
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1

Learning to Coordinate Traffic Signals With
Adaptive Network Partition

Jinming Ma and Feng Wu

Abstract— Multi-intersection traffic signal control (TSC) is an
active research field in multi-agent systems, where traffic signals
for each intersection, controlled by an agent, must coordinate to
optimize traffic flow. To encourage global coordination, previous
work partitions the traffic network into several regions and
learns policies for agents in a feudal structure. However, static
network partition fails to adapt to dynamic traffic flow, which
changes frequently over time. To address this, we propose a
novel multi-agent reinforcement learning approach with adaptive
network partition. Specifically, we partition the network into
several regions according to the dynamic traffic flow over time.
To do this, we propose two approaches: one is directly to use
graphic neural network (GNN) to generate the network partition,
and the other is to use Monte-Carlo tree search (MCTS) to
find the best partition with criteria computed by GNN. Then,
we design a variant of Qmix using GNN to handle various
dimensions of input, given by the dynamic network partition.
Finally, we use a feudal hierarchy to manage agents in each
partition and promote global cooperation. By doing so, agents
are able to adapt to the traffic flow as required in practice.
We empirically evaluate our method both in a synthetic traffic
grid and real-world traffic networks of three cities, widely used in
the literature. The experimental results confirm that our method
achieved better performance both in a synthetic traffic grid and
real-world traffic networks of three cities, in terms of average
travel time and queue length, than several leading TSC baselines.

Index Terms— Adaptive traffic signal control, reinforcement
learning, multi-agent coordination, network partition, Monte-
Carlo tree search, graphic neural network.

I. INTRODUCTION

NOWADAYS, the growing traffic congestion has brought
serious negative impacts on environmental protection,

urban economic development and our daily lives. To meet the
increasing traffic demand, many efforts have been made to
optimize traffic control and improve road capacity. Traditional
traffic signal control (TSC) mostly relies on pre-defined rules
and fixed timing strategy, which cycles the established set-
tings periodically [1]. However, those methods, which heavily
depend on expert knowledge and heuristic assumptions, have
many weak points. For example, they often cause long traffic

Manuscript received 13 June 2022; revised 18 February 2023 and 5 May
2023; accepted 15 August 2023. This work was supported in part by the
Major Research Plan of the National Natural Science Foundation of China
under Grant 92048301 and in part by the Anhui Provincial Natural Science
Foundation under Grant 2208085MF172. The Associate Editor for this article
was S. Sun. (Corresponding author: Feng Wu.)

The authors are with the School of Computer Science and Technology,
University of Science and Technology of China, Hefei 230026, China (e-mail:
jinmingm@mail.ustc.edu.cn; wufeng02@ustc.edu.cn).

Digital Object Identifier 10.1109/TITS.2023.3308594

delays and are unable to make flexible adjustments based on
real-time traffic information. In recent years, researchers [2],
[3], [4] have tried to use deep reinforcement learning (DRL)
for TSC and shown better performance for TSC than tradi-
tional methods.

To date, there are several DRL-based methods [5], [6]
that control each intersection independently and have no
coordination with others. Indeed, the lack of coordination
among intersections will lead to poor efficiency of the overall
traffic flow. With regards to this, many studies [2], [4] propose
to solve TSC using multi-agent RL, which trains agents to
cooperate in a centralized or decentralized manner. Generally,
decentralized methods have better scalability than centralized
approaches as each agent independently learns its own policy.
However, due to partial knowledge of each agent, decentral-
ized methods may get stuck in local optima more easily.

To address this, researchers have investigated several tech-
niques to approach global optima. The most common way
is to share observation and fingerprints between adjacent
agents for stable cooperative control [4]. Some work uses
graph attention networks to facilitate additional information
from neighboring intersections to optimize the traffic [3].
Others [7], [8] are based on max-pressure theory to implicitly
encourage the cooperation between neighboring intersections.
Most recently, FMA2C [9] was proposed to extend MA2C [4]
with a feudal structure and improve global coordination among
agents. Specifically, it first splits the traffic network into
several regions and is fixed after it. Then, a manager-worker
hierarchy is constructed, where each region is assigned to a
manager and the intersections in the region are controlled
by its workers. In this way, managers can cooperate more
globally at the regional level and guide the coordination of
their workers. However, a major limitation of FMA2C is that
the regions are split manually and fixed afterward. As shown
later in our experiments, it will become inefficient when the
pattern of traffic flow changes frequently. This is a critical
drawback for applying it to the real world because the traffic
flow may vary during different periods of time (e.g., rush
hour, working days, weekends, holidays, etc.). Generally, it is
challenging for DRL-based methods to handle such regional
changes of traffic systems without re-training the agents.

Against this background, we propose a novel MARL with
adaptive network partition for multi-intersection TSC. Specif-
ically, given the underlying traffic network, we first construct
the dynamic flow network to model the traffic flow at different
periods. Then, we introduce two network partition methods

1558-0016 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 30,2023 at 09:21:54 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8738-9906
https://orcid.org/0000-0003-3989-0509

2 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

based on graphical neural network (GNN) and Monte-Carlo
tree search (MCTS) respectively. For the former, we directly
use GNN to generate the network partition according to the
traffic flow. This approach is easy to implement and can be
trained in an end-to-end manner. However, it is hard to train
and may generate unreasonable partition for a large network.
In MCTS, we find the best partition through an explicit search
process and can scale to a large network. MCTS, as an anytime
algorithm [10], can provide the current best solution under
time constraints or converge to the optimal solution given
sufficient time. Note that the network partition is dynamically
updated over time to fit the dynamic flow network. To facilitate
different network partitions, we design a variant of Qmix [11]
to handle various dimensions of input. Here, we use a feudal
hierarchy where manager agents cooperate at the high-level
and communicate their sub-goals to lower-level worker agents
in the region. In the experiments, we tested our algorithm both
in a synthetic traffic grid and real-world traffic networks of
three cities. Our experimental results show that our method
benefits from the adaptive network partition and significantly
outperforms several state-of-the-art methods in terms of aver-
age travel time and queue length.

II. RELATED WORK

Here, we briefly review the methods related to our work.
1) Conventional Traffic Signal Control: In conventional

control, most methods depend on hand-crafted rules [1], [12].
Fixed time [1] uses a pre-determined cycle signal plan, widely
used when traffic flow is stable. SOTL [12] defines the upper
and lower limit time of each phase. Reference [1] coordinates
traffic signals by modifying the offset between continuous
intersections and requires the intersections to have the same
cycle length. In fact, it is not easy to manually designed traffic
signal plans or rules. To solve difficult to manually design
rules, max-pressure [13] aims to balance the queue length
between adjacent intersections by minimizing the “pressure”
of the intersection. Overall, these approaches still rely on
assumptions to simplify traffic conditions and do not guarantee
optimal real-world results.

2) RL-Based Traffic Signal Control: RL has been used for
TSC so that the control strategy can be adaptively created
based on the current traffic condition. Some studies [6],
[14] rely on independent Q-learning (IQL). Obviously, they
can’t optimize the overall objective because they ignore the
interaction between adjacent intersections in the road network.
For coordinating agents in scenarios of TSC, one typical
approach is to train a central agent to control all intersec-
tions [5], or jointly model the action among learning agents
with centralized optimization [2]. Unfortunately, due to the
curse of dimensionality, these centralized methods usually
have the scalability issue and are hard to apply on large road
networks.

