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Abstract—In recent years, more and more robots have been
equipped with low-cost RGB-D sensors, such as Microsoft Kinect
and Intel Realsense, for safe navigation and active interaction
with objects and people. In order to obtain more accurate
and reliable fused color and depth information (coloured point
clouds), not only the intrinsic and extrinsic parameters of color
and depth sensor should be precisely calibrated, but also the
external corrections of depth measurements are required. In
this paper, using motion capture system, we propose a reliable
calibration framework that enables the precise estimation of the
intrinsic and extrinsic parameters of RGB-D sensors and provide
a model-free depth calibration method based on heteroscedastic
Gaussian Processes. Compared with the existing depth correction
techniques, our method can simultaneously estimate the mean
and variance of the depth error at different measurement
distances, i.e., the probability distribution of the depth error
relative to the measured distance, which is essential in the state
estimation problems. To verify the effectiveness of our approach,
we conduct a thorough qualitative and quantitative analysis of
the major steps of our calibration method, and compare our
experimental results with other related work. Furthermore, we
demonstrate an experiment about the overall improvement of
visual SLAM with a Kinect device calibrated by our calibration
technique.

Index Terms—RGB-D cameras, calibration, motion capture
system.

I. INTRODUCTION

As many domestic robot tasks, such as visual SLAM [1],
robot navigation [2], object recognition [3] and manipulation
[4], require fused color and depth information, more and more
service robots are equipped with color (RGB) and depth (D)
cameras. Basically such RGB-D sensors consist of a depth
camera rigidly attached to a color camera, where the depth
sensor can be a time-of-flight (ToF) camera or a sensor based
on structured light. In this paper, we focus on Kinect-like
sensors (structured light sensors, like Intel Realsense SR300
and Asus Xtion Pro Live) because they are widely used in
robotics. Although these devices are factory calibrated, the
quality of this calibration is adequate mostly for video games.
Therefore, we still need a proper calibration procedure for
robust robotics applications. For this kind of sensors, we must
calibrate the intrinsic parameters (focal length, principal point,
and lens distortion) of both the color and depth camera and
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space alignment (extrinsic parameters, i.e., relative position
and orientation) between them. Moreover, we have noticed
that for longer distances, there is an increasing deviation
and uncertainty in depth measurements and the variation of
measurement bias and uncertainty is not stationary in differ-
ent pixel coordinates. Therefore, the complete calibration of
RGB-D cameras is mainly divided into the determination of
intrinsic and extrinsic parameters and the correction of depth
measurements.

In order to obtain intrinsic and extrinsic parameters of the
depth camera, there are various calibration methods based on
different sources of depth camera, e.g., infra-red (IR) images,
disparity images or depth images. Early works, such as [5],
were based on IR images and the standard RGB camera
calibration techniques. They use a checkerboard pattern to
calibrate the intrinsic parameters of RGB and IR cameras
and also the extrinsic transformation between them. However,
their method requires different cameras to observe the same
checkerboard pattern at the same time and becomes cum-
bersome and imprecise because the most widely used ROS
Kinect driver [6] does not support simultaneous output of IR
and RGB images. The work of Herrera et al. [7] is a typical
method based on disparity images. They let the kinect view a
large plane attached with a checkerboard at different distances.
There are two major weaknesses of their work: Firstly, they
require an expert user to play an active roll in selecting
corresponding features in the depth images. Secondly, their
method relies heavily on specific Kinect-type disparity data.
Other methods, based on the depth images, make use of
specific calibration objects simultaneously observed by the
RGB and depth sensors. In [8], the authors use a large custom-
made wood panel with tens of circular holes and it requires an
extensive manual procedure to associate the holes’ centers in
each RGB and depth image pair. Moreover, in [9], the authors
use a spherical basketball. The common limitation of the depth
image based method is that the noise of the depth map is very
large and the result is not accurate enough.

