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We study the approach to energy eigenvalues and eigenfunctions of Hamiltonian matrices with band struc-
ture from diagonalization of their truncated matrices. Making use of a generalization of Brillouin-Wigner
perturbation theory, it is shown that in order to obtain approximate energy eigenvalues and eigenfunctions the
sizes of truncated matrices should be larger than the nonperturbative regions of the eigenfunctions by several
band width of the Hamiltonian matrix, with the nonperturbative regions being able to be estimated before the
eigenfunctions are known. This prediction is checked numerically by the Wigner-band random-matrix model,
which shows that 99% of eigenfunctions can be obtained when the sizes of truncated matrices are larger than
those of the nonperturbative regions of the eigenfunctions by three band widths of the Hamiltonian matrix, on
average.
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Diagonalization of large-scale Hamiltonian matrices is offor the sizes of the truncated matrices in the approach to the
importance in a variety of physical fields, for example, in theeigenfunctions. The effectiveness of this method will be
shell-model approach to complex atoms and nuclei. Varioustudied numerically by the Wigner-band random-matrix
methods have been developed in dealing with this problem ifnodel.
different casessee, e.g., Ref§1—4]). For models in which Consider a Hamiltonian of the fornt(A\)=Hg+A\V,
interaction couples independent particle basis states with flvhere Ho is an unperturbed Hamiltonian for independent
nite distance only, the Hamiltonian matrices have band struddarticles and\V represents a perturbation with a running
ture. For a Hamiltonian matrix of this kind, in order to obtain Parametei. The eigenstates of the HamiltoniaHg\) and
its eigenfunctions in a given energy region with a given acHo Will be denoted byla) and|k), respectively,
curacy, diagonalization of its truncated matrices with rela-
tively small sizes would be enougkee, e.g., Ref§5—7)). HOV @) =E,(M]e),  Holk)=Eilk), (1)

In practice, it was suggested that the sizes of truncated M3With the labelsa and k in energy order. The unperturbed

trices be taken asa@for the shell mode[6], whereo is the  stategk) are taken as basis states in the Hilbert space. The
mean value of the energy dispersion of basis stteso{  matrix of H(\) in the H, representation has a band structure,
=(i|(H=(i[H]i))2[i)==;.i|H;;|% In particular, for low- i.e., the perturbatiol’ does not couple remote basis states. In
lying energy eigenvalues, exponential convergence has beg¢ghe GBWPT, an eigenstatey) is divided into two parts
found numerically with the increase of the sizes of truncatedt,)=P,|a) and|f,)=Q,|a) by two projection operators
matrices[7].

It is known that eigenfunctions of Hamiltonian matrices
with band structure are composed of two parts: central parts P“:|k>§s kK], Qu= kzg k)(k[=1-P,, (2)
and tails with exponential or faster decay. Once the sizes of ‘ 1K) &
the central parts of the eigenfunctions can be estimated be- — . .
fore diagonalization of the Hamiltonian matrices, estimationWher.eSa andsa are two sets of bas]s states with no overlap
will also be possible for the sizes of the truncated matrice@nd including all the basis stateps in them. In R&, the
for obtaining approximate eigenfunctions. A possibility for OperatorP, was defined by ,=X,2 | [k)(k| (the subscript
the former estimation comes from a generalization ofx for p, and p, omitted. Here we extend it to the more
Brillouin-Wigner perturbation theory(GBWPT), which  general expression in E). Following the arguments given
shows that each energy eigenfunction can be divided analytin the appendix of Ref8], it is easy to show thdf ,) can be
cally into a perturbative(PT) part and a nonperturbative expanded in a convergent perturbation expansion by making
(NPT) part [8]. Recently, for the so-called Wigner-band use of|t,) even when perturbation is strong,
random-matrix mode]9], it was shown that central parts of
eigenfunctions are on average composed of their NPT parts f ) =Talt)+ T2ty + -+ Tt )+ - -, 3
and the slope regions of their PT parts with the size of the
bandwidth of the Hamiltonian matriii1]. In this paper we jf the setsS, andS, are chosen to satisfy the condition
will show that in the general case central parts of eigenfunc-
tions should lie mainly in their NPT regions and a part of lim (a|(TH)"T"|a)=0, (4)
their PT regions, which can be estimated before the exact n—oo
eigenenergies and eigenfunctions are known. As a result,
NPT regions of eigenfunctions can be taken as starting pointwhere
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The part|t,) is said to be the NPpart and|f,) the PTpart

of |a) in case tha&, has the smallest number of basis state

and the expansiofB) is not truncated for each of the com-
ponents off,) in the basis statd$) € S, . Correspondingly,
basis states in the s8t, and basis states 1B, are termed the
NPT region and the PTregion of |a), respectively.

