu,1, except for some very
occasional cases, namely,^nauQS̄a

Vua&50.

III. RELATION BETWEEN LOCALIZATION IN THE
WBRM MODEL AND IN A BRM MODEL

A. The WBRM model in intermediate basis states

The Hamiltonian matrix of the WBRM model studied
this paper is chosen of the form

Hcd5~H0
w1lVw!cd5Ec

0wdcd1lvcd
w ~16!

(c,d51, . . . ,N),where Ec
0w5c are eigenenergies ofH0

w .
The off-diagonal matrix elementsvcd

w 5vdc
w are random num-

bers with Gaussian distribution for 1<uc2du<b @^vcd
w &50

and^(vcd
w )2&51# and are zero otherwise. Hereb is the band-

width of the Hamiltonian matrix andN is its dimension. The
eigenstates ofH0

w , denoted byuc&, are taken as the origina
basis states. The eigenstates ofH are also denoted byua&.

For this model, theNPT regionof a perturbed stateua& in
the basis statesuc& is defined as the smallest set

Sa5$uc1&,uc111&, . . . ,uc2&% ~17!

satisfying the condition~3!, with the rest of the statesuc&
defined as thePT regionof ua&. To avoid confusion with the
PT and NPT regions in intermediate basis states which
be introduced below, we denote the above PT and NPT
gions as the PTc and NPTc regions, respectively. Corre
spondingly, the stateua& and its components inuc& are di-
vided into NPTc and PTc parts, respectively. For a give
value of b, the eigenfunctions ofua& in uc& are localized,
when the perturbation parameterl and dimensionN are
large enough~see the detailed condition given in Ref.@2#!,
e.g., whenl525,b54, andN5500, which are the param
eters taken in our numerical calculation and give (c22c1)
@b. A direct application of the results given in Sec. II do
not give any clue to the explanation of the localization
the model, sinceH̃cd5Hcd for labelsc and d in the region
@c11b,c22b#.

The method of the reduced Hamiltonian matrix can
improved by employing intermediate basis states. To c
struct a set of intermediate basis states , we first choo
positive integerni which is much smaller thanN and subdi-
vide the Hilbert space into a series of subspaces, denote
Gl ( l 51,2, . . . ,l m), whereGl is spanned by statesuc& of c
5ni( l 21)11,ni( l 21)12, . . . ,ni l . @For l m , c5ni( l m21)
11, . . . ,N.# Second, we calculate the eigenstates of
Hamiltonian in each of the subspacesGl , denoted byuk&
@k5ni( l 21)11,ni( l 21)12, . . .ni l for Gl#. The statesuk&
with k51,2, . . . ,N are taken asintermediate basis states.
For convenience in using the results in Sec. II, the diago
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and off-diagonal parts of the matrix ofH in the intermediate
basis states are denoted byH0 and V, with elementsEk

0

5^kuHuk& and Vkk85^kuHuk8&, respectively. In this paper
with the parametersl525 andb54, except for the case o
ni51 in which uk&5uc&, we are interested inni>b only, the
reason for which will be clear from the numerical resu
presented below. In this case, for two statesuk& and uk8& in
two subspacesGl k

andGl k8
, respectively,Vkk8 is nonzero only

whenD l 5u l k2 l k8u51; therefore, the matrixHkk8 has a band
structure as well. The number of paces of the shortest p
from k to k8 with respect toVkk8 is justD l , whenD lÞ0. As

a result,Ṽii 8 in Eq. ~11! has an exponential-type decay wi
increasingD l 5u l i2 l i 8u, whenD l .2 @see Eq.~15!#.

