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Decay of Loschmidt Echo at a Critical Point in the Lipkin–Meshkov–Glick model *
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An analytical expression of the Loschmidt echo in the Lipkin–Meshkov–Glick model is derived in the thermody-
namical limit. It is used in the study of the decaying behaviour of the echo at the critical point of a quantum
phase transition of the model. It is shown that the echo has a power law decay for relatively long times.
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Quantum phase transitions (QPTs), i.e., funda-
mental changes of properties of the ground states of
systems at zero-temperature, are crucial in the ex-
planation of many properties of phase transitions ob-
served experimentally at low temperature.[1] Conven-
tional techniques dealing with thermal phase tran-
sitions, in particular, the concepts of order pa-
rameter and symmetry-breaking, are useful in the
study of QPT, but can not reveal all their proper-
ties. Recently, quantum-information concepts such
as entanglement[2−4] and fidelity[5−12] have also been
found to be useful in characterizing QPT.

As shown by Quan et al.,[5] a special type of fi-
delity, the so-called quantum Loschmidt echo (LE),
may undergo relatively fast and deep decay at criti-
cal points of QPT, hence may reveal positions of the
critical points (also see Ref. [11]). The LE was first
introduced by Peres[13] and has been studied exten-
sively recently in both quantum chaotic and regu-
lar systems.[14,15] It is a measure of the stability of
quantum motion under small perturbation, defined as
the overlap of the time evolution of the same initial
state under two slightly different Hamiltonians 𝐻 and
𝐻 ′ = 𝐻 + 𝜖𝑉 . Specifically, the LE is 𝑀(𝑡) = |𝑚(𝑡)|2,
where

𝑚(𝑡) = ⟨Ψ0|exp(𝑖𝐻 ′𝑡/ℎ̄)exp(−𝑖𝐻𝑡/ℎ̄)|Ψ0⟩, (1)

where 𝐻 is an unperturbed Hamiltonian, 𝑉 is a per-
turbation, and 𝜖 is a small quantity. In the study of
QPT, |Ψ0⟩ is chosen as the ground state of 𝐻.[5,11,12]

It is clear from the definition of LE that it is suitable
in characterizing the sensitivity of quantum motion
near a critical point.

Compared with the static fidelity as the overlap
of ground states,[6−10] the LE is a dynamical quantity
that is determined by properties of both ground states
and some low-lying excited states, hence the LE may
reveal more properties of QPT than static fidelity. A
question of particular interest is about the decaying
law of the LE in the vicinity of QPT, the knowledge
of which may be useful in the classification of QPT.[12]

There have been only a few analytical results concern-
ing this problem: Direct analytical derivation shows
that the LE has an initial parabolic decay in an Ising
chain;[5] while a semiclassical analysis shows that the
LE may have a power law or an exponential decay
for relatively long times in certain different types of
models.[12] Therefore, it would be of interest to derive
analytical expression for the LE decay at QPT in some
concrete model(s).

In this Letter, we study the LE decay in the
Lipkin–Meshkov–Glick (LMG) model,[16] which was
first proposed to describe shape phase transition in
nuclei physics. Collective motion in the two-orbital
LMG model can be studied analytically,[17] in particu-
lar, in the thermodynamic limit.[18,19] Recently, static
properties like the fidelity susceptibility[20] and entan-
glement entropy[21] have been studied in the vicinity
of the critical point of the QPT in this model; while
its dynamical properties are still unclear.

In the following, we show that, in certain param-
eter regimes, an explicit analytical expression of the
dynamical quantity LE can be derived in the ther-
modynamical limit in this model. The expression is
found to be useful in the study of the decaying behav-
ior of the LE in the vicinity of the critical point. In
particular, it confirms a general semiclassical predic-
tion given in Ref. [12], i.e., for relatively-long times the
LE has a power-law decay near the QPT in systems
like the LMG model. It is worth mentioning that this
prediction has already been checked numerically in an-
other model belonging to the same universal class,[12]

namely, the Dicke model with the entanglement and
fidelity having been studied recently.[22]

We discuss the LMG model in the thermodynam-
ical limit. In the two-orbital LMG model for 𝑁
interacting particles, in terms of Pauli matrices 𝜎𝛼