A condition equivalent to Eq4) can be achieved by writ-
ing T) in the form

=

a

(NU)" QY (6)

E,—H°

a

where

U,=Q.V Qa @)

E,—H°

is an operator in the subspace spanned by basis stafs in
Equation(6) shows that it is the properties afU , that de-
termines whetheT | a) vanishes whem goes to=. In fact,
introducing eigenstates of the operatdg, denoted a$v,),
U,lv,)=U,,|v,), the condition(4) is equivalent to the re-
quirement that\u,,|<1 for all |v,), if (v,|Q.V|a)#0 for
each|v,). The case that there exists a sthtg) for which
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side of Eq.(9) decays exponentially with increasimgwhen

m is larger than 1. Therefore, in general, central parts of
eigenfunctions should lie mainly in their NPT regions and
the subregionsAi of their PT regions. These properties of
eigenfunctions suggest that, in order to achieve good ap-

Sproximations to them, basis states for truncated matrices

should include their NPT regions supplemented by basis
states in some subregiods of their PT regions with not
largem.

In the practical estimation of the NPT region of a state
|@), it is unnecessary to try all possibie, andQ,, . In fact,
since Eq.(8) is satisfied in cas¢E,—E| are large enough
for all the basis statesk)eQ,, one can useP,
=2|':§p1|k><k| with |k) in increasing energy order and the

corresponding),, to obtain a rough estimation for the NPT
region. In practice, one can first talg=p,= «, then, in-
creasep, and decreasp;, until Eq. (8) is satisfied. Denoting

the largestp,; and smallestp, thus obtained, ensuring the
validity of Eq. (8), as p]' and pJ', respectively, we have
found numerically that the value ofe|(T!)"T"|¢) in-
creases quite fast with increasingvhen the pair p4,p,) is

not close to pY',p3"). Therefore, the evaluation qff' and

p5 does not take much calculation time in practice. In order
to obtain an approximation to the NPT region better than
{IpT, ... |p3)}, one must take the detailed structure of the
basis states into account, e.g., properties of the good quan-
tum numbers in labeling the unperturbed states. For a quan-
tum system with the underlying classical system being cha-

(v4lQuV|@)=0, which is either quite rare or due to some otic, one can expect that the difference between
symmetry of the Hamiltonian, is not to be discussed in this;|p™ ~|p™1 and the exact NPT region d&) is not

paper. Then, the conditiof#) can be replaced by

lim (|(TH)" T ) =0,

n—oo

®)

with | ¢) being an arbitrary state. When the eigeneneggy
is not very close to any of the unperturbed ener@%s the
operatorT, is not sensitive to the value d&,. Then, in

large and{|p!"), ... .|p53)} can be taken as a practical esti-
mation of the NPT region in the determination of the sizes of
truncated matrices.

To test the above method of approaching the eigenfunc-
tions numerically, we employ a simple model with band-
structure Hamiltonian, namely, the Wigner-band random-
matrix model(see, e.g., Ref§10-13 for current interest

order to give an estimation for the NPT region of a state in al e Hamiltonian matrix of the model discussed in this paper

given narrow energy region, one can use condit@®nwith

E, replaced by an arbitrary value in the given energy region,
that is, the estimation can be made before the exact eigenen-

ergy and eigenfunction are known.
Expanding the stateQ,\V|t,) in the states|v,),
Q.\V|t,)==,h,|v,), and using the expansion ¢f,) in

is of the form
Hij:(H0+)\V)ij:E?8ij+)\vij1 (10)

whereEiozi (i=1, ... N) and off-diagonal matrix elements
vij=vj;i are random numbers with Gaussian distribution for

