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a b s t r a c t 

The multiple traveling repairman problem with profits consists of multiple repairmen serving a subset of 

all customers to maximize the revenues collected through the visited customers. To address this prob- 

lem, an effective hybrid search algorithm based on the memetic framework is proposed. In the proposed 

method, three features are integrated: a dedicated arc-based crossover to generate high-quality offspring 

solutions, a fast evaluation technique to reduce the complexity of navigating classical neighborhoods as 

well as a correcting step to ensure accurate evaluation of neighboring solutions. The performance of the 

algorithm on 470 benchmark instances were compared with those of the leading reference algorithms. 

The results show that the proposed algorithm outperforms the state-of-the-art algorithms by setting new 

records for 137 instances and matching the best-known results for 330 instances. The importance of the 

key search components of the algorithm was investigated. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

The traveling repairman problem with profits (TRPP) ( Dewilde, 

attrysse, Coene, Spieksma, & Vansteenwegen, 2013 ) is a general 

odel that can be stated as follows. Let G (V, E) be a complete

eighted graph, where V is the vertex set consisting of the depot 

 and the customer set V c = { 1 , 2 , . . . , n } , and E = { (i, j) : i, j ∈ V } is
he edge set, where each edge (i, j) is associated with a symmetric 

eight d i, j = d j,i (traveling time). A repairman begins his trip from 

he depot to collect a time-dependent revenue p i − l(i ) by visit- 

ng each customer and stops his travels when there are no posi- 

ive revenues. Here, p i represents the profit, and l(i ) is the waiting 

ime for each customer i ( l(0) = 0 ). Each customer can be visited

t most once. The objective of the TRPP is to determine an open 

amiltonian path such that the collected revenue 
∑ m 

i =0 [ p i − l(i )] + 

s maximized, where m is the number of visited customers, and 

 p i − l(i )] + is the larger value between p i − l(i ) and 0. 

The multiple TRPP (MTRPP) generalizes the TRPP by consider- 

ng multiple repairmen (servers or vehicles) to service customers. 

n the MTRPP, all the repairmen start their trips from the depot 

nd collect a time-dependent revenue independently. Let K ≥ 1 

e the number of repairmen, and a formal solution ϕ consists 
∗ Corresponding author. 
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f K Hamiltonian paths (or routes) { X 1 , X 2 , . . . , X K } , where each

ath X k = (x k 
0 
, x k 

1 
, . . . , x k m k 

) contains m k customers ( 
K ⋃ 

k =1 

X i ⊆ V and

 i ∩ X j = { 0 } , i � = j, ∀ i, j ∈ { 1 , 2 , . . . , K} ). The objective function can

e defined as follows: 

f (ϕ) = 

K ∑ 

k =1 

m k ∑ 

i =0 

[ 
p x k 

i 
− l(x k i ) 

] + 
(1) 

The aim of the MTRPP is then to find the solution ϕ 

∗ with a

aximal total collected revenue f (ϕ 

∗) . 
If none of the collected revenue p 

x k 
i 

− l(x k 
i 
) is negative, then 

q. (1) can be rewritten as follows. 

f (ϕ) = 

K ∑ 

k =1 

m k ∑ 

i =0 

p x k 
i 
−

K ∑ 

k =1 

m k ∑ 

i =1 

(m k − i + 1) · d x k 
i −1 

,x k 
i 

(2) 

q. (2) is useful for the fast evaluation of our search algorithm. 

The MTRPP is typically applied in humanitarian and emergency 

elief logistics. For instance, for post-disaster relief operations, K

omogeneous rescue teams start their trips from the base to de- 

iver emergency supplies and save survivors of damaged villages 

r cities. Assume that p i persons are to be rescued for a village i

nd one person is lost with each time step. The objective of the 

escue teams is to save as many lives as possible. This application 

cenario was also mentioned for the TRPP ( Dewilde et al., 2013 ) 

https://doi.org/10.1016/j.ejor.2022.04.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2022.04.007&domain=pdf
mailto:fuzhanghua@cuhk.edu.cn
https://doi.org/10.1016/j.ejor.2022.04.007


J. Ren, J.-K. Hao, F. Wu et al. European Journal of Operational Research 304 (2023) 381–394 

w

a

p

t

t

a

n

i

s

t

y

m

r

i

t

o

a

w

m

s

a

p

p

h

(

c

v

&

s

P

e

d

i

s

s

c

t

1

b

m

s

a

h

r

M

&

D

&

a

a

&

v

p

s

t

C

&

a

S

g

p

t

m

t

M

t

M

i

s

p

m

s

i

t  

t

s

d

a

b

c

a

t

t

b

t

S

a

c

s

2

2

o

r

t

d

d

c

p

w

a

a

(  

N

3

t

o

t

1

c

s

d  

d

i

d

m

C

s

ith a single rescue team. The results revealed that the MTRPP is 

 convenient model for scenarios that require several rescue teams. 