When the value ofni is obviously smaller than the local
ization length of ua& in the original basis statesuc&, the
change of basis states will have no influence on whether
eigenfunctions are localized~see Fig. 1 for the example o
ni57). In the case of the parameters in our calculation,
average localization length of the eigenfunctions of the m
trices in Eq. ~16!, calculated by information entropy, ha
been found to be 33.7. Note thatEk

0 are not in energy order
In the calculation of the NPT region ofua& in intermediate
basis states, denoted as the NPTk region, we relabeluk& in
energy order, denoted byuke&, and useke instead ofc in Eq.
~17!. The sizes of the NPTk regions thus obtained, denote
by Na5k2

e2k1
e11, have been found to decrease rapid

when ni increases from 1 to some valuenc . Figure 2~a!
shows the average behavior ofNa , where^nc&'7. A major
reason for the reduction of NPT regions is that, for ea
subspaceGl , the region of magnitude occupied byEk

0 en-
larges with increasingni ~see Fig. 3 forni57). The average
coupling strengthv5A^Vkk8

2 &, with averaging taken ove

FIG. 1. Shape of the eigenfunction of an eigenstateua& in the
original basis statesuc& ~solid line! and its counterpart in interme
diate basis statesuk& of ni57 ~dots!, when b54 and l525. w
5 z^xua& z2, with x beingc or k. The two vertical dashed lines indi
cate the positions ofc1 andc2, respectively, of the NPTc region of
ua&.
7-3
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WEN-GE WANG PHYSICAL REVIEW E 65 066207
nonzeroVkk8 , also decreases with increasingni @Fig. 2~b!#,
which is another reason of for reduction of NPT regions.

Numerically, a feature ofEk
0 has been found related t

some properties of the NPTc regions of statesua&. In the case
of the original basis states (ni51), the points (c,Ec

0) lie in a
straight line in thec-E0 plane. With increasingni , the rough
boundary of the region occupied by the points (k,Ek

0) ex-
pands in the direction perpendicular to the straight li
However, the expansion of the rough boundary has b
found to slow down obviously, whenni reaches some valu
depending onb andl, which is equal to 7 for the paramete
in our calculation~Fig. 3!. In fact, almost the same roug
boundaries have been observed whenni57 and whenni

FIG. 2. ~a! Values of^Na&, the average size of NPTk regions of
ua&, as a function ofni . ~b! Variation of the average coupling
strengthv5A^Vkk8

2 & with ni .

FIG. 3. Values ofEk
05^kuHwuk& obtained withni57. The hori-

zontal dotted straight line indicates the position ofEa , the energy
of a stateua&, on the vertical axis. Vertical dash-dotted straight lin
indicate positions of the values ofc1 andc2, the boundaries of the
NPTc region of ua&, on the horizontal axis.
06620
.
n

520. An interesting feature shown in Fig. 3 is that, when o
draws a horizontal dotted line meeting theE0 axis at E0

5Ea of a stateua& and two vertical dash-dotted lines mee
ing the k axis at k5c1 and c2, respectively, the crossing
points of the three lines are quite close to the rough bound
of the region of (k,Ek

0). This property ofEk
0 should be useful

in the approximate calculation of NPTc regions.

B. Reduced Hamiltonian matrices in intermediate basis states

In this subsection, we discuss the properties of redu
Hamiltonian matrices in intermediate basis states. In our
merical calculation, we chooseni57, because of its proper
ties discussed in the previous subsection. Since matricesH
in the labelk have a simpler coupling structure than the on
in the energy-ordered labelke, we return to the labelk when
the NPTk regions of statesua& have been calculated.

For the sake of convenience, we useu i & to denote states
uk& in the NPTk region of ua& and u j & to denote those in the
PTk region. Equations~10! and ~11! show that bothH̃ ii

0 and

Ṽii 8 associated with a stateua& are composed of two part
with different origins. One is the corresponding elements
H, the other is the contribution from the PTk region. To show
this more clearly, we introduce

xii 85(
j

Vi j Aa~ j→ i 8!, ~18!

yi5(
j

Vi j Aa~ j→ i !. ~19!