Eq. (3), as in Ref[11], one can show that the component of 1=<[i—j[<b ((v;;)=0 and(vi"}>=1) and are zero other-

a perturbed statéx) in a basis statéj) in its PT region,
denoted byC,;=(j|a), can be expressed as

L s

E,~E°%

T 1va) [(ua)™ % (@)

aj

wherem is the smallest positive integer fdf|T"|t,), and

wise. Hereb is the bandwidth of the Hamiltonian matrix and
N is its dimension. For this model, the projection operd&gr

for the NPT region of a statéa) is of the form P,
=3 pl|k)<k|. The subregionA]! is composed of basis
states|k) satisfying p;—mb<k=<p;—1 or p,+1<k=<p,
+mb. Central parts of the averaged eigenfunctions in the
middle energy region of this model have been found lying in

equivalently(j|(Q,V)™t,) is not equal to zero. Such a state their NPT regions and the subregioA3 (called the slope

|j) is said to belong to the subregi@ of the PT region of
|@), which by definition is the set of basis staié$ in the
PT region satisfyingk|(Q,V)"t,)#0 with n=1,... m.
Since|\u,,|<1 for all |»,), each term on the right-hand

regions in Ref[11]) of their PT regions.

Nonperturbative regions of low-lying eigenfunctions were
not studied in Ref[11]. Here we first show their features. In
Fig. 1, we present the average shape of eigenfunctions,
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25 (Np)=(p—py) of the NPT regions of eigenfunctions in the low-
! energy regionN=500, b=10, and\ = 10. The triangles show part
) OO 10 20 30 40 50 60 70 80 of the values forp,) obtained from conditior(8) with not exact

0 values ofE, .
E¢
with p;=1 and a truncated matrix taken in basis states

FIG. 1. The average sha;W=(C§j) of ground statesd=1) ! S
with k=1,2, ... k;, we use the value of=k;—p, to indi-

(circles connected by solid curyeand of the third excited states ‘ : ] !
(a=4) (triangles connected by solid curvesr the Wigner-band ~ cate the size of the truncated matrix. Denoting the e|genyal-
random-matrix model withh=10, b=10, and N=500. The ues and eigenstates in energy order of the truncated matrix as

vertical-dashed-dotted straight lines indicate the position of the avE ; and|g"), respectively, the values afy,=1-[(B'|a)|?
erage upper boundafy,) of the NPT regions of the ground states and 6E,=|E,— Etﬁ| with B'=a give measures for the ap-
and the vertical-dotted lines for the third excited states. proach of the results of the truncated matrix to the exact
ones. Wherp,# 1, a truncated matrix is taken in basis states
namely,W=(C2,), for the ground state=1 and the third ki), [ki+1), ... [k?) with ki=pi—x andkf=p,+x (k{
excited stater=4 in the ordinary scale and logarithm scale, =1 if XBPl)- The value oféE,, is defined by the minimum
respectively, with the averaged upper boundaries of theiPf |Ea_EtB| ar;d the value 0by, is the corresponding value
NPT regions(p,). The average was taken over 50 realiza-0f 1~ |(B'|)|”. Variation of the average values 6/, and
tions of the random matrices of the model with=500, b SE, for « in different energy regions is shown in Fig. 3. We
=10, and\ =10. The lower boundaries of the NPT regions S€€ that in both the low and the middle of the energy region
of the eigenfunctions are equal to ong,=1. We see that f[he values of5ys decrease almost exponentially wi.th increas-
the main body of the average shape of the third excited statd@9 X whenx>20. For 6, whenx>20, the decay is even a
is composed of the averaged NPT part and the subregjon lttle faster than exponential.
of the averaged PT part. For the ground states, since the
eigenenergie§, are much lower thatkt,, the NPT regions
are more narrow than those af=4 and the main body of
their average shape extends to the subregii)rmf the aver-
aged PT part. Figure 2 shows the variatioq jof), (p,), and
(Np)=(p2—p1) with & when\ =10 ando=10. We see that
in the low-energy region, the value @N,,) is small, i.e., the
NPT regions of the eigenfunctions are narrow. This is be-
cause eigenenergies in this energy region are either much
smaller than or close to the lowest unperturbed enﬁ%y
The value of(N,) becomes almost saturated whenis
larger than 80. The values dp,), (p1), and(Ny)=(p,
—p41) in Fig. 2 were obtained by using conditiqd) with