(𝛼=𝑥, 𝑦, 𝑧), the Hamiltonian can be written as[20]

𝐻(𝛾, ℎ) = −ℎ

𝑁∑︁
𝑖=1

𝜎𝑖
𝑧 −

1

𝑁

∑︁
𝑖<𝑗

(𝜎𝑖
𝑥𝜎

𝑗
𝑥 + 𝛾𝜎𝑖

𝑦𝜎
𝑗
𝑦). (2)
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We consider the parameter regime, 0 ≤ |𝛾| < 1.0 and
ℎ > 0. In studying the collective motion of the model,
it would be convenient to write the Hamiltonian in
terms of the total spin operator 𝑆𝛼 =

∑︀
𝑖

𝜎𝑖
𝛼/2,

𝐻(𝛾, ℎ) = − 2

𝑁
(𝑆2

𝑥 + 𝛾𝑆2
𝑦) − 2ℎ𝑆𝑧 + (1 + 𝛾)/2, (3)

where 𝑆 indicates the largest eigenvalue of 𝑆𝑧, 𝑆 =
𝑁/2.

In order to diagonalize the Hamiltonian in the
thermodynamic limit, following Ref. [18], one may per-
form a rotation,⎛⎝𝑆𝑥

𝑆𝑦

𝑆𝑧

⎞⎠ =

⎛⎝ cos 𝜃0 0 sin 𝜃0
0 1 0

− sin 𝜃0 0 cos 𝜃0

⎞⎠⎛⎝𝑆𝑥

𝑆𝑦

𝑆𝑧

⎞⎠ , (4)

where cos 𝜃0 = ℎ for ℎ < 1 and cos 𝜃0 = 1
for ℎ > 1. Making use of the Holstein–Primakoff
transformation,[23] we have

𝑆𝑧 = 𝑆 − 𝑎†𝑎,

𝑆+ = (2𝑆 − 𝑎†𝑎)1/2𝑎,

𝑆− = 𝑎†(2𝑆 − 𝑎†𝑎)1/2. (5)

One may write the Hamiltonian in terms of 𝑎 and 𝑎†,
where 𝑎† and 𝑎 are the bosonic creation and annihi-
lation operators, respectively, satisfying [𝑎, 𝑎†] = 1.
Then, expanding the term (2𝑆−𝑎†𝑎)1/2 in the Hamil-
tonian in the power of 1/𝑁 and considering low-lying
energy eigenstates in the thermodynamic limit, the
Hamiltonian 𝐻 can be written as

𝐻(𝛾, ℎ) = ∆𝐵𝑎
†𝑎 + Γ𝐵(𝑎†

2
+ 𝑎2), (6)

where ∆𝐵 = 2 + 2ℎ cos 𝜃0 − 3 cos2 𝜃0 − 𝛾, Γ𝐵 =
(𝛾 − cos2 𝜃0)/2. In Eq. (6), we have omitted a term
that is a constant for finite 𝑁 and may go to infinity
in the limit 𝑁 → ∞. We remark that Eq. (6), which
is derived for low-lying energy eigenstates, is sufficient
for our purpose of studying the LE of an initial ground
state.

Finally, by a standard Bogoliubov transformation,

𝑎†Θ = cosh (Θ/2)𝑎† − sinh (Θ/2)𝑎, (7)

𝑎Θ = − sinh (Θ/2)𝑎† + cosh (Θ/2)𝑎, (8)

the Hamiltonian in Eq. (6) can be diagonalized,

𝐻(𝛾, ℎ) = ∆𝑎†Θ𝑎Θ, (9)

where

∆ = 2[(ℎ−1)(ℎ−𝛾)]
1
2 , tanh Θ =

1 − 𝛾

2ℎ− 1 − 𝛾
, (10)

for ℎ > 1, and

∆ = 2[(1−ℎ2)(1−𝛾)]
1
2 , tanh Θ =

ℎ2 − 𝛾

2 − ℎ2 − 𝛾
, (11)

for ℎ < 1. An unimportant constant term in the
expression (9) is also omitted. Thus, eigenstates of
𝐻(𝛾, ℎ) can be written as

|𝑛⟩Θ =
1√
𝑛!

