Semiclassical Approach to Survival Probability at Quantum Phase Transitions

Wen-ge Wang*, Pinquan Qin, Lewei He, and Ping Wang
Department of Modern Physics, University of Science and Technology of China, Hefei, 230026, China
(Dated: July 22, 2009)

We study the decay of survival probability at quantum phase transitions (QPT). The semiclassical theory is found applicable in the vicinities of critical points with infinite degeneracy. The theory predicts a power law decay of the survival probability for relatively long times in systems with \( d = 1 \) and an exponential decay in systems with sufficiently large \( d \), where \( d \) is the degrees of freedom of the underlying classical dynamics. The semiclassical predictions are checked numerically in four models: two with \( d = 1 \) and two with large \( d \). These results suggest that decaying behavior of the survival probability may be useful in the classification of QPT.

PACS numbers: 05.45.Mt, 05.70.Jk, 73.43.Nq, 64.60.Ht

Introduction — At a quantum phase transition (QPT) of a system, certain fundamental properties of the ground state (GS), usually also of some low-lying excited states, change drastically with small variation of a controlling parameter, e.g., strength of a magnetic field. A QPT is characterized by non-analyticity of the ground level at the critical point in the large size limit. Most of the works in QPT have focused on properties of equilibrium states (including GS at zero temperature) [1]. While, the non-analyticity influences in fact both equilibrium and non-equilibrium properties. Indeed, when the time scale of interest is smaller than the relaxation time, which diverges at the critical point, usually the system is not in an equilibrium state and unitary dynamics should be considered to understand the system’s properties (see Fig.1).

Due to significant progress in cold atom experiments, time dependent simulation of models undergoing QPT is becoming realizable [2,3]; hence, investigation of the unitary dynamics at quantum criticality is of interest both theoretically and experimentally. Some intriguing effects of a slow change of the controlling parameter, passing the critical point, have been revealed [4]. resorting to theoretical techniques such as a quantum version of the Kibble-Zurek theory [5,6].

In this Letter, we study a different dynamics at QPT, which is induced by a sudden small change in the controlling parameter, \( \lambda \rightarrow \lambda' \), in the vicinity of a critical point \( \lambda_c \). A measure of the effect of this dynamics is the survival probability (SP) of an initial state \( |\Psi_0\rangle \) prepared in the ground state of \( H(\lambda) \), \( M(t) = |\langle \Psi_0 | e^{-i H(\lambda') t/\hbar} | \Psi_0 \rangle|^2 \). The SP reflects a type of correlation, hence, is sometimes called autocorrelation function. Recent numerical simulations show that relatively significant and fast decay of the SP may indicate the position of QPT [7,8]. Of more interest, while still unknown, is whether the decaying law of SP at QPT may be useful in revealing some characteristic properties of QPT [9].

To find an answer to the above question, here we focus on those QPT, at the critical points of which the ground levels have infinite degeneracy in the large size limit. This is a type of QPT met frequently, if not mostly. At such a QPT, the non-analyticity is a consequence of avoided level crossings of infinite levels, and an infinite subspace of the total Hilbert space is of relevance.

We find that the semiclassical theory can be used in the study of the SP decay at such a QPT. The theory predicts a power law decay of the SP in some systems and an exponential decay in some other systems. Numerical results obtained in four models confirm these predictions. Due to the significant difference between power law decay and exponential decay, these results imply that the decaying behavior of SP may be useful in the classification of QPT, an important topic far from being completely solved, in particular, in the non-equilibrium regime.

Semiclassical approach — Usually, the semiclassical theory is not used in a very low energy region. However, in the vicinity of a critical point with infinite degeneracy, it may be applicable. In fact, in this case, one is interested in the low-frequency part of the Hamiltonian only; to express this fact explicitly, let us perform a rescaling \( H = \Delta_E \tilde{H} \), where \( \Delta_E \) is a typical energy scale of relevance to the problem at hand with \( \lim_{\lambda \rightarrow \lambda_c} \Delta_E = 0 \). Meanwhile, typical time scale \( \tau \) of interest is usually long
at QPT. In terms of \( \tilde{t} = t/\tau \), Schrödinger equation has the form \( iK\partial\psi/\partial t = H\psi \), where \( K = \hbar/\Delta_E \) is an effective Planck constant. For a \( H \) possessing a classical counterpart in the low energy region, when \( K \) is small and \( \tau\Delta_E \) is relatively large, the action \( \int L dt \) along classical trajectories are relatively large, hence, the semiclassical theory may be applicable.