Existing studies on solving the MTRPP as well as some related 

roblems are briefly reviewed as follows. 

Two practical algorithms have been proposed for the MTRPP in 

he literature. In 2019, Lu, Benlic, Wu, & Peng (2019a) proposed 

he first memetic algorithm (MA-MTRPP) to solve the MTRPP. This 

lgorithm uses a randomized greedy construction phase, variable 

eighborhood search, route-based crossover operator for solution 

nitialization, local optimization, and solution recombination, re- 

pectively. MA-MTRPP outperformed the general CPLEX solver on 

he 240 benchmark instances introduced in that study. In the same 

ear, Avci & Avci (2019) developed a mixed-integer linear program- 

ing model and suggested an adaptive large neighborhood algo- 

ithm (ALNS) search approach (ALNS-MTRPP) for the MTRPP, which 

ncorporates a couple of problem-specific destroy operators and 

wo new randomized repair operators. The authors proposed an- 

ther set of 230 benchmark instances and a greedy randomized 

daptive search procedure with iterated local search (GRASP-ILS), 

hich was used as a reference heuristic. According to the experi- 

ental results, ALNS-MTRPP outperformed GRASP-ILS for most in- 

tances. 

The closely related TRPP is a special case of the MTRPP with 

 single repairman ( K = 1 ). Numerous heuristic algorithms were 

roposed to address the TRPP. In 2013, Dewilde et al. (2013) first 

roposed a tabu search algorithm incorporating multiple neighbor- 

oods and a greedy initialization procedure. In 2017, Avci & Avci 

2017) suggested a greedy randomized adaptive search procedure 

ombined with iterated local search, which outperformed the pre- 

ious algorithms by updating 46 best results. In 2019, Lu, Hao, 

 Wu (2019b) introduced a population-based hybrid evolutionary 

earch algorithm that outperformed previous algorithms. In 2020, 

ei, Mladenovi ́c, Uroševi ́c, Brimberg, & Liu (2020) developed a gen- 

ral variable neighborhood search approach integrating auxiliary 

ata structures to improve search efficiency. This algorithm dom- 

nated all the previous algorithms by updating 40 best-known re- 

ults and matching the best-known results for the remaining in- 

tances. As presented in this study, these auxiliary data structures 

an be beneficially extended to the MTRPP to design fast evalua- 

ion techniques for the generalized problem. 

The team orienteering problem (TOP) ( Chao, Golden, & Wasil, 

996 ) is another related problem, which states that a fixed num- 

er of homogeneous vehicles visit a subset of customers to 

aximize the collected profits within a traveling distance con- 

traint. Unlike the MTRPP, the profits of customers in the TOP 

re time independent, and distance constraints exist for the ve- 

icles. Various solution methods, including local search algo- 

ithms ( Hammami, Rekik, & Coelho, 2020; Tsakirakis, Marinaki, 

arinakis, & Matsatsinis, 2019; Vansteenwegen, Souffriau, Berghe, 

 Van Oudheusden, 2009 ), population-based algorithms ( Bouly, 

ang, & Moukrim, 2010; Dang, Guibadj, & Moukrim, 2013; Zettam 

 Elbenani, 2016 ), and exact methods based on branch-and-price 

nd the cutting plane technique ( Bianchessi, Mansini, & Sper- 

nza, 2018; Boussier, Feillet, & Gendreau, 2007; El-Hajj, Dang, 

 Moukrim, 2016; Poggi, Viana, & Uchoa, 2010 ), have been de- 

eloped for the TOP. The cumulative capacitated vehicle routing 

roblem is related to the MTRPP by considering capacity con- 

traints for the K repairmen (or vehicles). Popular algorithms for 

his problem include evolutionary algorithm ( Ngueveu, Prins, & 

alvo, 2010 ), adaptive large neighborhood search heuristic ( Ribeiro 

 Laporte, 2012 ), two-phase metaheuristic ( Ke & Feng, 2013 ), iter- 

ted greedy algorithms ( Nucamendi-Guillén, Angel-Bello, Martínez- 

alazar, & Cordero-Franco, 2018 ), and brand-and-cut-and-price al- 

orithm ( Lysgaard & Wøhlk, 2014 ). 