For depth correction, Smisek et al. [10] showed that Kinect
sensors are affected by some radially symmetric distortions,
and then Herrera et al. [7] gave a first attempt to take into
account of the distortion in their calibration process. How-
ever, their method uses an external high-definition camera to
observe the checkerboard and is not suitable for long distances
between RGB camera and depth sensor. Zhang et al. [11]
showed that the depth measurement provided by Kinect was a
linear function of the real depth. The main problem of depth
correction is how to accurately obtain the true depth of each
pixel in the depth images. Teichman et al. [12] assumed the
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Fig. 1: Work-flow diagram of the RGB-D camera calibration approach.

close-up point cloud maps, generated by SLAM previously,
can be used as the true values of depth measurements in
the corresponding position. Obviously their method heavily
relies on the positioning and mapping accuracy of SLAM.
Most recently, Basso et al. [13] separated the depth error
into two different parts: distortion error and global error, and
treated them separately. They assume that there is no error in
the nearest depth measurement and depth errors are the same
for the near depth measurements in the same pixel location.
Because they use a polynomial curve fit to correct the depth
value, the polynomial form needs to be determined in advance.

Inspired by the work [14] that provided a very popular
benchmark for the evaluation of RGB-D SLAM, we propose
a novel calibration approach that removes the systematic hy-
pothesis of acquisition for groud truth of depth measurements
and is based on the calibration framework [15] which depends
on high-precision measurement of the motion capture system
(MoCap). Different from the extrinsic parameters calibration
method proposed in [14], our method, based on hand-eye
calibration techniques, eliminates the inevitable error caused
by inaccurate position of the markers attached on the checker-
board. Here, we still make use of IR images, mainly because
of the characteristics of low noise compared to the depth map,
to estimate the intrinsic and extrinsic parameters. Compared
with the traditional IR-based methods, our approach does
not directly estimate the spatial relation between the depth
camera and the color camera, which requires the depth camera
and the color camera to observe the same checkerboard at
the same time, but to calibrate the spatial transformation
relationships between the camera frames and the global world
frame provided by motion capture system. The additional
benefit of this method is that we can easily scale to calibrate
extrinsic parameters between multiple cameras [16] [17] or
with other sensors [18] [19]. For the depth measurements
provided by the depth sensor, we employ an error model that
can reduce the distortion and systematic errors and get more
accurate depth measurements of the environment. This model
is represented as a set of model-free Gaussian Processes (GP).
To obtain the model parameters, we make full use of the
motion capture system to get the corresponding ground truth
and measured depth of each pixel at different distances. More
importantly, we found that as the measured distance grows,
the uncertainty of the measured depth value also increases,
i.e., the variance of the error increases. Hence we adopt

sparse heteroscedastic Gaussian processes [20] to estimate
both the mean and variance of the measurement error, i.e.,
the probability distribution of the depth error relative to the
measured distance, which is essential in the state estimation
problems in robotics research.

Our main contributions are summarized as follow:
• A complete and accurate calibration protocol of Kinect-

like sensors, which includes intrinsic, extrinsic calibration
and depth correction.

• A joint intrinsic and extrinsic calibration method of
cameras, which is mainly based on the customized hand-
eye calibration techniques.

• Direct and non-recursive data acquirement for the ground
truth of pixel-wise depth measurements and a model-free
GP-based depth correction method for estimating both the
mean and variance of depth errors.

A. Problem definition and approach overview
From a pair of depth image τD and color image τR, the

method for recovering the coloured 3D information is as
follows.

For ith pixel (ui
D,v

i
D) in depth image τD, the depth measure-

ment is represented as z(ui
D,v

i
D) and the corresponding pixel

in IR image is (ui
I ,v

i
I). Then the 3D pose MI of pixel (ui

I ,v
i
I)

can be recovered by the camera imaging model with depth
measurement. That is

o
MI = pro ject(KI ,DI ,ui

I ,v
i
I) (1)

MI =
o

MI · z(ui
D,v

i
D) (2)

where KI is the intrinsic parameters of IR camera and DI is

the distortion parameters,
o

MI is normalized form (z = 1) of
MI . After that, we can transform pose MI in IR frame to MR
in RGB frame by using the transformation R

I T from IR frame
to RGB frame. That is

MR =R
I T ·MI (3)

Then, we can re-project MR to pixel (ui
R,v

i
R) in RGB image

τR and get the color information c(ui
R,v

i
R)) in the color image

τR:
(ui

R,v
i
R) = repr(KR,DR,MR) (4)

where KR and DR are the intrinsic parameters and distortion
parameters of RGB camera, repr() is the reverse process of
pro ject().
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Fig. 2: (a) Our motion capture system. (b) and (c) are calibra-
tion tools of MoCap system. (d) The Kinect device which
rigidly attached with three markers. (e) the checkerboard
pattern used for intrinsic and extrinsic calibration and also
for evaluation of our calibration when together with attached
six markers.