In the study of SP, we use the following notations,

\[
\epsilon = \lambda' - \lambda, \quad \delta = \lambda' - \lambda_c, \quad \Delta \lambda = \lambda - \lambda_c, \quad \eta = \epsilon/\Delta \lambda, \quad (1)
\]

and consider the case that \( H(\lambda) \) and \( H(\lambda') \) belong to the same phase. For a small \( \epsilon \), \( H(\lambda') \simeq H(\lambda) + \epsilon V \), where \( V = \hbar\partial H(\lambda)/\partial \lambda \). The SP of a GS of \( H(\lambda) \) is a special case of the so-called quantum Loschmidt echo or (Peres) fidelity [10], \( M_1(t) = |m(t)|^2 \), where

\[
m(t) = \langle \Psi_0 | \exp(iH(\lambda')t/\hbar) \exp(-iH(\lambda)t/\hbar) | \Psi_0 \rangle. \quad (2)
\]

Hence, in studying the SP, one may employ a semiclassical approach which has been found quite successful in the study of Loschmidt echo [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22].

For an initial Gaussian wave packet, narrow in a d-dimensional coordinate space and centered at \( \langle {p}_0, {r}_0 \rangle \) in the phase space, using the semiclassical Van Vleck-Gutzwiller propagator, it has been shown that [11, 12, 13, 22]

\[
m_{sc}(t) \simeq (\pi w^2)^{-d/2} \int dp_0 \exp \left[ -\frac{i}{\hbar} \Delta S - \frac{(p_0^2 - \bar{p}_0^2)^2}{2w^2} \right] \quad (3)
\]

for small \( \epsilon \), which works in both regular and chaotic cases [13, 22]. Here, \( \Delta S \) is the action difference between two nearby trajectories in the two systems starting at \( \langle {p}_0, {r}_0 \rangle \) and approximately can be evaluated along one trajectory, \( \Delta S \simeq \epsilon \int_0^t dt' V[\mathbf{r}(t'), \mathbf{p}(t')] \) [11].

In a sufficiently low energy region, the dynamics is usually regular and the KS may be (approximately) written as a Gaussian wave packet in appropriate coordinates. Many investigations have been carried out for the decay of Loschmidt echo in quantum regular systems [19, 20, 21, 22, 23, 24], however, a complete picture has not been gained yet. Let us first consider the case of \( d = 1 \). In this case, as shown in Ref. [22], for \( t > T \), due to the periodicity of the classical motion, the main contribution of \( \Delta S \) to the SP is given by its average part \( \epsilon Ut \), where \( U = \int_0^T V(t) dt \) and \( T \) is the period of the classical motion in \( H(\lambda) \). Under the first order expansion of \( U \) in \( p_0 \), Eq. (3) predicts a Gaussian decay of the SP [20, 22]. For relatively long times, higher order terms of \( U \) induces a power law decay of the SP [22]. The power-law feature of the decay should be initial-state independent, since the Gaussian shape of the initial state is irrelevant in its derivation [22].

For example, expanding \( U \) to the second order term, \( M_1(t) \simeq \frac{2c}{\sqrt{4 + (w^2\sigma U''t)^2}} \exp \left\{ \frac{-2(w^2\sigma U''t)^2}{4 + (w^2\sigma U''t)^2} \right\} \), (4)

where \( \sigma = \epsilon/\hbar, U' = \partial U/\partial p_0, U'' = \partial^2 U/\partial p_0^2 \), \( c \sim 1 \) is a constant, and tilde means evaluation at \( p_0 \) [22]. It is seen that \( M_1 \) has a Gaussian decay \( e^{-\tau^2} \) for initial times and has a \( 1/t \) decay for long times. We may use the initial Gaussian decay to estimate the decay time \( \tau \) of the SP. If \( V \sim |\Delta \lambda|^{-q} \) for \( \lambda \) close to \( \lambda_c \), \( \tau \sim \frac{|\Delta \lambda|^q}{\hbar} \). Thus, since \( T \) is independent on \( \epsilon \), at least for sufficiently small \( \epsilon \), \( \tau \gg T \).