The MTRPP with multiple repairmen is a realistic model com- 

ared with the TRPP with a single repairman for real-life applica- 
382 
ions. However, contrary to the TRPP for which numerous solution 

ethods exist, only two principal heuristics have been designed for 

he MTRPP. Thus, tools for addressing MTRPP should be enhanced. 

oreover, the two existing algorithms for the MTRPP are sophis- 

icated and involve many parameters (13 parameters for ALNS- 

TRPP and 7 for MA-MTRPP). In addition, ALNS-MTRPP cannot sat- 

sfactorily handle large-scale instances (e.g., it requires 3 hours to 

olve 10 0 0-customer instances). 

In this study, we propose an easy-to-use (with only three 

arameters) and effective hybrid search algorithm based on the 

emetic framework to solve the MTRPP (named EHSA-MTRPP). We 

ummarize the contributions as follows. 

First, we propose an original arc-based crossover ( ABX ), which is 

nspired by experimental observation and backbone-based heuris- 

ics ( Wang, Lü, Glover, & Hao, 2013; Zhang, 2004 ). ABX can be used

o generate promising offspring solutions from high-quality parent 

olutions. 

Second, to ensure a high computational effectiveness, we intro- 

uce an approximation method to reduce the complexities in ex- 

mining the neighborhoods and prove that evaluating one neigh- 

oring solution in the underlying neighborhoods for the MTRPP 

an be performed in constant time. Moreover, in order to warrant 

n accurate evaluation, a correcting mechanism is executed during 

he search process. 

Finally, we provide novel lower bounds for 137 instances out of 

he 470 benchmark instances in the literature. These bounds can 

e used for future studies on the MTRPP. 

The rest of the paper is organized as follows. The next sec- 

ion is dedicated to the presentation of the proposed algorithm. In 

ection 3 , we describe the experimental setup, parameter tuning, 

nd computational results, followed by an investigation of the key 

omponents of the algorithm in Section 4 . Conclusions and per- 

pectives are provided in the last section. 

. Method 

.1. Main scheme 

The proposed hybrid search algorithm for the MTRPP is based 

n the framework of the memetic algorithm ( Moscato, 1999 ) and 

elies on five search components, namely a population initializa- 

ion procedure ( IniPool ), a variable neighborhood search proce- 

ure ( VNS ) to perform the local refinement, a perturbation proce- 

ure ( Spert ) to help escape from the local optimum, an arc-based 

rossover ( ABX ) to generate high-quality offspring solutions, and a 

ool updating procedure ( UpdatingPool ) to manage the population 

ith newly obtained solutions. 

Algorithm 1 presents the general scheme of the EHSA-MTRPP 

lgorithm. First, the algorithm calls IniPool (See Section 2.2 ) to cre- 

te the population P , where each solution ϕ i is improved by VNS 

See Section 2.3 ) and the best one is recorded in ϕ 

∗ (lines 8–12).

ext, the algorithm enters the main search procedure (lines 13–

2). For the while loop, we set C to 0 (line 14), randomly select 

wo solutions ϕ a and ϕ b from the population P , and generate an 

ffspring solution ϕ (lines 15–16) with ABX (See Section 2.5 ). Af- 

er recording ϕ by ϕ lb , the algorithm enters the inner loop (lines 

8–27) to investigate the new solutions by iterating the VNS pro- 

edure and the Spert procedure. For each inner loop, the current 

olution ϕ is first improved by VNS (line 19) and then used to up- 

ate the local best solution ϕ lb . If ϕ is superior to ϕ lb , ϕ lb is up-

ated, and the counter C is reset to 0 (lines 20–22). Otherwise, C

s incremented by 1 (lines 23–25). Then, the perturbation proce- 

ure Spert is triggered to displace the search from the local opti- 

um (line 26). The aforementioned procedures are repeated until 

reaches the search limit Limi (line 27), which indicates that the 

earch is exhausted (and trapped in a deep local optimal solution). 
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Algorithm 1 General scheme of the EHSA-MTRPP algorithm. 