(︁
𝑎†Θ

)︁𝑛

|0⟩Θ, (12)

with eigenenergies 𝐸𝑛 = 𝑛∆ for 𝑛 = 0, 1, 2, · · ·.
Equations (10) and (11) show that when ℎ ap-

proaches 1 from both sides, ∆ → 0. This implies that
the system is infinitely degenerate with zero energy
gap at ℎ = 1, having one energy level only. In other
words, when ℎ approaches 1 from both sides, all the
levels join in the ground level at ℎ = 1. Therefore, the
system undergoes a quantum phase transition at the
critical point ℎ𝑐 = 1. The phase with ℎ > 1 is usually
called the symmetric phase and the phase with ℎ < 1
the broken phase.

Now, we study the LE of an initial ground state
|Ψ0⟩ that is prepared in |0⟩Θ, the ground state of
𝐻. From the definition (1) and the diagonal form
of 𝐻 ′ ≡ 𝐻(𝛾′, ℎ′) given by Eq. (9), we have

𝑀(𝑡) ≃

⃒⃒⃒⃒
⃒
∞∑︁

𝑛=0

|Θ⟨0|𝑛⟩Θ′ |2 𝑒𝑖𝑛Δ(𝛾′,ℎ′)𝑡

⃒⃒⃒⃒
⃒
2

, (13)

where we write the dependence of ∆ on (𝛾′, ℎ′) ex-
plicitly and set Planck constant to be unit, ℎ̄ = 1.
We have assumed that Eq. (9) holds for all the states
|𝑛⟩Θ′ that have non-negligible overlap with |0⟩Θ. This
is valid when studying the LE induced by a small
perturbation, i.e., when (𝛾, ℎ) is sufficiently close to
(𝛾′, ℎ′).

In order to derive an explicit expression for

Θ⟨0|𝑛⟩Θ′ in Eq. (13), we consider the two cases: (1)
the symmetric phase with arbitrary values of ℎ, ℎ′ > 1
and (2) the special broken phase with ℎ = ℎ′ < 1. In
both cases, the two systems 𝐻(𝛾, ℎ) and 𝐻(𝛾′, ℎ′) have
the same creation and annihilation operators 𝑎 and 𝑎†,
which can be seen from Eqs. (4) and (5). Then, from
Eqs. (7) and (8), we obtain

𝑎†Θ′ = cosh

(︂
Θ′ − Θ

2

)︂
𝑎†Θ − sinh

(︂
Θ′ − Θ

2

)︂
𝑎Θ, (14)

𝑎Θ′ = − sinh

(︂
Θ′ − Θ

2

)︂
𝑎†Θ + cosh

(︂
Θ′ − Θ

2

)︂
𝑎Θ.

(15)
Substituting Eq. (15) into the relation 𝑎Θ′ |0⟩Θ′ = 0

and expanding |0⟩Θ′ in |𝑛⟩Θ, we find the following ex-
pansion of |0⟩Θ′ ,

|0⟩Θ′ =
1√
𝐶

𝑆∑︁
𝑛=0

√︃
(2𝑛− 1)!!

(2𝑛)!!
tanh𝑛

(︂
Θ′ − Θ

2

)︂
|2𝑛⟩Θ,

(16)
where 𝐶 is a normalization constant,

𝐶 =
𝑆∑︁

𝑛=0

(2𝑛− 1)!!

(2𝑛)!!
tanh2𝑛(Θ′/2 − Θ/2). (17)
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Then, substituting Eq. (16) into Eq. (13), we get

𝑀(𝑡) =

⃒⃒⃒⃒
1

𝐶

∞∑︁
𝑛=0

(2𝑛− 1)!!

(2𝑛)!!
tanh2𝑛

(︁Θ′ − Θ

2

)︁
× 𝑒𝑖2𝑛Δ(𝛾′,ℎ′)𝑡

⃒⃒⃒⃒2
.