Next, we consider the case of large \( d \). In this case, the underlying classical motion is typically quasi-periodic with many different frequencies, as a result, \( T \) is usually much longer than time scales of practical interest. For times \( t < T \), classical trajectories may look random in the torus, due to the difference in the frequencies. To calculate the SP in this case, one may write it in terms of the distribution \( P(\Delta S) \) of \( \Delta S, M_2(t) \simeq \sqrt{2\pi N} \int d\Delta S \exp(iD/\hbar) P(\Delta S) \). When the trajectories can be effectively regarded as random walks for times \( t < T \) due to the many frequencies, \( P(\Delta S) \) is close to a Gaussian distribution, independent of the initial state. Then, like in the chaotic case [14], the SP has an exponential decay determined by the variance of \( \Delta S \),

\[
M_2(t) \simeq e^{-K_c t^2/\hbar} \quad (5)
\]

where \( \int V dt = \int_0^t dt' V[\mathbf{r}(t'), \mathbf{p}(t')] \) [22].

To summarize, for small \( \epsilon \) and for relatively long times, the SP may have power law decay at criticality in the case of \( d = 1 \); while it has the exponential decay \( M_2(t) \) in both the case of sufficiently large \( d \) in a regular system and the case of a chaotic system. Below, we study the SP decay at QPT numerically. We remark that, for \( \lambda \) far from the critical point, the SP for small \( \epsilon \) is always close to 1, which can be shown by a perturbation theory.

**Power law decay of SP at criticality**— The first model we study is the single-mode Dicke model [27], describing the interaction between a single bosonic mode and a collection of \( N \) two-level atoms. In terms of collective operators \( \mathbf{J} \) for the \( N \) atoms, which obey the usual angular momentum commutation relations, the Dicke Hamiltonian is written as (hereafter we take \( \hbar = 1 \)) [28],

\[
H = \omega_0 J_z + \omega a^\dagger a + \frac{\lambda}{\sqrt{N}}(a^\dagger + a)(J_+ + J_-). \quad (6)
\]

In the limit \( N \rightarrow \infty \), the system undergoes a QPT at \( \lambda_c = \frac{1}{2}\sqrt{\omega_0\omega} \), with a normal phase for \( \lambda < \lambda_c \) and a super-radiant phase for \( \lambda > \lambda_c \). The Hamiltonian can be diagonalized in this limit, \( H(\lambda) = \sum_{k=1,2} e_{k\lambda} c_{k\lambda}^\dagger c_{k\lambda} + g \), where \( e_{k\lambda} \) and \( c_{k\lambda} \) are bosonic creation and annihilation operators, \( e_{k\lambda} \) are single quasi-particle energies, and \( g \) is a c-number function [28]. In the normal phase, \( e_{k\lambda} = \frac{1}{2}(\omega^2 + \omega_0^2 + (-1)^k \sqrt{\omega_0^2 - \omega^2 - 16\omega^2 \omega_0^2}) \), with \( e_{1\lambda} = 0 \) and \( e_{2\lambda} = \sqrt{\omega^2 + \omega_0^2} \). In the vicinity of \( \lambda_c \), one may consider the effective Hamiltonian \( H_{eff}(\lambda) = e_{1\lambda} c_{1\lambda}^\dagger c_{1\lambda} \), for which \( d = 1 \) and \( e_{1\lambda} \simeq A|\Delta \lambda|^{1/2} \) with \( A = \frac{2(\omega_0/\omega)^{3/4}}{\sqrt{\omega^2 + \omega_0^2}} \). The perturbation is
FIG. 2: (Color online) Decay of the SP $M(t)$ (dashed curves) in the normal phase of Dicke model. Parameters $\omega = \omega_0 = 1$, $\epsilon = 10^{-3}$, and $\delta = 10^{-m}$ with $m = 4, 5, 6, 7, 8$ from top to bottom. The solid curve is a fitting curve of the form in Eq. (3), having an initial Gaussian decay followed by a $1/t$ decay. The power law decay of the SP becomes clear with increasing $m$, i.e., with $\lambda'$ approaching $\lambda_c$. $\Gamma$ of the initial Gaussian decay is studied in the two insets. Upper right inset: Dependence of $\ln(M)/\epsilon t^2$ on $\epsilon$ for several pairs of $(\epsilon, t)$. Lower left inset: Dependence of $(\ln M)/|\eta|^2$ on $\eta$ for several pairs of $(\eta, t)$. The two straight lines have slope -1, in agreement with the prediction $\Gamma \sim |\eta\epsilon|$.