The goal of our calibration approach is to enable the RGB-D
cameras to recover more accurate coloured 3D environmental
information from RGB and depth image pairs, which means
more accurate depth information and better alignment between
color and depth measurements of all coloured 3D points
(MR,c(ui

R,v
i
R)). As shown in Fig. 1, our work mainly consists

of three parts: intrinsic calibration, extrinsic calibration and
depth correction. Firstly, in Section II-A, we calibrate the
intrinsic parameters of IR and RGB camera which include KI ,
DI and KR, DR, and the relationship between corresponding
pixel coordinates in IR image and depth image can be obtained
with the method mentioned in Section II-B. Meanwhile, the
extrinsic parameters R

I T are obtained in Section III. Finally, we
provide the method to get more accurate depth measurements
z(ui

D,v
i
D) in Section IV.

II. INTRINSIC CALIBRATION

The RGB and IR camera both commonly follow a so-
called pinhole camera model with radial distortion and tan-
gential distortion. That is, the relationship between a 3D point
M = [X ,Y,Z,1]T and its pixel coordinate of image projection
m = [u,v,1]T is given by

sm = K[R, t]M (5)

where s is a scale factor, R and t is the rotation and translation
respectively which relates some other coordinate system to the
camera coordinate system and together are called the extrinsic
parameters of the camera, and the intrinsic matrix K is given
by

K =

 fx γ u0
0 fy v0
0 0 1



where fx and fy are the focal lengths in image x and y axes, γ

is the parameter which describe the skewness of the two axes,
and (u0,v0) is the coordinates of principal point.

Besides, real lenses usually have some distortion, mostly ra-
dial distortion and slight tangential distortion. the relationship
between ideal image coordinate (xn,yn) and real (distorted)
image coordinate (xt ,yt) is given by[

xr
yr

]
=

[
xn(1+ k1r2 + k2r4)
yn(1+ k1r2 + k2r4)

]
(6)[

xt
yt

]
=

[
2p1xryr + p2(r2 +2xr

2)
p1(r2 +2y2)+2p2xryr

]
(7)

where r2 = x2
n+y2

n, k1 and k2 are radial distortion coefficients,
as well as p1 and p2 are tangential distortion coefficients.

A. Corner-based calibration and target extract

The intrinsic calibration of cameras is a well-studied prob-
lem. In Zhang’s method [21], he assumed the model plane
is on Z = 0 of the world coordinate system without loss of
generality. The checkerboard corners are extracted from the
intensity image. And then each homography is computed for
each image using the known corner position in the world
coordinates and measured positions in the image. A linear
system of equations is used to solve the constraints imposed by
each homography. After that, the complete set of parameters
can be estimated by minimizing the following function:

n

∑
i=1

m

∑
j=1

∥∥mi j− m̆(K,k1,k2, p1, p2,Mi j,
B
CTi)

∥∥2
(8)

where the function m̆ is the projection of jth point Mi j in
image i according to equation (5), followed by radial distortion
(equation (6)) and tangential distortion (equation (7)). This
nonlinear minimization is solved by the Levenberg-Marquardt
Algorithm. An initial value of B

CTi (from camera frame C
to checkerboard frame B) which contains a translation and
a rotation in the Rodrigues formula, and intrinsic parameters
K are obtained using the previous estimations. the distortion
parameters k1,k2, p1, p2 are initialized with the technique
described in Zhang’s method [2], or just set to be 0. By
doing this calibration, we can not only obtain the intrinsic
parameters, but also get all the poses of the camera in the
checkerboard coordinate system, B

CTi, which are used for the
extrinsic calibration described in the next section.

B. Offset between IR image and depth image

As reported in [22], there is a fixed offset between corre-
sponding pixels in IR image and depth image. That is

mI = mD +
[
u′ v′ 0

]T
(9)

In order to estimate the value, we point the camera towards
the marker of our calibration tool as shown in Fig. 2(b) or Fig.
2(c) and keep the marker still. Then 180 pairs of IR and depth
images are recorded. For each image pair, we first use Canny
edge detection [23] and then Hough circle detection [24] to
detect the center point of the marker in IR images (some actual
effects are shown in Fig. 3(a),3(b), 3(c)) and depth images (as
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(a) (b) (c) (d) (e) (f)

Fig. 3: IR (a-c) and depth (d-f) images during different pro-
cessing: (a) Original IR image. (b) After Canny edge detection.
(c) Detected circle by Hough circle detection. (d) Original
depth image. (e)After Canny edge detection. (f) Detected circle
by Hough circle detection.

shown in Fig. 3(d), 3(e), 3(f)). Due to the depth image of
Kinect is very noisy, we can hardly get accurate results of
u′,v′. The average estimated value of (u′,v′) we got in our
experiments is about (4, 4).