Other studies aim to encourage agents to learn cooperation
with others in a decentralized way by adding information from
neighbor [3], [4], [15] or design a mechanism that induces
cooperation [7], [16]. Some methods apply model-based IQL
to each intersection [17] and improved the observability of IQL
by neighborhood information sharing [15]. MA2C [4] uses

multi-agent A2C to cooperatively control multi-intersections,
and it includes information of neighborhood and spatial dis-
count to stabilize the training process. CoLight [3] uses graph
attentional networks to facilitate communication between
multi-intersections. PressLight [7] uses the theory in max
pressure, and designs the pressure as the reward of the agents.
Due to the partial observation, these methods may be difficult
to achieve global optimal control. Recently, the methods [9],
[18] utilize the divide-et-impera framework to divide the whole
system into smaller parts and achieve local optimization of
each part. Among them, FMA2C [9] combines MA2C with the
feudal hierarchy to improve global coordination among agents.
We build our algorithm based on FMA2C and make adaptive
network partition to adapt to more flexible and complex traffic.

3) Graph Neural Networks: Our proposed method is
also related to recent advances of Graph Neural Network
(GNN) [19], [20]. GNNs are connectivity models that cap-
ture graph dependencies through information transfer between
graph nodes [21], [22]. In recent years, a wide variety of graph
neural network (GNN) models have been proposed, including
convolutional graph neural networks (ConvGNNs) [21], [22],
[23], recurrent neural networks (RecGNNs) [24], [25] and
graph autoencoders (GAEs) [26], [27]. The general framework
of Graph Networks [28] is proposed to support relational rea-
soning and combinatorial generalization. Graph pooling mod-
ules [23], [29], [30] are mainly used to generate graph-level
representation based on node representations. Among them,
DiffPool [23] is a differentiable graph pooling module that
can generate hierarchical representations of the entire graph
and learn a differentiable assignment mapping nodes to a set
of clusters based on their learned embeddings.

Recently, many works incorporate GNNs into the traf-
fic domain to capture the spatial dependency, due to the
traffic data are graph-structured. As summarized in the sur-
vey [31], [32], existing works focus on incorporate GNNs
into: Traffic forecast, Traffic signal control and Trajectory
prediction. In traffic forecast, the main focus is on traffic
flow forecast [33], [34], traffic speed forecast [35], [36]
and traffic demand forecast [37], [38], [39]. In addition,
some traffic signal control works [40], [41] consider that
the multi-intersection traffic lights is spatially and temporally
influenced. And they propose methods to control traffic lights
by effectively capturing the spatio-temporal dependency with
GNN-based deep learning. Trajectory prediction [42], [43]
mainly studies the accurate prediction of pedestrian trajectory
and vehicle trajectory, which can play important role in the
downstream tasks. Beside them, we are the first use GNN
for partitioning regions beneficial in RL-based traffic signal
control.

In our paper, we use DiffPool [23] to learn how to cluster
nodes together to build a hierarchical structure on top of
the underlying road network, i.e., integrating the information
of the entire road network to obtain the optimal network
partition. Meanwhile, the hierarchical structure generated by
DiffPool can be naturally combined with the feudal structure.
In contrast, most of the GNNs are to generate embeddings for
all the nodes in the graph and then to globally pool all these
node embeddings together, which ignores the hierarchical

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 30,2023 at 09:21:54 UTC from IEEE Xplore. Restrictions apply.

MA AND WU: LEARNING TO COORDINATE TRAFFIC SIGNALS WITH ADAPTIVE NETWORK PARTITION 3

Fig. 1. Example of the traffic network and intersection.

structure of the graph. Thus, DiffPool is an ideal technique
for our approach.

III. BACKGROUND

In this article, we consider the TSC problem in a
multi-intersection network as illustrated in Figure 1(a). Here,
each intersection has 12 traffic movements, consisting of four
approaches and three lanes (turning right, turning left and
going straight) per approach. As shown in Figure 1(b), the
green dot indicates that the movement is allowed and several
non-conflicting movements can be combined in a phase. The
objective of TSC is to choose the optimal phase of each
intersection to maximize the traffic flow. As in the literature,
this problem can be modeled as a Markov game, where each
intersection in the traffic network is controlled by an agent.

A. Markov Game for Traffic Signal Control

Specifically, the Markov game is defined by a tuple
⟨S,O,A, T ,R⟩. S is a finite set of states, and each agent can
observe a part of the state s ∈ S as its observation o ∈ O. A is
a set of actions for each agent. T is the transition function with
joint action of all agents a. Each agent obtains an immediate
reward r by a reward function R(s, a).

For TSC, each agent observes the quantitative descriptions
(i.e. observation) of its intersection, such as queue length,
waiting time and delay. Then, the agent chooses a phase (i.e.
action) for the intersection and receives an immediate reward r
from the environment, which indicates the traffic situation. The
goal is to optimize the situation of the overall traffic network.
In the literature of TSC, average travel time of all vehicles
in a road network is the most frequently used measure of the
overall traffic network [44]. Specifically, average travel time is
defined as the average time difference between the time when
all vehicles enter the network and the time when they leave
the network. Compared with the conventional TSC methods
that heavily rely on pre-defined rules, the main advantage of
solving TSC by MARL is that agents can learn a better policy
by directly interacting with the dynamic environment.

B. Feudal Multi-Agent Advantage Actor-Critic

Feudal Multi-agent Advantage Actor-Critic (FMA2C) [9] is
an extension of MA2C with feudal hierarchy for regional
coordination among regions. For traffic signal control, the
large-scale networked system is firstly divided into multiple

regions, and the hierarchical structure of Manager-Worker is
constructed. A manager agent is assigned to each of these
regions, and each intersection in the region is controlled
by a separate worker agent. In more detail, each manager
coordinates with other managers for maximizing the long-
term, global reward, and learns to communicate sub-goals
to multiple simultaneously operating workers. By receiving
the goal from its manager, each worker needs to achieve the
managerial goal according to the completion of the sub-goals,
in addition to maximizing its own local rewards that they
experience from the environment. By doing so, managers can
have global cooperation at the regional level and manage the
coordinated control of workers within their regions.

1) Learning Policy of Manager: For manager, FMA2C
learns the policy by MA2C [4]. This method combines value-
based (such as Q learning) and policy-based (such as Policy
gradients), and includes two networks in each agent’s model:
actor network and critic network. The actor network is used
to generate behavior policies, and the critic network is used to
evaluate the behavior policies generated by the actor. Mean-
while, the actor network improve their behavioral policies
based on the evaluation of the critic network.

