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Classically energetically inaccessible parts of energy eigenfunctions in con�guration space are studied by making

use of a generalization of Brillouin-Wigner perturbation theory. Approximate formulas are proposed for describing

local decaying rate of this part of energy eigenfunctions, which are useful in the study of quantum phenomena,

such as tunnelling e�ect, and are tested in an anharmonic oscillator.
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Since the early times of quantum mechanics, it is

well-known that energy eigenfunctions (EFs) generally

decay exponentially in classically energetically inac-

cessible regions. One of the consequences of this prop-

erty is the well-known tunnelling e�ect, which plays an

important role in many quantum phenomena. How-

ever, a quantitative description of tunnelling e�ect is

possible only in a limited number of cases. Techniques

to dealing with the tunnelling e�ect, e.g., the Wentzel{

Kramers{Brillouin (WKB) approximation, the most

probable escape path, and the instanton methods,[1]

often fail for systems with more than one degrees of

freedom. Therefore, it is still of interest to seek e�ec-

tive techniques in describing properties of EFs in clas-

sically energetically inaccessible regions (see, e.g.,[2;3]).

In this Letter, we study the problem from a purely

quantum mechanical point of view. As is known, ex-

ponential decay of long tails of EFs also exists for

EFs expanded in unperturbed basis states, if the as-

sociated Hamiltonian matrices have band structure.[4]

This phenomenon can be explained by a generalization

of Brillouin-Wigner perturbation theory (GBWPT),

even in the case of strong perturbation.[5]

We concentrate on the purpose to apply the GB-

WPT to EFs in con�guration space. The basic obser-

vation is that the discretized stationary Schr�odinger

equation has a matrix form with a banded structure.

It will be shown that the part of EFs in classically

energetically inaccessible regions can be expressed in

a convergent perturbative expansion, based on which

approximate formulas for the decaying rate of the part

of the EFs will be given.

Before discussing the GBWPT in con�guration

space, let us �rst give a brief recall of the main

results of the GBWPT.[5] Consider a Hamiltonian

H = H0 + V , where H0 is an unperturbed Hamil-

tonian and V is a perturbation. The eigenstates of

the two Hamiltonians H0 and H are denoted by jki

and j�i, respectively, H0
jki = E0

k

jki, Hj�i = E
�
j�i.

For simplicity, we assume that V
kk

= 0. (If V
kk
6= 0

for some perturbation, one can change H0 to include

the diagonal part of V .)

In the GBWPT, for each state j�i, the set of the

basis states jki are divided into two subsets, denoted

by P
�
and Q

�
, respectively (equivalently, P

�
and Q

�

can also be de�ned as sets of the labels k). For the

sake of clearness, here we often use jii to denote a ba-

sis state in P
�
, use jji to denote a basis state in Q

�
,

and jki to denote a basis state that may be in either

of the two sets.

We use the concept of path to express the main re-

sults of the GBWPT in a compact form. Firstly, for q

basis states jk
l
i in Q

�
, (l = 0; � � � ; q�1), and one basis

state jk
q
i in either Q

�
or P

�
, we term the sequence

k0 ! k1 ! � � � ! k
q�1 ! k

q
a path of q paces from

k0 to k
q
, denoted by s, if the direct coupling V

kl;kl+1

for each pace is non-zero. Secondly, to each pace k
l
!

k
l+1 in a path s, we attribute a factor Ds

�
(k

l
! k

l+1)

de�ned by Ds

�
(k

l
! k

l+1) = V
kl;kl+1

=(E
�
� E0

kl
). Fi-

nally, we de�ne the contribution of a path s by

fs
�
(k0 ! k

q
) =

q�1Y
l=0

Ds

�
(k

l
! k

l+1): (1)

In the GBWPT, the sets P
�
and Q

�
are chosen in

such a way that for each pair of states jji; jj0i 2 Q
�
,

lim
q!1

Aq

�
(j ! j0) = 0; (2)

where Aq

�
(j ! j0) is the total contribution of the paths

with q paces from j to j0, de�ned by Aq

�
(j ! j0) =P

sq
f
sq

�
(j ! j0), where s

q
denotes paths with q paces

from j to j0. Then, each component C
�j

= hjj�i can

be expressed in the following convergent perturbative
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expansion,[5]

C
�j

=
X

jii2P�

A
�
(j ! i)C

�i
; (3)

where

A
�
(j ! i) =

X
s

fs
�
(j ! i); (4)

with s denoting possible paths from j to i. We call

the set of the components C
�j

the Q-part of the EF

of j�i. The Q-parts of EFs decay exponentially for

Hamiltonians with band structure.[5]

Here we use the GBWPT to study the eigen-

problem of the stationary Schr�odinger equation in one-

dimensional con�guration space,

�

~
2

2m0

@2 
�
(x)

@x2
+ V (x) 

�
(x) = E

�
 
�
(x): (5)

We assume that the variable x is restricted within the

region (x
a
; x

b
) (in the limit x

a
! �1 and x

b
! 1,

one has x 2 (�1;1)). We would mention that the

results presented below are generalizable to EFs in

more than one-dimensional con�guration spaces.