III. EXTRINSIC CALIBRATION

During the intrinsic calibration, we move the camera to
the different poses in front of the checkerboard pattern which
remains motionless. As shown in Fig. 4, the coordinate system
of the camera optical center moves from C1 to C2 and at the
same time the markers coordinate system transforms from M1
to M2 correspondingly. So we have

B
W T = C1

B T
−1 ·C1

M1
T ·M1

W T = C2
B T

−1 ·C2
M2

T ·M2
W T

Due to markers are rigidly attached with the camera, we have
M1
C1

T = M2
C2

T = M
C T, and the above formula can be simplified to:

C2
C1

T ·CMT = C
MT ·M2

M1
T (10)

where C2
C1

T = C2
B T ·C1

B T
−1

and their values can be obtained by

the method mentioned in Section II-A, M2
M1

T = M2
W T ·M1

W T
−1

and
their values are provided by the motion capture system.

A. Hand-eye calibration

Obviously, the equation (10) is the famous hand-eye calibra-
tion problem, it comes down to solve the AX = XB equation
where A,B,X are 4x4 homogeneous transformation matrix.
And the equation (10) can be farther decomposed into two
equations: a rotation equation and a vector equation depending
both on rotation R and translation t:

RARX = RX RB (11)

(RA− I)tX = RX tB− tA (12)

where I is the 3x3 identity matrix. In this paper, the method
based on quaternions, presented in [25], is used for the hand-
eye calibration because of its robustness with noise data. In
short, the authors use mathematical techniques to transform the
hand-eye problems into convex optimization problems that can
be easily solved by using related project like CVXPY [26].

C1
B T

C
MT

M1
W T

M2
W T

C2
B T

Fig. 4: Intrinsic and extrinsic calibration scene. Camera frame
move from C1 to C2, and the markers which attached with the
camera rigidly move from M1 to M2 correspondingly. W is
the world frame of MoCap system and frame B is fixed on
the chessboard pattern. During the calibration, we keep the
chessboard motionless.

B. Global refinement

The hand-eye calibration accuracy is limited mostly due
to the fact that the assumed pose-trajectories are estimated
individually and keep fix when aligning them to find the hand-
eye transformation. So in this subsection, we proposed a joint
maximum likelihood optimization of calibration and trajectory
given the measurements allows higher accuracy. This opti-
mization is hard to be solved as a global problem but using the
results from Section III-A as an initial guess, a local likelihood
maximization can improve the accuracy of the calibration. We
use Lie group valued B-splines [27] to represent continuous-
time SO(3)-trajectory and use an extension of Levenberg-
Marquardt to Lie groups to solve the nonlinear optimization,
as in [28].

But in our calibration scene, the values of transformation
M
W T measured by the motion capture system are very accurate
and the main source of the calibration error is the estimated
values of transformation C

BT. So in this work, we model the
trajectory for the moving marker frame, M, M

W T(t) =: X(t).
And the negative log likelihood function l mentioned in [28]
is modified as following:

l = l1(X|(Mi
W T, tMi)

l
i=1)+ l2(CBT,CMT|(Ci

B T, tCi)
k
i=1)

=
kM

∑
i=2

ρ(||dM(
Mi−1
W T,Mi

W T,M
W T(tMi−1),

M
W T(tMi))||2ΣM

)

+
kC

∑
i=2

ρ(||dC(
Ci−1
B T,Ci

B T,CBT(tCi−1),
C
BT(tCi))||2ΣC

)

(13)

where C
BT(t) :=W

B T ·MW T(t) ·CMT, M
W T(t) =X(t), ρ(s) = log(1+

s), dM and dC are relative, d(A,A′,B,B′) = d(A−1A′,B−1B′).
As displacement vector d(A,B) ∈ R6 on SE(3), we use co-
ordinates of (logSO(3)(R),u) with respect to a fixed positive
orthonormal basis, where u is a translation and R is a proper
rotation such that (uniquely) u◦R := A−1 ·B.We first optimize
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Fig. 5: Depth error maps. Note that the color scale is different
for each map.

l1 to estimate the trajectory function X(t) of marker frame.
And then optimize l2 to calculate the optimal estimated value
of C

MT.