Unperturbed energiesEi
0 in the NPTk region of a stateua&

are those that are close toEa , e.g., the 80 points closest t
the dotted line in Fig. 3. For perturbed statesua& in the
middle of the energy region, the upper and lower bounds
Ei

0 are on average symmetric with respect toEa ; as a result,
the average of (Ei

02Ea) is zero. In studying statistical prop
erties of the reduced Hamiltonian matrices associated w
such perturbed states, it would be better to shift their dia
nal partsH̃ ii 8

0 to

ei5ei
01yi , ~20!

whereei
05Ei

02Ea .

As discussed in the previous subsection,Ṽii 8 has an
exponential-type decay whenu l i2 l i 8u.2. As a result, the
reduced Hamiltonian matrices should, on average, hav
band structure with an effective bandwidthbe , which is ap-
proximately (5Nn21)/2, whereNn is the average number o
statesu i & in a subspaceGl , found to be about 2.06 in ou
numerical calculation, givingbe'4.65. This prediction ofbe
is in agreement with that obtained from a direct calculat

of u(D i )5A^Ṽii 8
2 &, whereD i 5( i 2 i 8), which is shown in

Fig. 4, with averaging taken overi of 550 reduced Hamil-
tonian matrices coming from 50 matricesHcd of different
realizations of random numbers. For comparison, the va
of ue5A^ei

2& are also presented in Fig. 4, at the position
7-4
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LOCALIZATION IN BAND RANDOM MATRIX MODEL S . . . PHYSICAL REVIEW E 65 066207
D i 50, which is larger than 2u(D i ) of D i 561. In the cal-
culation of the elements of the reduced Hamiltonian ma
ces, the expansion ofAa( j→ i ) in Eq. ~7! was truncated a
the firstn satisfyingz^ j uTa

n u i & z<10214.
Now let us discuss the distributions of elements of

reduced Hamiltonian matrices. Due to the random signs
Vkk8 , yi also has random signs, with zero mean. Figure 5~a!
shows that the central part of the distribution ofei can be
fitted well by both a Gaussian distribution and a stable Le´vy
distribution

L~p!5
1

pE0

1`

exp~2gqa!cos~qp!dq, ~21!

for Lévy flights with infinite variance~see, e.g., Refs.@19–
21#!. The fitting of the Le´vy distribution is in fact a little
better than that of the Gaussian distribution. In the tail
gion, the distributionf (e) is obviously closer to the Le´vy
distribution than to the Gaussian@Fig. 6~a!#. Sincea51.7 for
the best fitting Le´vy distribution, the distributionf (e) is far
from the Lorentzian distribution, which is a special case
the Lévy distribution witha51.

The distributions of the two constituents ofei in Eq. ~20!
have also been studied. The distribution ofei

0 is close to
neither a Gaussian distribution nor a Le´vy distribution. In
fact, its central part has a platform@Fig. 5~b!# and its long
tails decrease faster than a Gaussian distribution. These
properties off (e0) are simply due to the requirement of th
GBWPT thatEi

0 in the NPTk region of ua& are thoseEk
0

which are close toEa . An estimation of the width of the
central part off (e0) is given in the Appendix. We should
mention that, although the mean value ofei

0 is zero, there is
still some small remnant of the influence of the increas
diagonal elements ofH0

w in the original basis, for example, i
Fig. 3 most of the points close to the left vertical dash-dot
line are below the horizontal dotted line, but those close

FIG. 4. Values ofu(D i )5A^Ṽii 8
2 & and lnu, showing the band-

like structure of the off-diagonal elements of reduced Hamilton
matrices, where the average is taken overi with i 85 i 2D i . For
comparison, the values ofue5A^ei

2& and lnue for the diagonal
elements are shown at the positions ofD i 50.
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FIG. 5. ~a! The histogram is the distribution of diagonal el
ments of the reduced Hamiltonian matrices,ei , calculated from
5000 reduced Hamiltonian matrices belonging to 500 realization
the original random matrices. The dotted curve is the best fitt
Lévy distribution, witha51.7 andg594.1. The solid curve is the
best fitting Gaussian distribution.~b! Same as in~a!, for the distri-
bution ofei

0 , without fitting of the Lévy distribution.~c! Same as in
~a!, for the distribution ofyi , with a51.22 andg518.8 for the
best fitting Lévy distribution.

