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Approach to energy eigenvalues and eigenfunctions from nonperturbative regions
of eigenfunctions
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~Received 28 July 2000; published 26 February 2001!

We study the approach to energy eigenvalues and eigenfunctions of Hamiltonian matrices with band struc-
ture from diagonalization of their truncated matrices. Making use of a generalization of Brillouin-Wigner
perturbation theory, it is shown that in order to obtain approximate energy eigenvalues and eigenfunctions the
sizes of truncated matrices should be larger than the nonperturbative regions of the eigenfunctions by several
band width of the Hamiltonian matrix, with the nonperturbative regions being able to be estimated before the
eigenfunctions are known. This prediction is checked numerically by the Wigner-band random-matrix model,
which shows that 99% of eigenfunctions can be obtained when the sizes of truncated matrices are larger than
those of the nonperturbative regions of the eigenfunctions by three band widths of the Hamiltonian matrix, on
average.
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Diagonalization of large-scale Hamiltonian matrices is
importance in a variety of physical fields, for example, in t
shell-model approach to complex atoms and nuclei. Vari
methods have been developed in dealing with this problem
different cases~see, e.g., Refs.@1–4#!. For models in which
interaction couples independent particle basis states wit
nite distance only, the Hamiltonian matrices have band st
ture. For a Hamiltonian matrix of this kind, in order to obta
its eigenfunctions in a given energy region with a given
curacy, diagonalization of its truncated matrices with re
tively small sizes would be enough~see, e.g., Refs.@5–7#!.
In practice, it was suggested that the sizes of truncated

trices be taken as 3s̄ for the shell model@6#, wheres̄ is the
mean value of the energy dispersion of basis statesu i &, s i

2

5^ i z(H2^ i uHu i &)2zi &5( j Þ i uHi j u2. In particular, for low-
lying energy eigenvalues, exponential convergence has b
found numerically with the increase of the sizes of trunca
matrices@7#.

It is known that eigenfunctions of Hamiltonian matric
with band structure are composed of two parts: central p
and tails with exponential or faster decay. Once the size
the central parts of the eigenfunctions can be estimated
fore diagonalization of the Hamiltonian matrices, estimat
will also be possible for the sizes of the truncated matri
for obtaining approximate eigenfunctions. A possibility f
the former estimation comes from a generalization
Brillouin-Wigner perturbation theory~GBWPT!, which
shows that each energy eigenfunction can be divided ana
cally into a perturbative~PT! part and a nonperturbativ
~NPT! part @8#. Recently, for the so-called Wigner-ban
random-matrix model@9#, it was shown that central parts o
eigenfunctions are on average composed of their NPT p
and the slope regions of their PT parts with the size of
bandwidth of the Hamiltonian matrix@11#. In this paper we
will show that in the general case central parts of eigenfu
tions should lie mainly in their NPT regions and a part
their PT regions, which can be estimated before the ex
eigenenergies and eigenfunctions are known. As a re
NPT regions of eigenfunctions can be taken as starting po
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for the sizes of the truncated matrices in the approach to
eigenfunctions. The effectiveness of this method will
studied numerically by the Wigner-band random-mat
model.

Consider a Hamiltonian of the formH(l)5H01lV,
where H0 is an unperturbed Hamiltonian for independe
particles andlV represents a perturbation with a runnin
parameterl. The eigenstates of the HamiltoniansH(l) and
H0 will be denoted byua& and uk&, respectively,

H~l!ua&5Ea~l!ua&, H0uk&5Ek
0uk&, ~1!

with the labelsa and k in energy order. The unperturbe
statesuk& are taken as basis states in the Hilbert space.
matrix of H(l) in theH0 representation has a band structu
i.e., the perturbationV does not couple remote basis states.
the GBWPT, an eigenstateua& is divided into two parts
uta&[Paua& and u f a&[Qaua& by two projection operators

Pa5 (
uk&PSa

uk&^ku, Qa5 (
uk&PS̄a

uk&^ku512Pa , ~2!

whereSa andS̄a are two sets of basis states with no overl
and including all the basis states in them. In Ref.@8#, the
operatorPa was defined byPa5(k5p1

p2 uk&^ku ~the subscript

a for p1 and p2 omitted!. Here we extend it to the more
general expression in Eq.~2!. Following the arguments given
in the appendix of Ref.@8#, it is easy to show thatu f a& can be
expanded in a convergent perturbation expansion by ma
use ofuta& even when perturbation is strong,

u f a&5Tauta&1Ta
2 uta&1•••1Ta

n uta&1•••, ~3!

if the setsSa and S̄a are chosen to satisfy the condition

lim
n→`

^au~Ta
† !nTa

n ua&50, ~4!

where
©2001 The American Physical Society15-1
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Ta5
1

Ea2H0
QalV. ~5!