1: Input : Input graph G (V, E) , population size Np, search limit Limi , 

objective function f and maximum allowed time T max 

2: Output : Best found solution ϕ 

∗

3: /* IniPool is used to generate the initial population. */ 

4: /* VNS is used to perform the local refinement. */ 

5: /* Spert is used to modify (slightly) the input local optimum. */ 

6: /* ABX is used to generate promising offspring solutions. */ 

7: /* Up datingPo ol is used to up date the p opulation. */ 

8: P = { ϕ 1 , . . . ϕ p } ← IniPool() // See Section 2.2 

9: for i ← 1 to Np do 

10: ϕ i ← VNS( ϕ i ) // See Section 2.3 

11: end for

12: ϕ 

∗ ← arg max { f (ϕ i ) , i = 1 , . . . , Np} 
13: while T max is not reached do 

14: C ← 0 

15: ( ϕ a , ϕ b ) ← RandomChoose( P ) 

16: ϕ ← ABX( ϕ a , ϕ b ) // See Section 2.5 

17: ϕ lb ← ϕ
18: repeat 

19: ϕ ← VNS( ϕ) 

20: if f (ϕ) > (ϕ lb ) then 

21: ϕ lb ← ϕ
22: C ← 0 

23: else 

24: C ← C + 1 

25: end if

26: ϕ ← Spert( ϕ) // See Section 2.4 

27: until C ≥ Limi 

28: Up datingPo ol( ϕ lb , P ) // See Section 2.6 

29: if f (ϕ lb ) > (ϕ 

∗) then 

30: ϕ 

∗ ← ϕ lb 

31: end if 

32: end while 

33: return ϕ 

∗
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fter the inner loop, the local best solution ϕ lb is used to upgrade 

he population (line 28) and to update the best solution ϕ 

∗ (lines 

9–31). When the cut-off time T max is reached (line 13), the algo- 

ithm stops and returns the best recorded solution ϕ 

∗ (line 33). 

.2. Initial population 

The initial population is filled with two types of solutions: half 

f them are created with a randomized construction method, while 

he remaining solutions are generated with a greedy construction 

ethod. 

For the randomized construction method, we first create a giant 

our with all the customers in a random order. Next, we separate 

he giant tour into K routes, where each route has the same num- 

er of customers. This method leads to a complete solution ϕ. 

We also use the greedy construction method proposed by Avci 

 Avci (2019) . Starting from an empty solution ϕ with K routes 

nd a vertex list V r = { 1 , 2 , . . . , n } , the greedy construction method

teratively adds one vertex to the solution following a greedy ran- 

omized principle. At each step, we evaluate the objective vari- 

tion of the solution ϕ for each operation Ope (v , k ) , which rep-

esents adding v ∈ V r to the route k . Next, we construct a candi-

ate set OP E c consisting of the q operations ( q is set to three here)

ith the largest contributions to the objective value. Finally, a ran- 

om operation Ope (v , k ) ∈ OP E c is performed to extend the partial

olution, and the vertex v was removed from V r . These steps are 

epeated until all the customers are added into the solution. For 

ore details, please refer to Avci & Avci (2019) . 
383 
.3. Solution improvement by variable neighborhood search 

For local optimization, we adopt the general variable neighbor- 

ood search (VNS) method ( Mladenovi ́c & Hansen, 1997 ), which 

as proved to be successful for both the TRPP ( Avci & Avci, 2017;

u et al., 2019b; Pei et al., 2020 ) and the MTRPP ( Lu et al., 2019a ). 

The proposed VNS procedure for the MTRPP is presented in 

lgorithm 2 . In the outer loop (lines 6–16), we first initialize the 

lgorithm 2 Local optimization with variable neighborhood 

earch. 

1: Input : Objective function f and current solution ϕ
2: Output : Local best solution ϕ
3: /* N 1 , N 2 , N 3 , N 4 represent Swap, Inser t, 2 - opt and Or - opt neigh-

b orho o ds, resp ectively. */ 

4: /* N 5 , N 6 , N 7 represent respectively I nter - Swap, I nter - I nsert and

Inter - 2 - opt neighb orho o ds. */ 

5: /* N Add , N Drop denote Add and Drop neighb orho o ds. */ 

6: repeat 

7: ϕ 

′ ← ϕ
8: S N ← { N 1 , N 2 , N 3 , N 4 , N 5 , N 6 , N 7 } 
9: ϕ ← LocalSearch (ϕ, N Add ) 