Given the mini-batch B M that contains the experience
trajectories generated by the manager’s interaction with the
environment. The critic network is updated by the loss:

L(wM) =
1

2|B|

∑
t∈B M

(RM
t − V M

w (s M
t))2 (1)

where RM
t =

∑T −1
τ=t γ τ−tr M

τ +γ T −t Vw−(s M
t) is the estimating

local returns and V M
w (s M

t) is the approximate state values.
Given the advantage value AM

t = RM
t − Vw−(s M

t)), each
manager minimizes the actor loss to update its parameter θ M :

L(θ M) =
1

2|B|

∑
t∈B M

logπθ (aM
t |s M

t)AM
t (2)

2) Learning Policy of Worker: As aforementioned, worker
learn policy that fulfill both the managerial goals and its
local objectives. Therefore, the state of each worker consists
of the local observations and the subgoal communicated by
its manager, i.e., sW

= [oW , g]. Meanwhile, the reward of
each worker is augmented by the managerial reward which
considering the subgoal g as:

r̂ W
t = r W

t + σ(oW
t , gt) (3)

where r W
t is the intrinsic reward of the worker and σ is

a function mapping from the worker’s observation and the
subgoal to a real number. In FMA2C, they use the value of
the angle between the motion vector of the observation and the
subgoal direction vector to measure the degree of following
with the subgoal: σ(oW

t , gt) = dcos(oW
t−1 − oW

t , gt).
Similarly, the critic network of worker can update their

parameter wW with each mini-batch BW as follow:

L(wW) =
1

2|B|

∑
t∈BW

(RW
t − V W

w (sW
t))2 (4)

where RW
t =

∑T −1
τ=t γ τ−t r̂ W

τ +γ T −t Vw−(sW
t) is the estimating

returns and V W
w (sW

t) is the approximate state values.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 30,2023 at 09:21:54 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 2. Overall framework of Adaptive Feudal Multi-agent Reinforcement Learning (AFMRL).

Now, each worker minimizes the policy loss to update its
parameter θW as:

L(θW) =
1

2|B|

∑
t∈BW

logπθ (aW
t |sW

t)AW
t (5)

where the advantage value is AW
t = RW

t − Vw−(sW
t)).

Although the feudal hierarchy does improve global coordi-
nation among multi-intersections, the network partition (i.e.,
which region is controlled by a manager) is static and not
flexible when the traffic pattern changes frequently. As we
observed in the experiments, when traffic patterns change, the
hierarchy becomes less effective if the congested area spans
two static regions. To address this, we propose a novel RL
approach with adaptive network partition that is more flexible
and can adapt to complex traffic patterns.

IV. METHOD

In this section, we propose AFMRL | Adaptive Feudal
Multi-agent Reinforcement Learning with dynamic network
partition for TSC. The overall framework of our method
is shown in Figure 2. From left to right, we start with a
formal definition of dynamic flow network and introduce two
adaptive network partition methods based on GNN and MCTS
respectively. For the former, we directly use GNN to generate
the network partition. For the latter, we use MCTS to search
the best network partition whose value is measured by GNN.
Note that the network partition is done over time to fit the
dynamic traffic flow due to the same traffic pattern usually
lasts for a period of time and does not change very quickly
in the real-world (e.g., morning-evening rush hours). Then,
we designed a variant of Qmix to process different dimensional
regions given the network partition. Finally, we construct a
feudal hierarchy to learn policies for the regions and each
intersection.

A. Adaptive Network Partition

We model a traffic network as directed graph G(V, E), where
each vertex v ∈ V represents an intersection and each edge
ei j ∈ E represents the road from intersection i to j . Now,
we introduce the dynamic flow network to capture the dynamic
traffic flow that changes over time. Specifically, the dynamic
flow network is defined as Gt (G, F t), where: G is the traffic
network; f t

i j = (ei j , w) ∈ F t is the traffic flow in edge ei j
with traffic density descriptions w, which is ratio of queue
length over the capacity of the road.

Fig. 3. Illustration of the GNN for generating network partition P (The
colored arrow line represents the process that aggregate feature information
from neighbors).

Given the dynamic flow network, we partition the net-
work Gt into m disjoint regions P = {P1, . . . , Pm}, where
∀Pi ,Pj , ∪

m
k=1 Pk = G, Pi ∩Pj = ∅. Here, every T timesteps, the

dynamic flow network can be partitioned into different disjoint
regions depending on the real-time traffic flow. As aforemen-
tioned, our goal is to adaptively partition the network so that
it is beneficial for the learning algorithm.

To this end, we propose two approaches: one is to directly
generate the network partition through GNN, and the other
is using MCTS to search the network partition with criteria
computed by a separate GNN. The advantage of the former is
that it can train the entire network in an end-to-end fashion.
However, it may fail to generate a reasonable partition for a
larger network. On the contrary, the latter can generate a good
network partition through explicit search in a feasible time.
We will describe both methods in the following sections and
compare their performance in the experiments.

1) GNN for Network Partition: Here, we introduce our
approach by applying the GNN to generate the network parti-
tion P . As shown in Figure 3, the GNN takes the dynamic flow
network Gt (G, F t) as input, which contains the information
of traffic network G and the real-time flow F t . Inspired
by [23], the first step is to generate embedding of nodes and
aggregate feature information from the neighbors (blue) to the
target node (orange), which is named aggregate layer. Then
we input the embedding of the target node into the predict
layer with so f tmax to get the assignment vector, which can
be regarded as a multi-classifier. The output dimension of
the GNN corresponds to the number of regions. All in all,
we compute the assignment matrix M of agents using a embed
GNN that takes the input observation of intersections O and
the real-time flow F t

∈ Rna×na as follow:

M = so f tmax(G N Nembed(F,O)) ∈ Rna×n p (6)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 30,2023 at 09:21:54 UTC from IEEE Xplore. Restrictions apply.

MA AND WU: LEARNING TO COORDINATE TRAFFIC SIGNALS WITH ADAPTIVE NETWORK PARTITION 5

Fig. 4. Partial search tree built by MCTS for network partition.

where na is the number of intersections, n p is the number of
regions. Then, we can get the network partition P through
the assignment matrix M, i.e., region Pi consists of the
intersections whose i-th column of the matrix is maximum.

Our objective of training the GNN is to generate a network
partition with a good collective payoff that the agents can
gain by forming the network partition in TSC. In practice,
it is generally difficult to train the GNN using only gradient
signal from the RL in an end-to-end fashion as shown in
Figure 2. Hence, we use an auxiliary link loss to encode nearby
nodes that should be pooled together as suggested by [23],
i.e., minimizing the loss Laux = ∥A,MMT

∥, where ∥∥ is
the Frobenius norm and A is the adjacency matrix of the
traffic network. In summary, we train the GNN in an end-
to-end fashion with the Loss function L = Laux + LQmix .

Even with this improvement, we observed that GNN may
not provide the best network partition, because the complex
topological structure of graphs is hard to learn with limited
feedback. It becomes more severe on a larger traffic network,
which will be shown in our experiments. This motivates us to
propose an alternative approach based on MCTS.

2) MCTS for Network Partition: Now, we turn to propose
our MCTS method to search for the best network partition
in the dynamic flow network. Inspired by [45], we model
the partition problem as a search process over tree nodes.
As shown in Figure 4, each tree node is associated with a
partition and the root node of the search tree is the original
network containing all agents, e.g., P = {{1, . . . , n}}. The
children of each node are obtained by bipartition of one region
of its parent, e.g., a child of the root node is {{1, . . .}, {. . . , n}}.
Each branch of the tree expands until the termination condition
meets at a leaf node. When all branch reaches their leaf, the
search is completed.