The partuta& is said to be the NPTpart andu f a& the PTpart
of ua& in case thatSa has the smallest number of basis sta
and the expansion~3! is not truncated for each of the com
ponents ofu f a& in the basis statesu j &PS̄a . Correspondingly,
basis states in the setSa and basis states inS̄a are termed the
NPT region and the PTregion of ua&, respectively.

A condition equivalent to Eq.~4! can be achieved by writ
ing Ta

n in the form

Ta
n5

1

Ea2H0
~lUa!n21QalV, ~6!

where

Ua[QaV
1

Ea2H0
Qa ~7!

is an operator in the subspace spanned by basis states inS̄a .
Equation~6! shows that it is the properties oflUa that de-
termines whetherTa

n ua& vanishes whenn goes to`. In fact,
introducing eigenstates of the operatorUa , denoted asuna&,
Uauna&5uanuna&, the condition~4! is equivalent to the re-
quirement thatuluanu,1 for all una&, if ^nauQaVua&Þ0 for
eachuna&. The case that there exists a stateuna& for which
^nauQaVua&50, which is either quite rare or due to som
symmetry of the Hamiltonian, is not to be discussed in t
paper. Then, the condition~4! can be replaced by

lim
n→`

^fu~Ta
† !nTa

n uf&50, ~8!

with uf& being an arbitrary state. When the eigenenergyEa

is not very close to any of the unperturbed energiesEk
0 , the

operatorTa is not sensitive to the value ofEa . Then, in
order to give an estimation for the NPT region of a state i
given narrow energy region, one can use condition~8! with
Ea replaced by an arbitrary value in the given energy regi
that is, the estimation can be made before the exact eige
ergy and eigenfunction are known.

Expanding the stateQalVuta& in the states una&,
QalVuta&5(nhnuna&, and using the expansion ofu f a& in
Eq. ~3!, as in Ref.@11#, one can show that the component
a perturbed stateua& in a basis stateu j & in its PT region,
denoted byCa j5^ j ua&, can be expressed as

Ca j5
1

Ea2Ej
0 (

n
F hn

12luan
^ j una&G~luan!m21, ~9!

wherem is the smallest positive integer for^ j uTa
muta&, and

equivalently^ j u(QaV)muta& is not equal to zero. Such a sta
u j & is said to belong to the subregionAa

m of the PT region of
ua&, which by definition is the set of basis statesuk& in the
PT region satisfyinĝ ku(QaV)nuta&Þ0 with n51, . . . ,m.
Since uluanu,1 for all una&, each term on the right-han
03621
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side of Eq.~9! decays exponentially with increasingm when
m is larger than 1. Therefore, in general, central parts
eigenfunctions should lie mainly in their NPT regions a
the subregionsAa

1 of their PT regions. These properties
eigenfunctions suggest that, in order to achieve good
proximations to them, basis states for truncated matri
should include their NPT regions supplemented by ba
states in some subregionsAa

m of their PT regions with not
largem.

In the practical estimation of the NPT region of a sta
ua&, it is unnecessary to try all possiblePa andQa . In fact,
since Eq.~8! is satisfied in caseuEa2Ek

0u are large enough
for all the basis statesuk&PQa , one can usePa

5(k5p1

p2 uk&^ku with uk& in increasing energy order and th

correspondingQa to obtain a rough estimation for the NP
region. In practice, one can first takep15p25a, then, in-
creasep2 and decreasep1, until Eq.~8! is satisfied. Denoting
the largestp1 and smallestp2 thus obtained, ensuring th
validity of Eq. ~8!, as p1

m and p2
m , respectively, we have

found numerically that the value of̂fu(Ta
†)nTa

n uf& in-
creases quite fast with increasingn when the pair (p1 ,p2) is
not close to (p1

m,p2
m). Therefore, the evaluation ofp1

m and
p2

m does not take much calculation time in practice. In ord
to obtain an approximation to the NPT region better th
$up1

m&, . . . ,up2
m&%, one must take the detailed structure of t

basis states into account, e.g., properties of the good q
tum numbers in labeling the unperturbed states. For a qu
tum system with the underlying classical system being c
otic, one can expect that the difference betwe
$up1

m&, . . . ,up2
m&% and the exact NPT region ofua& is not

large and$up1
m&, . . . ,up2

m&% can be taken as a practical es
mation of the NPT region in the determination of the sizes
truncated matrices.