IV. DEPTH CORRECTION

Many depth sensors have myopic property which means that
an incorrect parameter set results in an error that increases
with distance. To make matters worse, the errors of depth
measurements at different pixel positions are also different (as
shown in Fig. 5). To model the effects of this distortion, in
the latest work [13], the authors separate the error into two
different parts and treat them separately, including distortion,
the error responsible of the local alteration of the object
shape, and global error, the systematic wrong estimation of
the average depth. That is, the real depth d∗ is estimated as

d∗ = (g�u)(u,v)(d) (14)

where function u(·) takes into account the local distortion and
function g(·) makes a global correction of the depth measures.

In this work, the method mentioned in Section III is used
to get the poses of the IR camera in real time. in this section,
firstly, we will show how to track a plane to get the ground
truth of the depth measurements. And then we propose a sparse
Gaussian process method to model the posterior probability
P(d∗|d), which means that both the mean µ(d∗) and variance
σ2(d∗) of d∗ at different d values are obtained.

A. Plane frame tracking

First of all, we want to track a plane frame P, it means
that the transformation P

W T can be obtained in real time. We
attach three reflective markers A, B and C on a board or just
use the official calibration pattern which shown in Fig. 2(c),
the plane which contains these three markers is parallel to the
board. And MoCap system provides us the three-dimensional
coordinates of the three markers in real time. PA = [xA,yA,zA]

T ,
PB = [xB,yB,zB]

T and PC = [xC,yC,zC]
T . The following shows

how to calculate the transformation matrix from world frame
W to the frame P which formed by these markers.

The first step and without loss of generality, we choose the
unit direction vector ~x of

−→
AB as the direction of the X axis

of frame P. We can also find the plane unit normal vector ~z
(as well as the direction of the Z axis) by using the geometric
properties~z⊥−→AB and~z⊥−→AC. And the direction of the Y axis
can be estimated as ~y =~z×~x. If there is no measurement error
of MoCap system and placement deviation of markers, the 3x3

rotation matrix R from frame W to the plane frame P can be
easily obtained :

R = (~x,~y,~z) (15)

However, the actual three direction vectors are not perpendic-
ular to each other. Therefore the singular value decomposition
(SVD) R = UΣVT is used to get the approximate estimate R′
of the rotation matrix R (the detailed proof can be found in
[21]). That is

R′ = U ·VT (16)

Finally, the 4x4 transformation matrix from the frame W to
frame P is:

P
W T =

(
R′ PA
0 1

)
(17)

And in order to filter out the depth data that is projected
outside the plane, we also need to provide the plane range
(xmin,xmax,ymin,ymax), which does not need to be very accurate
as long as it is guaranteed to be within the actual plane range.

B. Data acquisition

The plane mentioned in the previous section can be chosen
as a large plane that can not be moved (like a wall), or a
smaller plane that can be freely moved (as shown in Fig. 2(e)).
This is because we can track the 3D pose of the plane and the
camera in real time using the method mentioned in Section III
and IV-A. However, it is obvious that larger the plane, more
efficient data acquisition.

We firstly record the depth images of the Kinect at different
distances with the plane as well as P

W T and M
W T at the same

time, and then process the recorded data offline to generate
datasets for training GP models. This off-line process is briefly
described in algorithm 1. Firstly, we use P

I T to restore the
plane equation P (l. 6, where plane() is a function which
get the plane equation of the XY axis). And for a given
pixel coordinate m = (u,v) in a depth map, we can get the
corresponding pixel coordinates in the IR image by using the
formula (9) (ll. 8-9). And then the corresponding 3D point
M = (x,y,1) is calculated by using formula (5)-(7) (l. 10),
which means a beam of radiation from the optical center to
M. We can find the intersection M′ of the ray and the plane P
(l. 11). Finally, we use the plane range (xmin,xmax,ymin,ymax)
to determine whether the intersection point falls in the plane
and decide whether to keep it in the dataset Ψ or not (ll.
12-15) (as illustrated in Fig. 6).

C. Heteroscedastic Gaussian Processes

Gaussian Processes are a generalization of normal distribu-
tions to functions, describing functions of finite-dimensional
random variables. Compared with the curving fitting method
mentioned in [13] , the Gaussian processes does not need to
know the specific expression of model in advance.