We incrementally build the search tree iteration by iteration.
In each iteration, as shown in Figure 4, we start the search
from the entire network down to split network and expand the
search tree based on four steps of MCTS. In the selection step,
an optimal child node is selected among all children so that the
tree can expands to the subspace where the optimal solution is
most promising. Similar to previous MCTS methods, we use
the UCB1 heuristic [46] to select branches as:

UC B1(P ′) = V ′(P ′) + c
√

logN (P)/N (P ′) (7)

where V ′(P) = maxP ′∈T ree′(P)V (P ′) is the current maxi-
mal value with the current search space T ree′(P), N(P) is

the frequency that the node P is visited when searching,
and c is a constant parameter. Given this, we can select
the child node that maximizes the UCB1(P ′), i.e., P∗

=

arg maxP ′∈Child(P) UC B1(P ′). In the UCB1, the node value
is augmented by an exploration bonus that is higher for
rarely tried children. Intuitively, if N (P ′) is equal for all
children, it will select the child with the maximal V ′(P ′)

because the remaining term is equal for all of them. However,
if some child is much less frequently visited than others,
the term

√
logN (P)/N (P ′) will become significant and bias

the selection towards it. By using the UCB1, MCTS has the
anytime property and can usually find the best partition much
earlier before checking all the nodes. In the expansion step,
if the selected child P∗

∈ Child(P) is currently not in the
tree, we expand by adding a new node P∗ as a child of P .

In the simulation step, to evaluate the value V ′(P∗) of the
new node P∗, we use the default policy to perform a rollout
search by successively bipartitioning a region until the termi-
nation condition is met. The termination condition is met when
only partitions with the pre-defined smallest size (not single-
ton) are left. Note that we aim to coordinate the traffic regions
and such regions (e.g., city districts) are not very small in real-
world scenarios. Therefore, we can terminate a branch when
the partition becomes too small. Then, the value of V ′(P∗) is
initialized by V ′(P∗) = maxP ′∈T race(P∗)UC B1(P ′), where
T race(P∗) is a set of partitions encountered during the rollout
search from P∗. In rollout search, for P , the default policy
to perform network partition is to select the partition P ′

∈

Child(P) with maximizing the value V (P ′).
In the backpropagation step, after the simulation of P∗,

all of its ancestors are updated by backpropagating the value
V ′(P∗). For each ancestor, its value is updated by V ′(P∗),
which is the optimal solution in the sub-tree rooted by it.

Each iteration expands the search tree, and as the number
of iterations increases, the size of the search tree continues to
increase. When all nodes are added to the tree or time runs out,
the complete solution space has been searched. In the former
case, we can search the optimal network partition while in the
latter case the currently best solution is searched.

3) Network Partition Value: In MCTS, one remaining chal-
lenge is to define the value function V(P) of P for any
network partition P . With this, the goal of MCTS is to find
the most valuable partition P∗ in the set of feasible partition
denoted by P, i.e., P∗ = arg maxP∈P V(P). Unfortunately,
this value function is unknown in our setting and must be
learned along with the RL algorithm. Here, we use GNN
to extract useful feature embeddings from the input graphs,
including vertex, edge and topology information, and predict
the network partition value. Note that this is a separate GNN
that is structurally different from the aforementioned GNN for
network partition.

As shown in Figure 5, the network takes the observation
of agents O, the real-time flow F t and the assignment matrix
M ∈ Rna×n p as input. We first generate the embeddings Xa of
agents by an embedding GNN module [23], which is applied
to O and F as below:

Xa
= G N Nembed(F,O) ∈ Rna×d (8)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 30,2023 at 09:21:54 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 5. Illustration of predicting the network partition value V(P; θ) by
GNN. The colored rectangle represents a region, and the black line represents
the traffic flow between them. The colored dotted line represents the process
according to Equations 9 and 10.

where d is the dimension of agents’ embeddings. In this step,
the GNN module performs relation reasoning that propagates
information across edges of the graph. Then, we generate
a coarsened adjacency matrix F denoting the connectivity
strength between each pair of regions (i.e., the traffic flow
between regions), and the embeddings X p for regions by pool-
ing these agents’ embeddings in the region together according
to the assignment matrix M:

F = MT FM ∈ Rn p×n p (9)

X p
= MT Xa

∈ Rn p×d (10)

Similarly, we take the relational matrix between the regions F
and their embeddings X p through an embedding GNN module
to get new embeddings X̂ p for the regions:

X̂ p
= G N Nembed(F , X p) ∈ Rna×d (11)

Finally, the new embeddings feed in the neural network to
output the value V(P; θ).

In the training process of the GNN, we expect to fit V(P; θ)

as the collective payoff that the agents can gain by forming
the network partition P in TSC. Therefore, we use the rewards
r , which is received from the environment by interacting with
the environment during T steps, as the training signals. Since
the high-level reward r represents the local travel time of
the traffic network, it can be used to represent how much
collective payoff that the agents can gain by forming the
network partition P . To put together, the network is trained in
an end-to-end fashion by minimizing L = MSE(V(P; θ), r).

Since the GNN requires a learning process, its prediction
value may not be useful for MCTS especially in the early
stage. Note that the learning process of GNN and the search
process of MCTS are inter-dependent: GNN needs good
partitions to learn their values while MCTS requires accurate
values to find the good partition. Therefore, we introduce a
heuristic function to boost the learning process of GNN.

We borrow ideas from graph theory [47] to evaluate how
strong the connection is between two regions: cut (Pi , Pj) =∑

u∈Pi ,v∈Pj
f (u, v), where f (u, v) is the traffic flow between

intersections u and v. Intuitively, a good partition should min-
imize this value between every pair of regions. Furthermore,
to avoid undesirable bias for partitioning out small sets, we use
“Normalized cut” [48] to measure the disassociation of the
network partition:

Ncut (P1, . . . , Pm) =

m∑
i, j=1,i ̸= j

cut (Pi , Pj)

assoc(Pi)
(12)

Fig. 6. Illustration of the GNN for handle the various dimensions of
independent Q-value network in Qmix.

where assoc(Pi) =
∑

u∈Pi ,v∈V f (u, v) is the total connec-
tion from nodes in P i to all nodes in G. By minimizing
Ncut , we will find the apposite network partition where the
connection within each region is high while the connection
between each region is low. Intuitively, this meets our goal of
partitioning the traffic networks.

Given this, we combine the heuristic with the prediction
value and compute the value of a network partition V (P) as:

V (P) = (α − 1)Ncut (P) + αV(P) (13)

where α is a adaptive weighting coefficient, which is low in
the early stage of training and gradually grows along with the
learning process.

B. Feudal Multi-Agent Reinforcement Learning

Here, we follow the FMA2C framework [9] and form a
feudal hierarchy with managers and workers, where a manager
controls a region in the partition and the agents in the region
are its workers who directly control the traffic intersection.
In more detail, the manager is tasked with maximizing the
long-term, global reward, and learns to communicate sub-goals
to multiple simultaneously operating workers. The workers
need to learn how to act based on the managerial reward
according to the completion of the sub-goals, in addition to
maximizing immediate rewards that they experience from the
environment. Similar to FMA2C [9], we train the policies of
workers by the MA2C algorithm.