To test the above method of approaching the eigenfu
tions numerically, we employ a simple model with ban
structure Hamiltonian, namely, the Wigner-band rando
matrix model~see, e.g., Refs.@10–13# for current interest!.
The Hamiltonian matrix of the model discussed in this pa
is of the form

Hi j 5~H01lV! i j 5Ei
0d i j 1lv i j , ~10!

whereEi
05 i ( i 51, . . . ,N) and off-diagonal matrix element

v i j 5v j i are random numbers with Gaussian distribution
1<u i 2 j u<b (^v i j &50 and ^v i j

2 &51) and are zero other
wise. Hereb is the bandwidth of the Hamiltonian matrix an
N is its dimension. For this model, the projection operatorPa
for the NPT region of a stateua& is of the form Pa

5(k5p1

p2 uk&^ku. The subregionAa
m is composed of basis

statesuk& satisfying p12mb<k<p121 or p211<k<p2
1mb. Central parts of the averaged eigenfunctions in
middle energy region of this model have been found lying
their NPT regions and the subregionsAa

1 ~called the slope
regions in Ref.@11#! of their PT regions.

Nonperturbative regions of low-lying eigenfunctions we
not studied in Ref.@11#. Here we first show their features. I
Fig. 1, we present the average shape of eigenfunctio
5-2
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namely,W5^Cak
2 &, for the ground statea51 and the third

excited statea54 in the ordinary scale and logarithm sca
respectively, with the averaged upper boundaries of th
NPT regions^p2&. The average was taken over 50 realiz
tions of the random matrices of the model withN5500, b
510, andl510. The lower boundaries of the NPT regio
of the eigenfunctions are equal to one,p151. We see that
the main body of the average shape of the third excited st
is composed of the averaged NPT part and the subregionAa

1

of the averaged PT part. For the ground states, since
eigenenergiesE0 are much lower thanE4, the NPT regions
are more narrow than those ofa54 and the main body o
their average shape extends to the subregionAa

2 of the aver-
aged PT part. Figure 2 shows the variation of^p2&, ^p1&, and
^Np&5^p22p1& with a whenl510 andb510. We see that
in the low-energy region, the value of^Np& is small, i.e., the
NPT regions of the eigenfunctions are narrow. This is
cause eigenenergies in this energy region are either m
smaller than or close to the lowest unperturbed energyE1

0.
The value of ^Np& becomes almost saturated whena is
larger than 80. The values of^p2&, ^p1&, and ^Np&5^p2
2p1& in Fig. 2 were obtained by using condition~4! with
exact eigenenergies and eigenstates. Approximations
them, as predicted above, can be obtained by making us
the condition~8! with Ea replaced by some values close
them ~see, e.g., triangles in Fig. 2!.

In studying the approach of results of truncated matri
to exact ones, it would be convenient to express the size
the truncated matrices with respect to the NPT regions of
exact eigenstates. Concretely, for a low-lying eigenfunct

FIG. 1. The average shapeW5^Ca j
2 & of ground states (a51)

~circles connected by solid curves! and of the third excited state
(a54) ~triangles connected by solid curves! for the Wigner-band
random-matrix model withl510, b510, and N5500. The
vertical-dashed-dotted straight lines indicate the position of the
erage upper boundary^p2& of the NPT regions of the ground state
and the vertical-dotted lines for the third excited states.
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with p151 and a truncated matrix taken in basis statesuk&
with k51,2, . . . ,kt , we use the value ofx5kt2p2 to indi-
cate the size of the truncated matrix. Denoting the eigen
ues and eigenstates in energy order of the truncated matr
Eb

t and ub t&, respectively, the values ofdca512u^b tua&u2

and dEa5uEa2Eb
t u with b t5a give measures for the ap

proach of the results of the truncated matrix to the ex
ones. Whenp1Þ1, a truncated matrix is taken in basis stat
ukt

1&, ukt
111&, . . . ,ukt

2& with kt
15p12x and kt

25p21x (kt
1

51 if x>p1). The value ofdEa is defined by the minimum
of uEa2Eb

t u and the value ofdca is the corresponding value
of 12u^b tua&u2. Variation of the average values ofdca and
dEa for a in different energy regions is shown in Fig. 3. W
see that in both the low and the middle of the energy reg
the values ofdc decrease almost exponentially with increa
ing x whenx.20. FordE, whenx.20, the decay is even a
little faster than exponential.

v-

FIG. 2. The average boundary^p2&, ^p1&, and the average size
^Np&5^p22p1& of the NPT regions of eigenfunctions in the low
energy region.N5500, b510, andl510. The triangles show par
of the values for̂ p1& obtained from condition~8! with not exact
values ofEa .