The standard GP formulation assumes that each data pair
(xi,yi) is drawn from a process with i.i.d Gaussian noise:

yi = f (xi)+ ε (18)

where ε is the noise generated from a Gaussian distribution
with known static variance σ2

n .
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Fig. 6: Brief sketch of the projection procedure of each pixel
point in IR image onto the tracking plane P using the model
of IR camera. And 3D point of intersection a and e are out of
bounds and should be filtered out.

Algorithm 1: Data acquisition

Input: P
W T, M

W T, measured depth images D;
Output: Dataset Ψ for training GP models;

1 I
MT = hand eye calibration();

2 Initialize plane range (xmin,xmax,ymin,ymax);
3 Initialize IR image to depth image offset u′,v′;
4 for i ∈ range(D) do
5 P

I Ti =
P
W Ti ·MW Ti

−1 · IMT−1;
6 Pi = plane(P

I Ti);
7 for pixel(u,v) ∈ Di.size() do
8 uI = u+u′;
9 vI = v+ v′;

10 MI = pro ject(uI ,vI);
11 M′I = cross(MI ,Pi);
12 M′P = P

I T ·M′I ;
13 if (M′P.x ∈ [xmin,xmax])∧ (M′P.y ∈ [ymin,ymax])

then
14 Ψ = Ψ∪{(u,v,Di(u,v),M′I .z)}
15 end
16 end
17 end
18 return Ψ;

However, this formulation ignores the characteristics of
varying variance σ2(d∗) in this work. In order to incorporate
this information into the system, Goldberg et al. [29] changed
the first assumption by considering that each data pair (xi,yi)
is drawn from a process with known variance that depends on
xi. That is:

yi = f (xi)+ ε(xi) (19)

where ε(xi) is the noise generated from a Gaussian distribution
with input-dependent variance σ2

n (xi). In this work, the open
source project GPz [20] is used to train a set of sparse Gaussian
Processes for heteroscedastic posterior probability P(d∗|d). To
illustrate the differences between standard GP formulation and

Fig. 7: Prediction generated for a toy function y = sin(x) with
variance v = (x+1)/15, top is the standard GP and bottom is
the heteroscedastic GP.

the heteroscedastic one, we show the predictions generated
using a toy function y = sin(x) with variance v = (x+1)/15.
Fig. 7 shows a comparison of the predictions using a standard
GP and the proposed approach which successfully models the
toy-function variance.

V. IMPLEMENTATION

The General Batch-Calibration Framework, developed by
the authors in [15], employs the optical motion capture system
(as shown in Fig. 2(a).) as automatic measuring system. And
our MoCap system consists of 12 cameras equipped with
infrared LED around the camera lens and it can track frame-
to-frame 3D positions of the reflective markers in real time.
The measurements of MoCap and robots are sent through
the MoCap Bridge module and ROS1 Bridge module and the
NTP module is responsible to synchronize time between them.
Some large quantities of data could be stored in local and
processed offline.

We calibrate the motion capture system using the Motive
software provided by Optitrack [30]. The calibration procedure
requires waving a calibration stick (as illustrated in Fig. 2(b).)
with three markers extensively through the motion capture
area. The Motive software computes the poses of the motion
capture cameras from these point correspondences. After that,
we can place a right-angle calibration tool (as shown in Fig.
2(c).) to settle down the world coordinate system W . To
validate the results of this calibration procedure, we hold
a stick which contains two markers with a distance of 1
m approximately and move freely in the MoCap area, we
measured a standard deviation of 0.99 mm. And then we left
the markers at the reference positions and covered the markers

1http://www.ros.org/
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after recording them so that the MoCap system lost track and
the markers have not been moved in reality. After a while,
we removed the covers and estimated the pose of the markers
again, we always found a position error of slight below 0.01
mm. we think that the position estimates of our MoCap system
are highly accurate and stable over time.

VI. EXPERIMENTS

In this section, we want to show that our method is able
to provide more accurate calibration results for Kinect-like
sensors. We independently analyse the results of our hand-eye
calibration (Section III) and depth correction (Section IV).
Then we report some real experiments of an RGB-D visual
SLAM applied to a mobile robot which mounted a Kinect
device, where we show that the accuracy of positioning and
mapping highly benefits from using RGB-D data calibrated
with our calibration approach. Finally, performance compari-
son with other related work is shown at the end.