1) The Variant of Qmix for Managers: As aforementioned,
each manager controls a region and coordinates the workers
inside the region. Note that our objective is to optimize the
traffic flow of the entire network. Therefore, the managers
of different regions also need to cooperate with each other.
To achieve this, we employ Qmix [11] to learn managers’
policies. Notice that, for the different situations of the traffic
network, there will be different network partitions, i.e., the
number of regions and the number of agents in the region.
Therefore, Qmix must be modified to handle this issue.

As shown in Figure 6, we use a GNN to handle the dynamic
dimensions of input, which is a separate GNN with the same
structure as shown in Figure 5. In more detail, we compute

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 30,2023 at 09:21:54 UTC from IEEE Xplore. Restrictions apply.

MA AND WU: LEARNING TO COORDINATE TRAFFIC SIGNALS WITH ADAPTIVE NETWORK PARTITION 7

the feature embeddings X̂ p of regions by Equations 8-11,
where Equation 11 stabilizes the training process by one-step
relational reasoning. Note that, for empty regions, their feature
embeddings are 0.

Given the GNN, we use the m-th row of X̂ p as the feature
of the region m and feed it into the Q-value network Q.
By doing so, we can use a unified Q-value network to process
dynamic dimensions of input and output the individual Q-value
function < Q1, . . . , Qm >, rather than train multiple models
for different network partitions and switch the model according
to different network partitions.

For the mixing network, we still adopt the method intro-
duced in Qmix [11]. The mixing network takes the environ-
ment state s as input and generates the non-negative weights
w(s) ≥ 0 and bias b(s) of the layer in the mixing network.
The joint action-value network Qtot can be represented as
Qtot

=
∑m

i=0 wi (s)Qi
+ b(s). The network is trained in an

end-to-end manner by using the loss:

L(θ) =
1

2|B|

|B|∑
t

(ytot
t − Qtot (X̂ p, a, s; θ))2 (14)

where B is the transitions sampled from the replay buffer,
ytot

= r +γ maxa′ Qtot (X̂ p ′
, a′, s′

; θ−) and θ− are the param-
eters of a target network as in DQN.

V. EXPERIMENTS

We implemented the experiments using the CityFlow simu-
lator [49] | a MARL environment for large-scale city traf-
fic scenarios. To evaluate the performance of our method,
we compared with several conventional and state-of-the-art RL
methods for traffic signal control in a synthetic traffic grid and
three real-world traffic networks.1

A. Model Definition

Here, we introduce the observation, action, and reward defini-
tion for the feudal structure, i.e., manager-worker hierarchy.
There are many different definitions in the literature [44].
In this paper, we refer to the definitions of [9], with the only
difference of adjustment in the manager settings.

1) Observation: For worker i , the observed traffic infor-
mation is some quantitative descriptions of the intersection
i, i.e., queue length, waiting time and delay. In this paper,
we choose queue length of all lane in the intersection as the
observation, oW

t,i = ⟨q1, · · · , qln ⟩, where ln is the number of
lanes in intersection i . For manager k, the observation is the
traffic flow in the region k, i.e., oM

t,k = ⟨. . . , oW
t,i , . . .⟩, where

i ∈ Regionk . And the region’s observation will be input into
a GNN to extract the its feature emmbddings.

2) Action: For each worker, it decides which phase to be
selected from a phase set. In other words, the action is the
index of a phase. For each manager, it sets a sub-goal for
its region. And we consider the sub-goal as a possible traffic
flow, which is a combination of [N , E, W, S] traffic flows, e.g,
north-south and east-west traffic flows.

1https://traffic-signal-control.github.io

3) Reward: For worker i , the reward received from envi-
ronment is the queue length of all lanes in the intersection i ,
which can be represented as ri = −

∑ln
l=1 ql . For manager

k, we define a reward of long-time horizon. Note that we
employ Qmix [11] to estimate joint action-values as a complex
non-linear combination of per-manager values that promote
the same optimization objective of managers. We consider the
local travel time, which is the sum of local travel time of
all intersections of the traffic network. The local travel time
of an intersection is the time discrepancy between entering
and leaving the local area of the intersection. Therefore, the
manager can indirectly optimize the average travel time by
optimizing the local travel time.

B. Datasets

The road networks are illustrated in Figure 7. The detail setting
of the road networks are as follow: D4×4: The road network
contains 16 intersections in a 4× 4 grid. The traffic volume is
randomly sampled from a Gaussian distribution with a mean
of 500 vehicles/hour/lane. DJ inan,Hangzhou : The road network
of Jinan and Hangzhou contains 12 and 16 intersections in a
4 × 3 and 4 × 4 city network, respectively. The traffic flow
is generated from surveillance camera data. DManhattan : The
road network of Manhattan contains 48 intersections in a 16×

3 city network. The number of vehicles generated is sampled
from taxi trajectory data. Specifically, we use the synthetic grid
to evaluate our method under various flexible traffic patterns
and real-world datasets to test the practicality of our method.

C. Experimental Settings

1) Compared Baselines: We compare our AFMRL with the
following conventional and leading RL methods.

• SOTL [50] is controlled with demand responsive rules
which compare the current phase with current traffic. It is
a conventional method that utilizes current traffic.

• MaxPressure [13] aims to control the intersection by
balancing queue length between neighboring intersections
by minimizing the “pressure” of the phases. It is the
SOTA conventional method for the network-level TSC.

• CoLight [3] uses graph attention network to facilitate
information between neighbors.

• PressLight [7] uses the max-pressure theory and designs
the pressure as the reward of the agents, which has good
performance in multi-intersection TSC.

• MA2C [4] uses multi-agent A2C to cooperatively control
multi-intersections. And it includes information of neigh-
borhood and spatial discount to stabilize the training.

• FMA2C [9] is an extension of MA2C with feudal hier-
archy for traffic signal control. It achieves better global
cooperation through feudal hierarchy.

For a fair comparison, we use the same experimental set-
tings for specifying the Markov game model as in the FMA2C
paper [9]. All the GNNs were implemented using the network
structure in DiffPool [23].

2) Evaluation Metric: There are many different metrics to
measure traffic conditions. The most common metrics of traffic
signal control are to minimize the queue length and average

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 30,2023 at 09:21:54 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 7. Illustration of traffic networks in the real-world datasets.

Fig. 8. The training curves of average travel time (sec.) in different networks. The solid line and shade are mean and standard deviation respectively.

travel time. Queue length of the intersection is the number of
vehicles in all incoming lanes. Average travel time is defined as
the average time difference between the time when all vehicles
enter the network and the time when they leave the network.
In addition, the former is used to assess short-term traffic
control, while the latter is used to assess long-term traffic
control.

D. Experimental Results

As commonly in the literature, we use the queue length and
the average travel time as the metrics to measure short-term
and long-term traffic conditions respectively. The queue length
is the number of queuing vehicles in the road network. The
travel time is the time difference between the time when all
cars enter the network and the one when they leave it. The
average values were computed by several runs with different
random seeds after convergence in training.

1) Training Results: As shown in Figure 8(a-d), our method
substantially outperformed all the compared RL methods,
in the speed of convergence, the stability of learning, and the
quality of policy. By comparing with FMA2C, we can find
that our method with adaptive network partition converged

faster and got better results in real-world traffic networks.
This indicates the advantage of our method in situations where
traffic patterns change frequently.