FIG. 6. ~a! Same as in Fig. 5~a!, on a logarithmic scale.~b!
Same as in Fig. 5~c!, on a logarithmic scale.
7-5
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WEN-GE WANG PHYSICAL REVIEW E 65 066207
the right dash-dotted line are above the horizontal do
line. The distribution ofyi is shown in Fig. 5~c!. Its central
part is quite close to a Le´vy distribution with a51.22, ex-
cept in the region of smally. Consistently with the fact tha
f (y) is higher than the best fitting Le´vy distribution in the
top region, its tails, which also have a power-law decay f
ture, are lower than the ones of the Le´vy distribution @Fig.
6~b!#.

In a statistical study of off-diagonal elements of reduc
Hamiltonian matrices, one should distinguish between th
within the effective bandwidth and those outside. The dis
bution of Ṽii 8 within the effective bandwidth, namely, fo
which D l 5u l i2 l i 8u<2, is shown in Fig. 7~a!. Again, it is
close to the best fitting Le´vy distribution in the central part
except in the high peak region, but cannot be fitted well
the Gaussian distribution. A similar relation to the Le´vy dis-
tribution has also been found for the distributions of nonz
Vii 8 @Fig. 7~b!# and of xii 8 with different D l . In fact, the
central parts off (x) ~except in the high peak regions! have
been found to be fitted quite well by the Le´vy distribution,
e.g., see Fig. 7~c! for D l 50. The width of the distribution
f (x) decreases with increasingD l , consistent with the fea
ture of u(D i ) shown in Fig. 4.

The reduced Hamiltonian matrices discussed above

FIG. 7. ~a! Same as in Fig. 5~a!, for the distribution ofw

5Ṽii 8 within the effective bandwidth of reduced Hamiltonian m
trices, witha51.21 andg59.33 for the best fitting Le´vy distribu-
tion. ~b! Same as in~a!, for the distribution of nonzeroVii 8 , with
a51.49 andg517.3.~c! Same as in~a!, for the distribution ofxii 8
with u l i2 l i 8u50. For the best fitting Le´vy distribution,a51.11 and
g54.7.
06620
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gest a BRM model with an effective bandwidthbe , which
has statistical properties more complicated than the stan
BRM model. Although a fraction of the diagonal elements
the reduced Hamiltonian matrices, namely, the ones clos
the two edges of the matrices, are not completely rand
diagonal elements in the BRM model suggested here are
random. It is reasonable to expect that the small differenc
diagonal elements does not affect whether eigenfunction
the matrices are localized.

In the BRM model suggested here,ue , the root mean
square~rms! of the diagonal elements, is different from th
rms of the off-diagonal elements within the band, denoted
uoff . Such a difference is a feature of the SBRM, which
the sum of a random diagonal matrix and a conventio
BRM. The localization length in the SBRM model, denot
by l sb , can be fitted well by the expression@18#

l sb51.6~b10.5!/ ln@112.5~1.25Wb
211!/b#, ~22!

where b is the bandwidth of the SBRM andWb

5A(ue /uoff)
221/A2b11. Using the parameters of the re

duced Hamiltonian matricesbe'4.65 andue /uoff'2.8, we
have l sb'12.0. Noticing that the average dimension of t
reduced Hamiltonian matrices is approximately 80, t
SBRM has localized eigenfunctions when it has the sa
parameters as the BRM suggested here. Since the main
ference between the SBRM model and the BRM sugges
here lies in the types of distributions of matrix elements
them, it is reasonable to expect that eigenfunctions in
BRM model suggested here will be localized as well. N
merically, the eigenfunctions of the reduced Hamiltonian m
trices have indeed been found localized; see Fig. 8 for
example, where the values of the labeli have been shifted to
i 851,2, . . . ,Na , with order unchanged, for the sake
clearness in plotting. The similarity between the rough sh
of the eigenfunction show in Fig. 8 and that of the NPTc part
of the original eigenfunction in Fig. 1 is quite obvious.