A. Hand-eye calibration

The accuracy of hand-eye calibration results are difficult to
evaluate, so we evaluate the whole effect of the intrinsic and
extrinsic calibration in this work by means of the reprojection
error. We placed six markers as accurately as possible on the
outer corners of the checkerboard (as shown in Fig. 2(e)),
such that the transformation between the visual checkerboard
and the motion capture markers is known. Given these points
observations and the point model, we can compute its pose
W
B T′ with respect to the world frame of the motion capture
system by means of the iterative closest point method (ICP).
For every 3D position Mi j of corner j in image i, we can cal-
culate its corresponding coordinates in the camera coordinate
system and compare the deviation from the pixel coordinates
mi j of detected corner. That is

ei j = repr(CMT ·MW Ti ·WB T′i ·Mi j)−mi j

We recorded 44 8x5 checkerboard images which have a total
of 1760 corners. Fig. 8(a) plots the corner reprojection error
ei j with the value of C

MT estimated in Section III-A and the
results by using the global refinement method in Section III-B
are illustrated in Fig. 8(b). Fig. 8(c) shows the distribution
of reprojection errors

∣∣ei j
∣∣. All of the figures in Fig. 8 prove

that the refinement step mentioned in Section III-B give a
more accurate estimation of extrinsic parameters. Another
thing needs to mention is that the reprojection errors here are
not only caused by inaccurate estimation of C

MT, but also by
the inaccurate position of attached markers, inaccurate corner
detection and the measurement error of MoCap system. The
reprojection errors of our method are within 2 pixels, and
we think that the accuracy is acceptable for depth correction.
Some qualitative analyses are also provided in Fig. 9, which
show that more accurate fusion of color and depth informa-
tions result from better alignment between RGB and depth
cameras with our estimated value of R

I T.
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Fig. 8: Reprojection error of all pixels in all recorded images:
(a) is the errors without global refinement and (b) is the
final result with our global refinement, (c) the distribution of
reprojection errors.

B. Depth correction

For validating the performance of our proposed depth cor-
rection method, we collected two datasets (include depth and
color image pair, M

W Ti and P
W Ti): a training set (contains 597

image pairs and used to generate the correction functions)
and a testing set (contains 428 image pairs and used to
evaluate the calibration accuracy). After deploying our depth
correction algorithm on the training set, we obtained 480x640
depth-correct GP models. And in order to compare with the
state-of-the-art depth correction method [13], supposing the
depth error is corrected by a second degree polynomial, we
also obtained 480x640 functions which contain 480x640x3
parameters totally (some examples are illustrated in Fig. 10).
And then we use these models or functions to correct our
depth images in testing dataset. The total depth errors are
plotted in Fig. 11 where plot 11(a) is original depth errors,
plot 11(b) is the depth errors with curve fitting method [13]
and plot 11(d) is the corrected depth errors by using the mean
value provied by our GP models. And the standard deviation
of depth error learned by our GP method is also plotted in
Fig. 11(c). We can obviously find that our method remarkably
reduce the error of Kinect depth measurements and is better
than the curve fitting method. And in Fig. 9, we choose three
single point cloud which is keep a distance of 1m, 2m and 3m
with a planar surface and we can find that the three point cloud
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Fig. 9: some results of our calibration approach: first column:
the coloured point cloud resulted from different alignments
between the RGB camera and the depth camera. second
column: three point clouds (approximately with distance of
1m, 2m, 3m) of a planar surface without or with different
depth correction.

become more even after corrected by our method compared
with Herrera’s method [7], and Fig. 12 is about their top and
front views and further shows the effect of our proposed depth
correction algorithm.

C. Visual SLAM

As a further validation of our method, we report an ex-
periment performed using our home service robot (Kejia F2)
with an RGB-D visual SLAM system (RGB-D SLAM v2 [1]).
And we show how the accuracy of positioning using RGB-
D data calibrated with our method by means of evaluation
metrics: absolute trajectory error (ATE) and relative pose error
(RPE) [14], and the final 3D point cloud maps have also been
presented.

We moved our mobile robot forward by 2m at 0.02 m/s,
then turn 90 degrees and moved forward 3m. And at the
same time, we record the poses of markers attached on the
Kinect and we can obtain the trajectories of the Kinect using
the result of hand-eye calibration C

MT, and we think of it as
ground truth of Kinect trajectory. Table I shows the root mean
square error (RMSE) of ATE and RPE for the experiment:

Fig. 10: Depth error and corresponding polynomial fitting
curve (top) or GP model (bottom) of five different pixel
coordinates (pixel c is the coordinate of optical center). Note
that different pixel coordinates have different parameters of
fitting curves or GP models.