10: while S N � = ∅ do 

11: Randomly choose a neighborhood N ∈ S N 
12: ϕ ← LocalSearch (ϕ, N) 

13: ϕ ← LocalSearch (ϕ, N Drop ) 

14: S N ← S N \ { N} 
15: end while 

16: until f (ϕ 

′ ) ≥ f (ϕ) 

17: return ϕ 

ecorded solution ϕ 

′ with the current solution ϕ and the neigh- 

orhood set S N with seven neighborhoods N 1 - N 7 (lines 7–8). After 

 local search procedure based on N Add with the current solution 

line 9), the search enters the inner loop to explore the best lo- 

al solutions by alternating between different neighborhoods (lines 

0–15). For each inner loop, we randomly select a neighborhood 

 ∈ S N and use it to perform local optimization from the current 

olution (lines 11–12). Next, an additional local optimization based 

n N Drop is performed, and the neighborhood N is removed from 

he neighborhood set S N (lines 13–14). When the neighborhood set 

 N is explored ( S N = ∅ ), the inner loop ends. These steps are re-

eated until there are no improving solutions in the neighborhoods 

line 16) and ϕ is returned (line 17). It is worth emphasizing that 

he VNS procedure employs the first-improving strategy (accept- 

ng the first improving solution) and stops when there is no im- 

roving solution in the neighborhoods. As it only takes improving 

olution at each iteration, it is also called “Variable Neighborhood 

escent (VND)”. The solution obtained from this procedure corre- 

ponds usually to a deep local optimum. To escape from the trap, 

 perturbation phase (See Section 2.4 ) is triggered to displace the 

earch to a new search area. 

Our VNS procedure exploits three sets of nine neighborhoods 

here seven of them were also used in ( Avci & Avci, 2019; Lu et al.,

019a ). The first set of four neighborhoods changes the order of 

ustomers in one route as follows: 

• Swap ( N 1 ): The visiting positions of two customers in one 

route are interchanged. 
• Insert ( N 2 ): One customer is removed from its position and 

inserted to the position between two adjacent nodes in the 

same route. 
• 2 - opt ( N 3 ): Two nonadjacent edges are removed and re- 

placed with two new edges in the same route. 
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Fig. 1. Illustration of Inter - 2 - opt: suppose two routes X a (marked in blue) and X b 
(marked in orange) operating an Inter - 2 - opt produce two new routes X ′ a and X ′ 

b 
, 

where the blue dotted lines represent the edges to be removed. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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1 Note that preserving and transferring the shared components from the par- 

ents to the offspring is the basis of backbone-based crossovers ( Wang et al., 2013; 

Zhang, 2004 ). 
• Or - opt ( N 4 ): A block of h ( h = 2 , 3 ) consecutive customers

is removed from one route and inserted into two adjacent 

nodes in the same route. 

The second set of three neighborhoods is designed to change 

he customers between different routes as follows: 

• Inter - Swap ( N 5 ): The positions of two customers are inter- 

changed in two routes. 
• I nter - I nsert ( N 6 ): One customer is removed from one route 

and inserted to the position between two adjacent nodes in 

another route. 
• Inter - 2 - opt ( N 7 ): Two edges are removed from two routes 

and replaced with two new edges. A simple illustration is 

presented in Fig. 1 . 

The third set of two neighborhoods changes the set of visited 

ustomers as follows: 

• Ad d ( N Add ): One unselected customer is added to some posi- 

tion in some route. 
• Drop ( N Drop ): One customer is removed from one route. 

Notably, Pei et al. (2020) introduced a series of data struc- 

ures to realize the fast evaluation of the neighboring solutions 

n the neighborhoods N 1 - N 4 , N Add and N Drop for solving the re- 

ated TRPP, but they did not study the neighborhoods N 5 - N 7 . Here, 

e extend their method to the neighborhoods for the MTRPP. In 

ractice, each neighboring solution in our algorithm can be eval- 

ated in O (1) (proof given in Appendix Appendix A ), which is 

ore efficient than the reference algorithms in the literature ( Avci 

 Avci, 2019; Lu et al., 2019a ). The detailed comparisons of the 

omplexities in investigating various neighborhoods between the 

eference algorithms and the proposed algorithm are discussed in 

ection 2.7 . The complexities of investigating the aforementioned 

eighborhoods are summarized as follows. 

roposition 1. In the MTRPP, for the first set of four neighborhoods 

 N 1 - N 4 ) and the third set of two neighborhoods ( N Add and N Drop ), the

ime complexity of evaluating each neighboring solution is O (1) . Let 

 be the number of all customers and m be the number of visited 

ustomers in the solution. The time complexities of investigating these 

eighborhoods are given as follows. 