In &¢p

exact eigenenergies and eigenstates. Approximations to
them, as predicted above, can be obtained by making use of
the condition(8) with E_, replaced by some values close to
them (see, e.g., triangles in Fig).2

In studying the approach of results of truncated matrices

_ s,
ahrNOIRON

-— a=20
[} =240
— a=260

-20-10 0 10 20 30 40 50 60
X

to exact ones, it would be convenient to express the sizes of FIG. 3. Vvariations of the average values&i,, and 8y, with x
the truncated matrices with respect to the NPT regions of theor a=1 (triangles, 20 (dashed-dotted curye240 (circles, and
exact eigenstates. Concretely, for a low-lying eigenfunctior260 (solid curve in logarithm scale X=10b=10).
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FIG. 4. The average values ¥t (triangles andX,, (circles for >éu 23

different statega). v 2or
1.5

We have studied the values ®fat which 6E_(x)=0.01 1.0 -
and 6¢,(x)=0.01, which will be denoted bXg andX,, in 05l ]
what follows, respectively. The average values(gfandX,, o
for states in the low ¢=1-20) and the middle « 0'00 > 4 6 8 10 12 14 16 18 20
=240-260) of the energy region are given in Fig. 4. Both of )Y

them decrease whem changes from 1 to 20, which is in
agreement with the behavior of eigenfunctions with respect
to their NPT regions shown in Fig. 1. Ai=20, the values
of (Xg) and(X,,) are almost the same as those in the middl
energy region, respecti_vely. In both energy regiqing) are . In conclusion, we have shown that the NPT regions of
larger than(X,). The figure shows that in order to obtain gjgenfunctions, which can be estimated before the eigenfunc-
99% of eigenfunctions, truncated matrices larger than thgiong are known, can be used as starting points in the ap-
NPT regions by 8 on each side would be enough on aver-proach to energy eigenvalues and eigenfunctions from diago-
age. Note that, whem =10 andb=10, (N) is less than nalization of truncated Hamiltonian matrices. For the
140, while 3r=3000. In this respect, the method discussedWigner-band random-matrix model, we have shown that, in
in this paper is more effective than the one making use of order to obtain 99% of eigenfunctions, truncated matrices
in giving the sizes of truncated matrices. Iarger than _the NPT regions by 3 bandwiditlof the Hamil-

The results in Fig. 4 were obtained wher=10 andx  tonian matrix would be enough on average wien10 and

=10. For other values of the bandwidtrand the parameter A= 10. The sizes of truncated matrices given by this method
\, similar results have also been found. In Fig. 5 we presenitave been found much smaller thanthe mean energy dis-
the variation of(Xg)/b with N for b=5, 10, and 20. The persion of basis states. This property would be useful in re-
average was taken over the lowest 20 eigenstates (ducing the calculation time in obtaining approximate eigen-
=1-20) of 50 realizations of random Hamiltonian matrices.functions. It is reasonable to expect that, not only for the
We see that the values ¢Xg)/b are close to each other for Wigner-band random-matrix model but also for a variety of
different bandwidthb when\ is smaller than 4. In case of models of physical interest, the mean size of NPT regions be
strong perturbation of =20, the value of Xg)/b is still less  much smaller thawr. In particular, for energy levels much
than 4 forb=20. An interesting feature ofXg)/b for b lower than the lowest unperturbed energy, the NPT regions
=5 is that it decreases with when\ is larger than @simi-  are usually quite small. Another feature of the method dis-
lar results also found fob=10 and 20 whern andN are  cussed in this paper is that the role of the bandwidth of the
large enough This is due to the so-called localization of Hamiltonian matrix becomes quite clear in the determination
eigenfunctions in energy shell discovered in Rdf2] and  of the accuracy of the method.

FIG. 5. Variations of Xg)/b with X for b=5, 10, and 20.

explained in terms of properties of NPT parts of eigenfunc-
Sions in Ref.[11].
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