(a) (b)

(c) (d)

Fig. 11: Depth error in different measure distance. (a) is the
original data, (b) is the corrected data with second degree
polynomial depth correction method, (c) is the standard de-
viation of depth error learned by our GP method and (d) is
the corrected data by using the mean value of depth error
provided by our GP models
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(a) Top view of the point clouds (b) front view of the point cloud

Fig. 12: Different views of point cloud. First column: side
views of three point clouds which approximately keep distance
of 1m, 2m and 3m from a planar surface. Second column:
front views of the 3m point clouds, and we can easily find
that the bottom one (corrected with our method) is closer to
the rectangle than others.

the reduce of ATE is remarkable and the RPE also have
slightly reduced. Fig. 13(a) shows a top view of the estimated
and ground truth trajectories without or with our proposed
calibration approach, along with the generated point cloud
maps (Fig. 13(b)). The trajectory estimated using the corrected
data is obviously closer to the ground truth compared to the
one estimated using the original data, and the quality and
the precision of the reconstructed point cloud map is also
improved by using the corrected data.

TABLE I: RMSE of ATE and RPE

Original data Corrected data

ATE [m] 0.092 0.041
RPE.translation [m] 0.0082 0.0073
RPE.rotation [deg] 0.3576 0.3517

D. Performance comparison

In this subsection, we compare the calibration accuracy of
our system against two state-of-the-art calibration methods,
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Fig. 13: Qualitative results of the RGB-D SLAM v2 experi-
ments: (first row) The result of using the original data; (second
row) The result of using the corrected data.

(a) (b)

Fig. 14: (a) The reference hollow cube used as a ground truth
in the performance evaluations; (b) Accuracy comparison in
the reference cube localization for increasing depths.

the one from Basso et al. [13] and the one from Herrera et
al. [7], using the original implementations provided by the
authors. For each method, we acquired large training sets
and adopted each calibration approach. And for compare the
calibration accuracy, we collected a test set framing a big
reference hollow cube (Fig. 14(a)) with large AprilTags [31]
attached to each visible side. Using this 3D pattern, it is
possible to accurately compute the plane equations of the
three sides using the obtained AprilTag images. we use these
planes, their intersection point x as ground truth data. For each
tested method, we estimated the plane equations by fitting the
three planes to the corrected point clouds, computing also their
intersection point x′. To further prove the role of the probability
distribution in the state estimation problem, we record three
depth maps in each of the same locations. The probability
distribution of the true depth d∗ is:

P(d∗|d1,d2) = P(d∗|d1) ·P(d∗|d2) ·P(d∗|d3)

where d1, d2 and d3 are the depth measurements of intersection
point x in the three depth maps. Since all probability distribu-
tions are approximating Gaussian distribution, we have:

P(d∗|di)·P(d∗|d j)=N
(

σ2(di)·µ(d j)+σ2(d j)·µ(di)

σ2(di)+σ2(d j) ,

σ2(di)·σ2(d j)

σ2(di)+σ2(d j)

)
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where µ(d) and σ2(d) are the mean and variance values,
which can be obtained from our GP models. Fig. 14(b) shows
the depth errors of different methods at different distances of
the reference cube.

VII. CONCLUSION

In this paper, we present a reliable and accurate method to
calibrate the Kinect-like sensors using motion capture system.
The proposed calibration procedure can not only provide the
intrinsic and extrinsic parameters of each cameras, but also
generate a set of pixel-wise depth correction models based on
heteroscedastic Gaussian Processes. In the intrinsic calibration,
we completely calibrated the pixel offset between the depth
image and IR image. In in our extrinsic calibration, we make
full use of the characteristics of the MoCap system to cus-
tomize the global refinement step for the hand eye calibration,
and it further improves the accuracy of extrinsic calibration.
Moreover, a non-recursive and novel data acquirement method
is used to get the ground truth of every pixel in depth
images and a one-step, model-free depth correction approach is
applied to obtain the parameters of depth correction model set.
The proposed calibration method achieves better results than
previous related works and the entire calibration results have
greatly improved positioning and mapping of visual SLAM
tasks using the Kinect sensors.
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