2) Evaluation Results: The performance of all methods in
four traffic networks is summarized in Table I. Compared with
the RL methods, the traditional methods have relatively poor
performance. As aforementioned, traditional methods that rely
heavily on pre-defined rules do not work well with dynamic
traffic. Among the RL methods, FMA2C gained a slightly
better performance due to the global cooperation brought by
the feudal structure. All in all, our method achieved the best
results especially for the large network (i.e., Manhattan).

As shown in Figure 9, we show a sequence of network
partitions over time, which dynamically fit the real-time traffic
flow. We can see that the traffic flow changed over time, and
the traffic density of the connection between each pair inter-
sections is various at different moments. Due to our adaptive
network partition, as expected, the inter-regional connection is
relatively low, while the intra-regional connection is relatively
high. Intuitively, this is a reasonable network partition and
beneficial for learning good policies for the feudal framework.
Next, we will further investigate the reasons for the advantage
of our method through the ablation experiments.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 30,2023 at 09:21:54 UTC from IEEE Xplore. Restrictions apply.

MA AND WU: LEARNING TO COORDINATE TRAFFIC SIGNALS WITH ADAPTIVE NETWORK PARTITION 9

Fig. 9. Illustration of the sequence of network partitions changed dynamically along with the traffic flow in an episode. Each intersection is represented by
a vertex, and the connected edges represent the traffic flow density (green, yellow, and red indicate the degree of congestion). Different rectangles represent
different regions.

TABLE I
PERFORMANCE IN SYNTHETIC 4 × 4, JINAN, HANGZHOU AND MANHATTAN (BEST VALUES ARE IN BOLD)

Fig. 10. Ablation results for different network partition methods.

E. Ablation Experiments

1) Partition Techniques: Here, we study the usefulness of
different network partition techniques. Specifically, we tested
the methods with static network partition (Static), GNN for
network partition (GNN), and MCTS for network partition
(MCTS). Exhaustive enumeration (Enum) for searching the
best network partition is also included for reference though it is
not scalable for large networks. In addition, we also compared
with the graph theory based partition method using level of
connectivity (LoC) [51].

As shown in Figure 10, the static network partition has the
worst performance when it does not match with the dynamic
traffic flow. In more detail, when the congested area spans
two regions, the manager-level coordination is less effective.
As shown in Figure 11(b), the traffic density of the connection
between the regions is high at this moment, e.g., the con-
nection between the upper right region with its neighbors.
In this case, the intra-regional connection is low, while the
inter-regional connection is high. In contrast, GNN does adapt
to the dynamic traffic flow. Therefore, its performance is better
than the one with static partition. However, it is very hard to
train and often fails to produce reasonable partition especially

Fig. 11. Illustration of the network partition generated by different methods
on the 4 × 4 grid. Each vertex represent the intersection, and the edges
represent the traffic flow density (green, yellow, and red indicate the degree
of congestion). Different rectangles represent regions.

for large networks. For example, as shown in Figure 11(c),
the intersections of the same region are not adjacent, which
is usually a bad network partition for traffic signal control.
Due to LoC measure the similarity between intersections
for network partition, LoC can generate reasonable network
partition. However, LoC only considers the information of
the traffic network, without the feedback from the collective
payoff of RL after forming the network partition. As a result,
the network partitions generated by LoC are not effective for
policy improvement in the FMA2C framework. For MCTS,
as shown in Figure 11(a), we can see that the partition is
preferable, where the intra-regional connection is high, and
the inter-regional connection is low. As a result, MCTS has
the best performance compared with the other methods. When
compared with the enumeration baseline, MCTS gets very
close results to it. Most importantly, MCTS is much more
efficient and can scale to large networks.

As aforementioned, MCTS is an anytime algorithm. This
property means that it can be stopped at anytime and provide
the current best solution. In addition, it is complete and
will eventually converge to the global optimal solution if a

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 30,2023 at 09:21:54 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

TABLE II
COMPARISON OF DIFFERENT SEARCH TECHNIQUES FOR ADAPTIVE

NETWORK PARTITION. MCTS(10) MEANS 10 ITERATIONS

sufficient amount of time is given. In practice, this property
is appealing to TSC because the network may be very large
and time is limited. To demonstrate this property, we conduct
experiments with several network partitioning methods to test
the score of partitions and time consumption. According to
the recent survey, existing search/optimization methods for
network partitioning can be categorized into several types [52],
including but not limited to exhaustive enumeration, heuristic
search and multilevel methods. On one hand, the exhaustive
methods (e.g., best-first search, BFS) can guarantee to find the
optimal solution but it is time-consuming and not scalable to
solve large problems. On the other hand, the heuristic methods
such as Kernighan-Lin [53] and the multilevel methods such
as K-Way [54] can return a solution quickly. However, such
search methods have no guarantee to find the optimal solution
and can easily get trapped in a local optimum [52]. In contrast,
MCTS offers a better tradeoff between solution quality and
computational time due to its anytime property. In Table II,
we test MCTS with the different number of iterations and
compare it with several network partitioning methods. As we
can see, the solution quality of MCTS improves with the
number of iterations increasing, in which the runtime only
increases linearly. With 104 iterations, MCTS converges to
the optimal solutions with much less time compared to BFS.

2) Partition Parameter: We conduct ablation studies of our
method in the Manhattan City network to study the effects
of the number of regions, the minimum size of each region
and the partition interval. The number of regions and the
minimum size of each region directly affect the partition of the
road network. Meanwhile, the minimum size of each region
also affects the number of regions, i.e., a smaller size leads
to more regions. If the minimum size of each region is 1,
AFMA2C is simplified to independent hierarchical control.
In other words, fewer agents in each region will result in less
intra-regional cooperation. When the minimum size of each
region is the whole network size, AFMA2C is equivalent to
centralized hierarchical control, which is inefficient. Indeed,
an intermediate value between them will achieve the best
performance. As shown in Figure 12(a-b), when the number
of regions is 4 and the minimum size of each region is 12,
AFMA2C obtained better performance.

The partition interval is the interval time of performing
network partition. As shown in Figure 12(c), when the interval

Fig. 12. Ablation results for partition hyper-parameters.

time is too large, AFM2C will degenerate into the static
network partition and the performance drops sharply. To obtain
the optimal interval time, prior knowledge about the usual
duration of the pattern of traffic flow may be needed.

3) Manager-Level Coordination: It is also worth study-
ing the performance of the coordination mechanism in the
manager-level. In our paper, we believe the best case is when
the intra-regional connection is high, the cooperation of work-
ers in the same region will become closely. This is because
managers do not directly control the traffic lights. Thus, if the
intra-regional connection is sparse (i.e., the roads between
them are not congested), the coordination of workers in the
same region is less effective. As shown in Figure 13(a-b),
adaptive network partition is necessary to the traffic signal
control, as shown in the comparison of AFMA2C and other
methods. Therefore, it is necessary to adaptively partition the
network to make the intra-regional connection tight.

In addition, the multi-agent learning technique is also ben-
eficial. To confirm this, we conduct ablation experiments that
consider other multi-agent learning techniques at the manager
level, i.e., VDN, COMA, QMIX, QTRAN. Note that the
FMA2C employ the MA2C for the manager-level coordition.
As shown in Figure 13(a-b), in a complex and larger road
network (Manhattan City), effective inter-regional cooperation
is also beneficial, as shown in the comparison of FMA2C-
QTRAN and FMA2C-VDN. All in all, although inter-regional
cooperation (the multi-agent technique) is useful, adaptive
network partition is more critical for the overall performance.