We discretize the coordinate x, by dividing the

interval (a; b) into N small sub-intervals and intro-

ducing, x
k
= a + k�x, with k = 1; 2; 3; � � �N � 1,

where �x = (b � a)=N . In the limit N ! 1, Eq. (5)

can be written as  
k+1 + eE0

k

 
k
+  

k�1 = eE 
k
, for

k = 2; 3; � � �N � 2, where

eE0
k
= �2�

2m0

~2
(�x)2V (x

k
);

eE = �

2m0

~2
(�x)2E

�
: (6)

Here, for brevity, we use  
k
to denote  

�
(x

k
). Then,

equation (5) is equivalent to the eigenequation of the

following Hamiltonian matrix with tridiagonal struc-

ture,

eH
kk

0 = eE0
k
Æ
kk

0 + eV
kk

0 ; with eV
kk

0 = Æ
k;k

0+1 + Æ
k;k

0�1:

(7)

For the Hamiltonian eH , the factor of a pace k
l
!

k
l+1 in a path s is

Ds

�
(k

l
! k

l+1) =
n
2 +

2m0

~2
(�x)2[V (x

kl
)� E

�
]
o�1

:

(8)

Since eV couples the nearest labels only, paths given byeV have the following properties: (i) There is no path

linking j and k, if there exists a label i 2 P
�
between

j and k, e.g., j < i < k. (ii) As a result, the sum-

mation on the right-hand side of Eq. (3) is performed

only over those labels i 2 P
�
that are successive to

some j0 2 Q
�
, with ji� j0j = 1.

Fig. 1. Potential V (x) = �1x � kx2=2 + �2x
4 in the

Hamiltonian (17), with k = 1; �1 = 0:1 and �2 = 0:01,

and positions of three eigenenergies E� of � = 5; 13, and

17.

By counting the number of paths with q paces

and using that the denominator on the right-hand

side of Eq. (8) is larger than 2 for points x satisfy-

ing V (x) > E
�
, one can show that the part of an EF

in any classically energetically inaccessible region is a

Q-part of the EF. The region of x associated with a Q-

part of an EF is called a Q-region of the EF. Suppose

that (x
c
; x

d
) is a Q-region of an EF �, then,

 
j
= A

�
(j ! c) 

c
+A

�
(j ! d) 

d
; c < j < d: (9)

Fig. 2. Comparisons between the values of W�(x) cal-

culated from Eqs. (14){(16) for � = 13 (circles), � = 15

(triangles), and � = 17 (squares), and the values ofW�(x)

calculated directly from numerical solutions of the eigen-

functions of � = 13 (solid curve), � = 15 (dashed curve),

and � = 17 (dashed-dot curve), respectively. The Hamil-

tonian is the one in Eq. (17), with m0 = 1; k = 1;~ =

1; �1 = 0:1 and �2 = 0:01.

In applying the above results, let us �rst discuss

tails of EFs in classically energetically inaccessible re-

gions. For right tails,  
d
= 0 in Eq. (8), while  

c
= 0

for left tails. Without loss of generality, we discuss

right tails in the Q-region (x
c
; x

b
). Taking an arbi-

trary point x
j
> x

c
, the region (x

j
; x

b
) is also a Q-
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region, since it is also classically energetically inacces-

sible. Then, for any j0 > j,

 
j
0 = A

�
(j0 ! j) 

j
: (10)

The quantity we are to discuss is W
�
(x) =

[d 
�
(x)=dx]= 

�
(x). This quantity gives the local de-

cay rate of  
�
(x), which is useful in the study of de-

caying behavior of eigenfunctions, such as tunnelling

e�ect. Taking x
j
0 = x

j
+ �x, i.e., j0 = j + 1, and

letting �x! 0, we have

W
�
(x) = lim

�x!0
[A

�
(j + 1! j)� 1]=�x; (11)

with x = lim�x!0 xj . Since  
�
(x + �x) approaches

 
�
(x) when �x ! 0, from Eqs. (4), (8), and (10) we

have

lim
�x!0

A
�
(j + 1! j) =

X
s

(1=2)qs = 1; (12)

where q
s
is the number of paces of the path s from

j + 1 to j. Substituting Eqs. (4), (8) and (12) into

(11), we have

W
�
(x) = � lim

�x!0

X
s

�1
2

�
qs

�h qs�1X
l=0

m

~2
(V (x

kl
)

� E
�
)
i
�x+O((�x)3) + � � �

�
; (13)

where s indicates all the paths starting at j + 1 and

ending at j. We write the right-hand side of Eq. (13)

in an integral form, the limit x
b
!1,

W
�
(x) = �

Z 1

x

u(y)g(x; y)dy; (14)

where u(y) = (2m0=~
2)[V (y) � E

�
] and g(x; y) is de-

termined by the summations in Eq. (13).