$$V_D = \frac{dH_{DM}(\lambda)}{d\lambda} = -\frac{A^2}{2c_{1x}} (c_{1x}^\dagger c_{1x} + 2(c_{1x}^\dagger)^2 + 2c_{1x}^2).$$

This gives $\Gamma \sim |\Delta\lambda|^{-1} \epsilon^2 = |\eta\epsilon|$.

Numerically we found that the SP has a $1/t$ decay for relatively long times and sufficiently small $|\epsilon|$ (Fig. 2). Equation (3) predicts the correct initial Gaussian decay of the SP with $\Gamma \sim |\eta\epsilon|$ even in the case of $|\epsilon/\delta| \gg 1$ with $\lambda'$ very close to $\lambda_c$. The validity of Eq. (3) in this case is unexpected, since Eq. (3) was derived under the condition of small $|\epsilon|$. Similar results have also been found for the super-radiant phase.

The second model we have studied is the LMG model, with the Hamiltonian $H = -\frac{1}{N} (S^2 + \gamma S^2_y) - \lambda S_z$, which has a critical point at $\lambda_c = 1$. The classical counterpart of this model has $d = 1$. Direct computation also shows a $1/t$ decay of the SP for relatively long times in the neighborhood of $\lambda_c$.

**Exponential decay of SP at criticality**—As a third model, we study a 1-dimensional Ising chain in a transverse field,

$$H(\lambda) = \sum_{i=1}^{N} \sigma_i^x \sigma_{i+1}^x + \lambda \sigma_i^x. \quad (7)$$

The Hamiltonian can be diagonalized by using Jordan-Wigner and Bogoliubov transformations, giving $H(\lambda) = \sum_k g_k b_k^\dagger b_k - 1/2$. Here $b_k^\dagger$ and $b_k$ are creation and annihilation operators for fermions and $\epsilon_k$ are single quasi-particle energies, $\epsilon_k = 2\sqrt{1 + \lambda^2 - 2\lambda \cos(ka)}$ with lattice spacing $a$. For $N = 2M + 1$, $k = \frac{2\pi m}{N}$ with $m = -M, -M + 1, \ldots, M$. In the limit $N \rightarrow \infty$, $\epsilon_k = 2|\Delta\lambda|$ for fixed $m$ and the system undergoes a QPT at $\lambda_c = 1$.

In a sufficiently low energy region and for $\lambda \approx \lambda_c$, a classical counterpart of the system can be introduced as follows. For $\lambda = \lambda_c$, $\epsilon_k \approx 4\pi|m|/N$ for sufficiently large $N$ and small $|m|$. Due to this linear dependence of $\epsilon_k$ on $m$, using the method of bosonization (see Ref. [1]), one can express fermionic states $b_k$ in terms of (many) bosonic modes. Each bosonic mode has a classical counterpart with one degree of freedom, hence, $H(\lambda_c)$ has a classical counterpart in the low energy region with a large value of $d$ ($d \rightarrow \infty$ in the large $N$ limit). This implies that $H(\lambda)$ with $\lambda \approx \lambda_c$ also has a classical counterpart with large $d$, as a result, typically the SP should have an exponential decay $M_2(t)$ in Eq. (3).