Finally, we show that, if the NPTk part of a stateua&,
namely, the componentsCa i , form a localized eigenfunction

FIG. 8. Shape of an eigenfunction of a reduced Hamilton
matrix, which is the NPTk part of the eigenfunction shown in Fig. 1
with respect to a labeli 8 shifted fromi.
7-6
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of a reduced Hamiltonian matrix, the eigenfunction ofua& in
the original basis statesuc& must be localized as well, whe
ni!N. In fact, since the componentsCa j in the PTk part of
ua& can be expressed in terms of the componentsCa i @Eq.
~6!# and, due to the band structure of the Hamiltonian ma
Hkk8 , Aa( j→ i ) has an exponential-type decay with increa
ing u l j2 l i u @Eq. ~15!#, the eigenfunction ofua& in the inter-
mediate basis statesuk& must be localized as well. There
no need to discuss the case ofni being close to or larger tha
the localization length ofua& in uc&, which means that the
eigenfunction is localized. For the other case, as discusse
Sec. III A, localization of the eigenfunction ofua& in the
original basis statesuc& would follow; in particular, whenni
is obviously smaller than the localization length of the eige
function of ua& in uc&, the NPT part ofua& in uc& should be
localized as well.

IV. CONCLUSIONS AND DISCUSSION

In this paper, we have shown that localization in t
Wigner band random matrix model can be related to loc
ization of eigenfunctions of the corresponding reduc
Hamiltonian matrices. First, for an arbitrary Hamiltonia
composed of an unperturbed Hamiltonian and a perturbat
making use of a generalization of Brillouin-Wigner perturb
tion theory, it has been shown that a reduced Hamilton
matrix can be introduced for each perturbed state, which
an eigenfunction sharing the same components as the
perturbative part of the perturbed state in the representa
of the unperturbed Hamiltonian. The reduced Hamilton
matrices introduced here may be unsuitable to the calcula
of exact eigenfunctions and eigenenergies, but are usef
the study of properties of eigenfunctions such as localizat
Secondly, intermediate basis states have been used to
the method of reduced Hamiltonian matrices more suitabl
the study of localization in the WBRM model. It has be
shown that eigenfunctions of the WBRM model should
localized, if eigenfunctions of the corresponding reduc
Hamiltonian matrices in intermediate basis states are lo
ized.

Numerically, the reduced Hamiltonian matrices have be
found related to a BRM model with random diagonal e
ments, which is close to a superimposed BRM model. T
main difference between the two BRM models rests in
distribution forms of the matrix elements. It has been fou
that parameters of the BRM suggested here lie in the lo
ization regime of the SBRM model. Eigenfunctions in t
BRM suggested here have indeed been numerically foun
be localized.

The distributions of the elements of reduced Hamilton
matrices have been found to be close to the Le´vy distribution
numerically~except in the high top regions for off-diagon
elements!. Presently, there is no analytical explanation
the closeness. However, a possible relationship would no
strange, sinceAa( j→ i ) are composed of factors of ratios o
Vkk8 and (Ea2Ek

0). As is know, when a distribution of ratio
is of interest, one may meet power-law decaying ta
@22,23#, which is a specific feature of the Le´vy distribution.
In fact, it is possible for a distribution of ratios to be ve
06620
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n
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n
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n
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e
e
d
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close to~even exactly! a Lorentzian distribution, which is a
special case of the Le´vy distribution, in both the central par
and the tail region@24#. The reason is still unclear for th
deviations of some of the distributions investigated h
from their best fitting Le´vy distributions in the top regions
One possibility is that the definition of the NPT parts of t
eigenfunctions used here is not the best one. Indeed, the
no problem in using the definition here in the investigation
the structure of eigenfunctions@11#, but distributions of ra-
tios are more sensitive to the parts of the eigenfunctions c
sidered than is the structure of the eigenfunctions.