After some algebra, this expression of 𝑀(𝑡) can be
simplified and we find the following simple expression
of the LE,

𝑀(𝑡) =
[︀
1 + 𝑞2 sin2 (∆(𝛾′, ℎ′)𝑡)

]︀−1/2
, (18)

where

𝑞 =

⃒⃒⃒⃒
2 tanh(Θ′/2 − Θ/2)

1 − tanh2(Θ′/2 − Θ/2)

⃒⃒⃒⃒
. (19)

We remark that, as mentioned above, Eq. (18)
holds in both the case of symmetric phase with ℎ, ℎ′ >
1 and the case of ℎ = ℎ′ in the broken phase with
ℎ, ℎ′ < 1. In the case of ℎ ̸= ℎ′ in the broken phase,
𝑎 and 𝑎† are different in the two systems 𝐻(𝛾, ℎ) and
𝐻(𝛾′, ℎ′), and it turns out that deriving a concise ex-
pression for the LE in this case is much more difficult
than that for Eq. (18); we are not to discuss this case
in this study.
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Fig. 1. (Color online) Variation of the LE 𝑀(𝑡) with time
for ℎ = 1.1, and ℎ′ = ℎ+0.4 in the symmetric phase with
𝛾 = 𝛾′ = 0.5. The solid curve represents the analytical
prediction of the LE given in Eq. (18) for the thermody-
namic limit. Circles and triangles up and down give nu-
merically computed LE for systems with 𝑁 = 211, 212,
and 213, respectively.

To check the validity of Eq. (18), we compare its
prediction with numerically computed 𝑀(𝑡) for large
but finite 𝑁 . As shown in Figs. 1 and 2, the agree-
ments are good. In calculating 𝑀(𝑡) for finite 𝑁 , we
use its definition in Eq. (1) and employ the method of
direct numerical diagonalization of the Hamiltonian.

Equation (18) shows that the LE is a periodic
function, with period 𝑇 determined by the system
𝐻(ℎ′, 𝛾′),

𝑇 = 𝜋/∆(𝛾′, ℎ′). (20)

For ℎ′ near the critical point ℎ𝑐 = 1, according to
Eqs. (10) and (11), the period has the following scal-
ing behavior,

𝑇 = 𝐴 |ℎ′ − 1|−1/2
, (21)

where 𝐴 = 𝜋/(2
√
ℎ′ − 𝛾′) for ℎ′ > 1 in the symmetry

phase and 𝐴 ≃ 𝜋/(2
√

2 − 2𝛾′) for ℎ′ < 1 in the bro-
ken phase. The period becomes infinite in the limit
ℎ′ → ℎ𝑐 = 1.
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Fig. 2. (Color online) The same as Fig. 1 but for ℎ =
ℎ′ = 0.5 in the broken phase with 𝛾 = 0.5, 𝛾′ = 𝛾 + 0.45.
Triangles and circles are for 𝑁 = 212 and 213, respectively.
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Fig. 3. (Color online) Decay of the LE near the critical
point, ℎ − 1 = 10−5, ℎ′ = ℎ + 0.1, 𝛾 = 𝛾′ = 0.5. Solid
squares represent the predictions of Eq. (18) and the solid
line is a fit given by a 1/𝑡 decay.

It is also of interest to study the decay of the
LE 𝑀(𝑡) for 𝑡 < 𝑇/2. For sufficiently small |ℎ −
1|, Eq. (18) shows that for short times satisfying
𝑞𝑡∆(𝛾, ℎ′) ≪ 1, the LE has an initial parabolic decay,
a result that can also be obtained by a perturbation
theory,

𝑀(𝑡) ≃ 1 − 1

2
𝑞2∆2(𝛾, ℎ′)𝑡2. (22)

For intermediate times satisfying 1 ≪ 𝑞𝑡∆(𝛾, ℎ′) ≪ 𝑞,
the LE has a power law decay,

𝑀(𝑡) ≃ 1

𝑞∆(𝛾, ℎ′)𝑡
∼ 𝑡−1, (23)

as illustrated in Fig. 3.
The prediction of power law decay in Eq. (23) con-

firms a general semiclassical analysis given in Ref. [12],
which shows that the LE may have a power law de-
cay at the QPT of a system when the following re-
quirements are satisfied: That is, the system has an
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infinitely-degenerate ground level at the critical point
and has a classical counterpart with one-degree of free-
dom. It is easy to see that the LMG model satisfies
these requirements.

In summary, we have studied the LE of initial
ground states in the LMG model near the critical
point. An analytical expression of the LE is derived
for certain parameter regimes in the thermodynamical
limit. In the neighborhood of the critical point, the
LE has an initial parabolic decay followed by a 1/𝑡
decay, and oscillates for a long time.
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