FIG. 3. Variations of the average values ofdEa anddca with x
for a51 ~triangles!, 20 ~dashed-dotted curve!, 240 ~circles!, and
260 ~solid curve! in logarithm scale (l510,b510).
5-3
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WEN-GE WANG PHYSICAL REVIEW E 63 036215
We have studied the values ofx at whichdEa(x)50.01
anddca(x)50.01, which will be denoted byXE andXc in
what follows, respectively. The average values ofXE andXc
for states in the low (a51 – 20) and the middle (a
5240– 260) of the energy region are given in Fig. 4. Both
them decrease whena changes from 1 to 20, which is in
agreement with the behavior of eigenfunctions with resp
to their NPT regions shown in Fig. 1. Ata520, the values
of ^XE& and^Xc& are almost the same as those in the mid
energy region, respectively. In both energy regions,^XE& are
larger than^Xc&. The figure shows that in order to obta
99% of eigenfunctions, truncated matrices larger than
NPT regions by 3b on each side would be enough on ave
age. Note that, whenl510 andb510, ^Np& is less than
140, while 3s̄53000. In this respect, the method discuss
in this paper is more effective than the one making use os̄
in giving the sizes of truncated matrices.

The results in Fig. 4 were obtained whenb510 andl
510. For other values of the bandwidthb and the paramete
l, similar results have also been found. In Fig. 5 we pres
the variation of^XE&/b with l for b55, 10, and 20. The
average was taken over the lowest 20 eigenstatesa
51 – 20) of 50 realizations of random Hamiltonian matrice
We see that the values of^XE&/b are close to each other fo
different bandwidthb when l is smaller than 4. In case o
strong perturbation ofl520, the value of̂ XE&/b is still less
than 4 for b520. An interesting feature of̂XE&/b for b
55 is that it decreases withl whenl is larger than 6~simi-
lar results also found forb510 and 20 whenl and N are
large enough!. This is due to the so-called localization o
eigenfunctions in energy shell discovered in Ref.@12# and

FIG. 4. The average values ofXE ~triangles! andXc ~circles! for
different statesua&.
tt.
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explained in terms of properties of NPT parts of eigenfun
tions in Ref.@11#.

In conclusion, we have shown that the NPT regions
eigenfunctions, which can be estimated before the eigenfu
tions are known, can be used as starting points in the
proach to energy eigenvalues and eigenfunctions from dia
nalization of truncated Hamiltonian matrices. For t
Wigner-band random-matrix model, we have shown that
order to obtain 99% of eigenfunctions, truncated matric
larger than the NPT regions by 3 bandwidthb of the Hamil-
tonian matrix would be enough on average whenb510 and
l510. The sizes of truncated matrices given by this meth
have been found much smaller thans̄, the mean energy dis
persion of basis states. This property would be useful in
ducing the calculation time in obtaining approximate eige
functions. It is reasonable to expect that, not only for t
Wigner-band random-matrix model but also for a variety
models of physical interest, the mean size of NPT regions
much smaller thans̄. In particular, for energy levels muc
lower than the lowest unperturbed energy, the NPT regi
are usually quite small. Another feature of the method d
cussed in this paper is that the role of the bandwidth of
Hamiltonian matrix becomes quite clear in the determinat
of the accuracy of the method.

FIG. 5. Variations of̂ XE&/b with l for b55, 10, and 20.
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@4# A. Novoselsky, M. Valliéres, and O. La’adan, Phys. Rev. Le

79, 4341~1997!.
@5# O. Bohigas, S. Tomsovic, and D. Ullmo, Phys. Rep.223, 43

~1993!.
@6# M. Horoi, B.A. Brown, and V. Zelevinsky, Phys. Rev. C50,

R2274~1994!.
@7# M. Horoi, A. Volya, and V. Zelevinsky, Phys. Rev. Lett.82,
2064 ~1999!.

@8# Wen-ge Wang, F.M. Izrailev, and G. Casati, Phys. Rev. E57,
323 ~1998!.

@9# E. Wigner, Ann. Math.62, 548 ~1955!; 65, 203 ~1957!.
@10# V.V. Flambaum, A.A. Gribakina, G.F. Gribakin, and M.G

Kozlov, Phys. Rev. A50, 267 ~1994!.
@11# Wen-ge Wang, Phys. Rev. E61, 952 ~2000!.
@12# G. Casati, B.V. Chirikov, I. Guarneri, and F.M. Izrailev, Phy

Lett. A 223, 430 ~1996!.
@13# Y.V. Fyodorov, O.A. Chubykalo, F.M. Izrailev, and G. Casa

Phys. Rev. Lett.76, 1603~1996!.
5-4