F. Discussions on Real-Time Performance

As mentioned, TSC is a time-sensitive domain and the meth-
ods for TSC should work in real-time. Here, our method

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 30,2023 at 09:21:54 UTC from IEEE Xplore. Restrictions apply.

MA AND WU: LEARNING TO COORDINATE TRAFFIC SIGNALS WITH ADAPTIVE NETWORK PARTITION 11

Fig. 13. Ablation results for manager-level coordination.

takes 8.9s to compute the new partitions and only 0.16s to
compute the control actions in the 16 × 3 city network. In the
real-world, the pattern of traffic flow usually continues for
a period of time and does not change quickly (e.g., morning-
evening rush hours). Hence we do not need to perform network
partition very frequently, i.e., every 300 timesteps in our
experiments. The interval of traffic signal switching generally
takes tens of seconds for traffic to respond. In addition,
the communication delay of collecting the network-level real
traffic information is very small with the current transmission
technology. Therefore, time is sufficient for our method to
compute a new partition, and time for choosing a control action
(i.e., time for neural network inference) is negligible (< 1s).
Moreover, MCTS is indeed an anytime search algorithm and
can produce better results if more time is given. Therefore,
our method can meet the real-time demand for TSC.

VI. CONCLUSION

In this article, we proposed a feudal MARL with adaptive net-
work partition for TSC. Firstly, we introduced two approaches
based on GNN and MCTS respectively, to partition the traffic
network into several regions, fitting for dynamic traffic flow.
Next, we use the GNN to predict the criteria of choosing
the best partition in the building process of MCTS. With it,
we select a good network partition in a feasible time compared
to the enumeration method. Then, we combine Qmix with
GNN to extract the features of variant dimensions region
and cooperative control the entire traffic network. Finally,
we apply the feudal MARL to each region for global cooper-
ation control. In the experiment, we benchmark in a synthetic
and three real-world traffic networks. The results show better
performance of our approach over several state-of-the-art TSC
methods and our advantage in the large-scale traffic network.
In the future, we plan to further improve the partition methods
with prior knowledge and test it on real-world applications.

REFERENCES

[1] P. Koonce and L. Rodegerdts, “Traffic signal timing manual,” Federal
Highway Admin., Washington, DC, USA, Tech. Rep. FHWA-HOP-08-
024, 2008.

[2] E. Van der Pol and F. A. Oliehoek, “Coordinated deep reinforcement
learners for traffic light control,” in Proc. Learn., Inference Control
Multi-Agent Syst. (NIPS), 2016, pp. 1–9.

[3] H. Wei et al., “CoLight: Learning network-level cooperation for traffic
signal control,” in Proc. 28th ACM Int. Conf. Inf. Knowl. Manage.,
Nov. 2019, pp. 1913–1922.

[4] T. Chu, J. Wang, L. Codecà, and Z. Li, “Multi-agent deep reinforcement
learning for large-scale traffic signal control,” IEEE Trans. Intell. Transp.
Syst., vol. 21, no. 3, pp. 1086–1095, Mar. 2020.

[5] L. A. Prashanth and S. Bhatnagar, “Reinforcement learning with function
approximation for traffic signal control,” IEEE Trans. Intell. Transp.
Syst., vol. 12, no. 2, pp. 412–421, Jun. 2011.

[6] H. Wei, G. Zheng, H. Yao, and Z. Li, “IntelliLight: A reinforcement
learning approach for intelligent traffic light control,” in Proc. 24th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Jul. 2018,
pp. 2496–2505.

[7] H. Wei et al., “PressLight: Learning max pressure control to coordinate
traffic signals in arterial network,” in Proc. 25th ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining, Jul. 2019, pp. 1290–1298.

[8] C. Chen et al., “Toward a thousand lights: Decentralized deep reinforce-
ment learning for large-scale traffic signal control,” in Proc. AAAI Conf.
Artif. Intell., 2020, pp. 3414–3421.

[9] J. Ma and F. Wu, “Feudal multi-agent deep reinforcement learning for
traffic signal control,” in Proc. 19th Int. Conf. Auto. Agents Multiagent
Syst. (AAMAS), 2020, pp. 816–824.

[10] L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo planning,” in
Proc. Eur. Conf. Mach. Learn., 2006, pp. 282–293.

[11] T. Rashid, M. Samvelyan, C. Schroeder, G. Farquhar, J. Foerster, and
S. Whiteson, “QMIX: Monotonic value function factorisation for deep
multi-agent reinforcement learning,” in Proc. Int. Conf. Mach. Learn.,
2018, pp. 4295–4304.

[12] C. Gershenson, “Self-organizing traffic lights,” 2004,
arXiv:nlin/0411066.

[13] P. Varaiya, “The max-pressure controller for arbitrary networks of
signalized intersections,” in Proc. Adv. Dyn. Netw. Model. Complex
Transp. Syst., 2013, pp. 27–66.

[14] G. Zheng et al., “Learning phase competition for traffic signal con-
trol,” in Proc. 28th ACM Int. Conf. Inf. Knowl. Manage., Nov. 2019,
pp. 1963–1972.

[15] H. M. A. Aziz, F. Zhu, and S. V. Ukkusuri, “Learning-based traffic
signal control algorithms with neighborhood information sharing: An
application for sustainable mobility,” J. Intell. Transp. Syst., vol. 22,
no. 1, pp. 40–52, Jan. 2018.

[16] B. Xu, Y. Wang, Z. Wang, H. Jia, and Z. Lu, “Hierarchically and
cooperatively learning traffic signal control,” in Proc. AAAI Conf. Artif.
Intell., vol. 35, no. 1, 2021, pp. 669–677.

[17] M. A. Wiering, “Multi-agent reinforcement learning for traffic light
control,” in Proc. 17th Int. Conf. Mach. Learn., 2000, pp. 1151–1158.

[18] D. Liu, S. Baldi, W. Yu, and G. Chen, “On distributed implementation
of switch-based adaptive dynamic programming,” IEEE Trans. Cybern.,
vol. 52, no. 7, pp. 7218–7224, Jul. 2022.

[19] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A compre-
hensive survey on graph neural networks,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 32, no. 1, pp. 4–24, Jan. 2021.

[20] J. Zhou et al., “Graph neural networks: A review of methods and
applications,” AI Open, vol. 1, pp. 57–81, Jan. 2020.

[21] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Proc. Adv.
Neural Inf. Process. Syst., vol. 29, 2016, pp. 1–9.

[22] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional
neural networks for graphs,” in Proc. Int. Conf. Mach. Learn., 2016,
pp. 2014–2023.

[23] R. Ying, J. You, C. Morris, X. Ren, W. L. Hamilton, and J. Leskovec,
“Hierarchical graph representation learning with differentiable pooling,”
in Proc. 32nd Int. Conf. Neural Inf. Process. Syst., 2018, pp. 4805–4815.

[24] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph
sequence neural networks,” 2015, arXiv:1511.05493.

[25] H. Dai, Z. Kozareva, B. Dai, A. Smola, and L. Song, “Learning steady-
states of iterative algorithms over graphs,” in Proc. Int. Conf. Mach.
Learn., 2018, pp. 1106–1114.