It is diÆcult to derive an explicit expression for the

function g(y) from Eq. (13). Instead, we give a conjec-

ture on its form, based on the following properties: (i)

g(x; y) gives a measure for the weight of u(x), i.e., the

probability for u(x) to appear in the summations in

Eq. (13); (ii) for long paths with large q
s
, most of the

paths can be viewed as random walks under the re-

striction of starting at j+1 and ending at j, therefore

g(x; y) may have a form such as exp(��0(y�x)2). The

quantity �0 should have the same dimension as 1=x2.

Note that the quantity u(y) has this dimension, hence

the simplest choice for g(x; y) is

g(x; y) = N e�u(y)�(y�x)2 ; (15)

with

N

Z 1

x

p
u(y)e�u(y)�(y�x)2dy = 1; (16)

where the term
p
u(x) is introduced for balancing the

dimension of dy.

It is easy to check that Eqs. (14){(16) give correct

results for the case of V (x) being a constant in the re-

gion (x
c
;1). What is of more interest is to test these

equations for more complicated potentials. We have

studied the system

H =
1

2m0
p2 �

1

2
kx2 + �1x+ �2x

4: (17)

The shape of the potential in this system is shown in

Fig. 1. Its EFs can be obtained numerically, by which

the values of W
�
(x) can be calculated directly. In

Fig. 2, we present the predictions of Eqs. (14){(16) for

W
�
(x) of the right tails of  

�
(x) of � = 13; 15, and

17, in comparison with direct numerical calculations.

Next, we study the values of W
�
(x) in regions

with the tunnelling e�ect. Suppose V (x) = E
�
at

four points x
c
0 < x

c
< x

d
< x

d
0 . For x in the re-

gions (x
c
0 ; x

c
) and (x

d
; x

d
0), the potential V (x) is lower

than the eigenenergy E
�
; while for x in the other re-

gions, V (x) > E
�
. For x 2 (x

c
; x

d
),  

�
(x) is given by

Eq. (9).

Fig. 3. Comparison of W�(x) calculated from Eqs. (14),

(18) and (19) for � = 5 (circles) and those calculated

directly from the numerical solution of the eigenfunction

 5(x) (solid curve). The two vertical dashed lines indicate

the boundary of the region with the tunnelling e�ect.

In the tunnelling phenomena, j 
�
(x)j at one of

the two points x
c
and x

d
is much larger than the

other, say j 
�
(x

c
)j � j 

�
(x

d
)j, then, Eq. (9) gives

 
�
(x) � A

�
(x ! x

c
) 

�
(x

c
), for x not close to the

point x
d
. Following the arguments leading to Eq. (14),

we are led to the same expression for W
�
(x) in this

case. However, the form of the function g(x; y) in

Eq. (15) is unsuitable here, since it gives g(x; x
d
) = N ,

which is in con
iction with the above interpretation of

g(x; y) requiring that g(x; y) be very small at y = x
d
.

For this reason, we have the following assumption for

g(x; y),

g(x; y) = N e�u(y)�(y�x)2(1� e�u(y)�(y�x)2); (18)
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N

Z
xd0

x

p
u(y)e�u(y)�(y�x)2(1� e�u(y)�(y�x)2)dy = 1:

(19)

We have tested the above predictions in Eqs. (14),

(18), and (19) for the Hamiltonian in Eq. (17), whose

EFs with � � 11 have the tunnelling e�ect. The re-

sults are presented in Fig. 3 for � = 5, showing good

agreement with direct calculations, at x not close to

x
d
, the right border of the tunnelling region.

In summary, we have presented a convergent per-

turbation expansion for EFs in classically energetically

inaccessible regions in one-dimensional con�guration

space. Based on the analysis of the form of the expan-

sion, conjectures are given on approximate expressions

for the modulus of the gradient of EFs, which have

been tested numerically. The approach developed here

can be used in the study of the tunnelling e�ect, which

is completely di�erent from other approaches, e.g., no

imaginary eigenenergy appears in our approach. It

would be of interest to carry out a direct comparison

of the method here and other methods, such as the

instanton method (see, e.g.,[6]) in the future.

References

[1] Coleman S 1979 Proc. 1977 Int. School on Subnuclear

Physics ed Zichichi A (New York: Plenum)

[2] Rubakov V A and Tinyakov P G 1992 Phys. Lett. B 279

165

[3] Bonini G F, Cohen A G, Rebbi C and Rubakov V A 1999

Phys. Rev. D 60 076004

[4] Flambaum V V, Gribakina A A, Gribakin G F, and Kozlov

M G 1994 Phys. Rev. A 50 267

[5] Wang W, Izrailev F M and Casati G 1998 Phys. Rev. E

57 323

Wang W 2000 Phys. Rev. E 61 952

[6] Liang J and M�uller-Kirsten H J W 1994 Phys. Rev. D 50

6519