Direct derivation shows that the perturbation in this model is $V_I = \frac{\Delta - \cos(ka)}{\epsilon_k^2} (b_k^\dagger b_k - \frac{1}{2}) + \frac{\sin(ka)}{\epsilon_k} \epsilon_k^2 (b_k b_{-k}^\dagger - b_k^\dagger b_{-k})$. Further analysis of $\frac{\Delta - \cos(ka)}{\epsilon_k}$ and $\frac{\sin(ka)}{\epsilon_k}$ shows that $V_I$ has no singularity at the criticality, e.g., $\Delta - \cos(ka) \sim \sin(ka)/|\Delta\lambda|$ for $|ka| \lesssim |\Delta\lambda|$ and $\sim \sin(ka)/\sqrt{1 - \cos(ka)}$ for $|ka| > |\Delta\lambda|$. Therefore, $K_s$ in Eq. (3) has no singularity in the vicinity of $\lambda_c$. Furthermore, for large and fixed $N$ and for $|\Delta\lambda| \gg 1/N$, using the above expression of $V_I$, it is not difficult to show that the coupling strength of $V_I$ in the eigenbasis of $H(\lambda)$ increases with decreasing $|\Delta\lambda|$, hence, $K_s$ should increase slowly with decreasing $|\Delta\lambda|$. Numerical computation of the SP can be done by using the following expression, $M(t) = \prod_{k>0} F_k$, with $F_k = 1 - \sin^2(\theta_k - \theta_{\lambda'}) \sin^2(\epsilon_k t)$, where $\theta_\lambda = \arctan \left( \frac{\sin(ka)}{\cos(ka) - \lambda} \right)$ and $\theta_{\lambda'} = \arctan \left( \frac{\sin(ka)}{\cos(ka) + \lambda} \right)$.
$e_k$ are evaluated at $\lambda^2 \sigma^2$. Our numerical computations confirm not only the prediction of an exponential decay of the SP at the criticality, but also some details in the exponent of $M_{\lambda}(t)$ discussed above (see Fig.4).

As a fourth model, we have studied the XY model \[ H = -\sum_i \frac{1}{2} \sigma_i^x \sigma_{i+1}^x + \frac{1}{2} \sigma_i^y \sigma_{i+1}^y + \frac{1}{2} \sigma_i^z, \] which has critical points $\lambda_c = \pm 1$. As in the Ising chain, in the low energy region around $\lambda_c$, the XY model has a classical counterpart with large $d$. In this model, our numerical simulations also confirmed the semiclassically predicted exponential decay of the SP.

**Conclusions and discussions** — We have shown that the semiclassical theory can be used in the study of the decay of SP (survival probability) of GS (ground states) in the vicinity of those QPT that have infinite degeneracy at the critical points. Two qualitatively different decaying behaviors of the SP have been found for relatively long times: power law decay in systems with $d = 1$ and exponential decay in systems with sufficiently large $d$, where $d$ is the degrees of freedom of the classical counterpart of the quantum system. The analytical predictions have been checked numerically in four models.

The above results suggest that the decaying behavior of SP may be used in the classification of QPT. Here, we have found two classes: one class with power law decay and another class with exponential decay. It needs further investigation whether other types of SP decay may appear at QPT, e.g., relatively-long-time Gaussian decay or a decay between power-law and exponential.

W.-G.W. is grateful to P.Braun, F.Haake, J.Gong, T.Prosen, G.Benenti, and G.Casati for helpful discussions. This work is partly supported by the Natural Science Foundation of China Grant No. 10775123 and the National Fundamental Research Programme of China Grant No.2007CB925200.

---

*Email address: wgwang@ustc.edu.cn

[9] The SP may show an oscillating behavior for long times. Here, we study the oscillating behavior of SP for times much shorter than the recurrence time of the SP.
[25] It is shown in [20] that $M_{\lambda}(t)$ has a long-time $t^{-d}$ decay for initial random states. $M_{\lambda}(t)$, with average over initial Gaussian packets, is shown to have a $t^{-d/2}$ decay in [21].
[26] Dividing $M_{\lambda}(t)$ in regular systems into diagonal and off-diagonal parts, Ref. [21] shows that the off-diagonal part may have an exponential decay under certain condition.