[26] K. Tu, P. Cui, X. Wang, P. S. Yu, and W. Zhu, “Deep recursive network
embedding with regular equivalence,” in Proc. 24th ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining, Jul. 2018, pp. 2357–2366.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 30,2023 at 09:21:54 UTC from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

[27] W. Yu et al., “Learning deep network representations with adversarially
regularized autoencoders,” in Proc. 24th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, Jul. 2018, pp. 2663–2671.

[28] P. W. Battaglia et al., “Relational inductive biases, deep learning, and
graph networks,” 2018, arXiv:1806.01261.

[29] R. Levie, F. Monti, X. Bresson, and M. M. Bronstein, “CayleyNets:
Graph convolutional neural networks with complex rational spectral fil-
ters,” IEEE Trans. Signal Process., vol. 67, no. 1, pp. 97–109, Jan. 2019.

[30] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, “An end-to-end deep
learning architecture for graph classification,” in Proc. 32nd AAAI Conf.
Artif. Intell., 2018, pp. 1–8.

[31] W. Jiang and J. Luo, “Graph neural network for traffic forecasting: A
survey,” Exp. Syst. Appl., vol. 207, Nov. 2022, Art. no. 117921.

[32] J. Ye, J. Zhao, K. Ye, and C. Xu, “How to build a graph-based deep
learning architecture in traffic domain: A survey,” IEEE Trans. Intell.
Transp. Syst., vol. 23, no. 5, pp. 3904–3924, May 2022.

[33] Q. Zhang, Q. Jin, J. Chang, S. Xiang, and C. Pan, “Kernel-weighted
graph convolutional network: A deep learning approach for traffic fore-
casting,” in Proc. 24th Int. Conf. Pattern Recognit. (ICPR), Aug. 2018,
pp. 1018–1023.

[34] S. Guo, Y. Lin, N. Feng, C. Song, and H. Wan, “Attention based spatial–
temporal graph convolutional networks for traffic flow forecasting,” in
Proc. AAAI Conf. Artif. Intell., 2019, pp. 922–929.

[35] L. Ge, H. Li, J. Liu, and A. Zhou, “Temporal graph convolutional
networks for traffic speed prediction considering external factors,” in
Proc. 20th IEEE Int. Conf. Mobile Data Manage. (MDM), Jun. 2019,
pp. 234–242.

[36] B. Yu, M. Li, J. Zhang, and Z. Zhu, “3D graph convolutional networks
with temporal graphs: A spatial information free framework for traffic
forecasting,” 2019, arXiv:1903.00919.

[37] L. Yan et al., “Employing opportunistic charging for electric taxicabs to
reduce idle time,” in Proc. ACM Interact., Mobile, Wearable Ubiquitous
Technol., vol. 2, no. 1, Mar. 2018, pp. 1–25.

[38] X. Geng, X. Wu, L. Zhang, Q. Yang, Y. Liu, and J. Ye, “Multi-
modal graph interaction for multi-graph convolution network in urban
spatiotemporal forecasting,” 2019, arXiv:1905.11395.

[39] L. Bai, L. Yao, S. S. Kanhere, X. Wang, and Q. Z. Sheng, “STG2Seq:
Spatial–temporal graph to sequence model for multi-step passenger
demand forecasting,” 2019, arXiv:1905.10069.

[40] T. Nishi, K. Otaki, K. Hayakawa, and T. Yoshimura, “Traffic signal
control based on reinforcement learning with graph convolutional neural
nets,” in Proc. 21st Int. Conf. Intell. Transp. Syst. (ITSC), Nov. 2018,
pp. 877–883.

[41] Y. Wang, T. Xu, X. Niu, C. Tan, E. Chen, and H. Xiong, “STMARL: A
spatio-temporal multi-agent reinforcement learning approach for coop-
erative traffic light control,” IEEE Trans. Mobile Comput., vol. 21, no. 6,
pp. 2228–2242, Jun. 2022.

[42] V. Kosaraju, A. Sadeghian, R. Martín-Martín, I. Reid, H. Rezatofighi,
and S. Savarese, “Social-BiGAT: Multimodal trajectory forecasting using
bicycle-GAN and graph attention networks,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 32, 2019, pp. 1–10.

[43] Z. Zhao, H. Fang, Z. Jin, and Q. Qiu, “GISNet: Graph-based information
sharing network for vehicle trajectory prediction,” in Proc. Int. Joint
Conf. Neural Netw. (IJCNN), Jul. 2020, pp. 1–7.

[44] H. Wei, G. Zheng, V. Gayah, and Z. Li, “A survey on traffic signal
control methods,” 2019, arXiv:1904.08117.

[45] F. Wu and S. D. Ramchurn, “Monte-Carlo tree search for scalable
coalition formation,” in Proc. 29th Int. Joint Conf. Artif. Intell., Jul. 2020,
pp. 407–413.

[46] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Mach. Learn., vol. 47, no. 2, pp. 235–256,
2002.

[47] T. Chu, S. Qu, and J. Wang, “Large-scale traffic grid signal control with
regional reinforcement learning,” in Proc. Amer. Control Conf. (ACC),
Jul. 2016, pp. 815–820.

[48] J. Shi and J. Malik, “Normalized cuts and image segmentation,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888–905,
Aug. 2000.

[49] H. Zhang et al., “CityFlow: A multi-agent reinforcement learning
environment for large scale city traffic scenario,” in Proc. WWW, 2019,
pp. 1–5.

[50] S.-B. Cools, C. Gershenson, and B. D’Hooghe, “Self-organizing traffic
lights: A realistic simulation,” in Advances in Applied Self-Organizing
Systems (Advanced Information and Knowledge Processing). London,
U.K.: Springer, 2008, pp. 41–50.

[51] S. Jiang, Y. Huang, M. Jafari, and M. Jalayer, “A distributed multi-
agent reinforcement learning with graph decomposition approach for
large-scale adaptive traffic signal control,” IEEE Trans. Intell. Transp.
Syst., vol. 23, no. 9, pp. 14689–14701, Sep. 2022.

[52] A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz, Recent
Advances in Graph Partitioning. Cham, Switzerland: Springer, 2016.

[53] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for
partitioning graphs,” Bell Syst. Tech. J., vol. 49, no. 2, pp. 291–307,
Feb. 1970.

[54] G. Karypis and V. Kumar, “Multilevel k-way hypergraph partitioning,”
in Proc. 36th Annu. ACM/IEEE Design Autom. Conf., Aug. 1999,
pp. 343–348.

Jinming Ma received the bachelor’s degree from
Tianjin University in 2018. He is currently pursuing
the Ph.D. degree with the School of Computer
Science and Technology, University of Science and
Technology of China. His research interests include
reinforcement learning and multi-agent reinforce-
ment learning.

Feng Wu received the B.E. and Ph.D. degrees
from the University of Science and Technology of
China (USTC), in 2006 and 2011, respectively. He is
an Associate Professor with the School of Com-
puter Science and Technology, USTC. His research
interests include planning under uncertainty, multi-
agent systems, reinforcement learning, and robotics.
He has published over 60 refereed papers on these
topics in prestigious AI journals and conferences.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 30,2023 at 09:21:54 UTC from IEEE Xplore. Restrictions apply.