When intermediate basis states are used, the sizes o
NPT parts of the eigenfunctions can be reduced considera
which makes the GBWPT more effective. A shortcoming
this approach is that it is generally impossible to write do
the elements of Hamiltonian matrices in intermediate ba
states analytically. Usually this causes no problem in num
cal calculations, since the sizes of the submatrices for ca
lating intermediate basis states are small. Reduced Ha
tonian matrices may also be useful in improving the meth
of calculating approximate eigenenergies and eigenfunct
of large matrices by diagonalization of some relatively sm
matrices@25–27#. A difficulty met in this direction is that
different original eigenfunctions correspond to different r
duced Hamiltonian matrices. This problem may be par
solved, if in some models the reduced Hamiltonian matri
associated with close energies have similar elements.
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APPENDIX: ESTIMATION OF THE WIDTH
OF THE CENTRAL PART OF F „E0

…

Note that the half-width of the central part off (e0) is
approximately equal to the average distance between the
per and lower bounds ofEi

0 in NPTk regions of the perturbed
statesua&, denoted byde, de5^Ek

2
e

0
2Ek

1
e

0
&. In the general

case thatuuanu,1, the left hand side of Eq.~3! is either zero
or infinity. For the purpose of an estimation of the left ha
side of Eq.~3!, one can consider

I n5NpS v̄

^DE&
D n

, ~A1!

whereNp is the effective number of paths involved, andv̄
and^DE& are the geometric means of nonzero coupling a
of uEa2Ej

0u in the paths, respectively. Suppose the aver
number of nonzero couplings of a stateu j & to other states
u j 8& is bc . An estimation ofNp gives

Np}~b8bc!
n, ~A2!

with b8 being an undetermined parameter less than 1. S
uEa2Ej

0u is usually larger thande/2, we write ^DE& as
b9de/2, with b9.1 undetermined. Taking a paramet
7-7



o

er
s
ic

sis

WEN-GE WANG PHYSICAL REVIEW E 65 066207
b52b8/b9, we have an estimation for the average size
the NPT regions,

de'bbcv̄, ~A3!

by using the condition 0, limn→`I n,`.
The above arguments leading to Eq.~A3! hold generally

for Hamiltonian matrices with band structure. In cases wh
the nonzero off-diagonal elements are random, the value
b should be the same or close. Therefore, the numer
ys

s.

-

ti,

e
n

06620
f

e
of
al

results given in Ref.@11# for the WBRM model in the origi-
nal basis states can be used to calculateb, which givesb

'0.7, withde'140 whenv̄510 andbc52b520. Here the
root mean square of nonzero off-diagonal elementsVcc8 is

used forv̄, with the difference absorbed inb. For the Hamil-
tonian matrices of the WBRM model in intermediate ba
states discussed in this paper,bc52(ni2Nn)'9.9, v
'11.5; as a result,de'76.2, close to the half-width off (e0)
shown in Fig. 5~b!.
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Aléa Saclay, Paris, 1992!.

@24# B. Hu, B. Li, and W. Wang, Europhys. Lett.50, 300 ~2000!;
Wang Wen-ge, Commun. Theor. Phys.36, 271 ~2001!.

@25# M. Horoi, B.A. Brown, and V. Zelevinsky, Phys. Rev. C50,
R2274~1994!.

@26# M. Horoi, A. Volya, and V. Zelevinsky, Phys. Rev. Lett.82,
2064 ~1999!.

@27# Wen-ge Wang, Phys. Rev. E63, 036215~2001!.
7-8