(a) Exploring the complete Swap neighborhood requires O (m 

2 ) . 

(b) Exploring the complete Insert neighborhood requires O (m 

2 ) . 

(c) Exploring the complete 2 - opt neighborhood requires O (m 

2 ) . 

(d) Exploring the complete Or - opt neighborhood requires 

O (m 

2 · h ) . 
384 
(e) Exploring the complete Ad d neighborhood requires O (m · (n −
m )) . 

(f) Exploring the complete Drop neighborhood requires O (m ) . 

roposition 2. For the second set of three neighborhoods ( N 5 - N 7 ), 

ach neighboring solution can be evaluated in O (1) . Let m be the 

umber of visited customers in the solution. The time complexities of 

xploring these neighborhoods are summarized as follows. 

(a) Exploring the complete Inter - Swap neighborhood can be fin- 

ished in O (m 

2 ) . 

(b) Exploring the complete I nter - I nsert neighborhood can be fin- 

ished in O (m 

2 ) . 

(c) Exploring the complete Inter - 2 - opt neighborhood can be fin- 

ished in O (m 

2 ) . 

Detailed proofs of Propositions 1 and 2 are presented in 

ppendix Appendix A . With Eq. (2) and a special array in Eq. (A.1) ,

e can efficiently investigate the aforementioned neighborhoods. 

otably, the fast evaluation techniques in Propositions 1 and 2 are 

ctually an approximation based on Eq. (2) , which is not strictly 

quivalent to Eq. (1) due to the existence of negative revenue 

odes. Therefore, a correcting step is applied to ensure an ac- 

urate evaluation of each neighboring solution by applying the 

rop operator within the local optimization procedure (line 13 in 

lgorithm 2 ). The influence of this correcting step is experimen- 

ally investigated in Section 4.2 . 

.4. Perturbation procedure 

To help the search escape from deep local optimum, we apply 

wo operators Insert and Ad d to perturb the local optimum. We 

rst perform St times the Insert operation by randomly selecting 

 route and inserting some customers to a random position in the 

oute. For the Ad d operation, we randomly add an unvisited cus- 

omer to the tail of a random route. This procedure is repeated 

ntil all the unvisited customers are added to the solution. The 

arameter St is determined by the experiments in Section 3.1 . We 

lso tested other perturbation methods, but the proposed method 

roved to be better. 

.5. Arc-based crossover 

In memetic algorithms, crossovers are used to generate diversi- 

ed offspring solutions from parent solutions at each generation. 

enerally, a meaningful crossover is expected to inherit useful at- 

ributes of the parent solutions and maintain diversity with respect 

o the parents ( Hao, 2012 ). 

Preliminary experiments revealed that the same arcs frequently 

ppear in high-quality solutions (See Section 4.5 ), which naturally 

ncourages us to preserve these shared arcs (meaningful compo- 

ents) in the offspring solution 

1 Following this observation, we 

ropose a dedicated arc-based crossover for the MTRPP. 

For a given solution ϕ with K paths { X 1 , . . . , X K } , where each

ath X k = (x k 
0 
, . . . , x k m k 

) contains m k customers, the corresponding 

rc set A is defined as follows: 

 = 

{(
x k i , x 

k 
i +1 

)
: x k i , x 

k 
i +1 ∈ X k , i ∈ [ 0 , m k − 1 ] , k ∈ [1 , K] 

}
(3) 

Given two parent solutions ϕ s and ϕ t , let V s and V t represent 

he set of selected customers, and A s and A t represent their corre- 

ponding arc sets, respectively. The arc-based crossover first copies 

ne parent solution (say ϕ s ) to the offspring solution, and then 

andomly inserts 50% of nonshared arcs of ϕ t ( A t \ A s ) into the
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ffspring solution, and finally removes the duplicated vertices if 

eeded. 

The proposed ABX crossover is presented in Algorithm 3 . First, 

lgorithm 3 Arc-based crossover ( ABX ). 

1: Input : Input graph G (V, E) , parent solutions ϕ s and ϕ t , the corre-

sponding arc sets of the parents solutions A s and A t 

2: Output : Offspring solution ϕ o 

3: /* RandomSel-Half-Arcs randomly selects 50% of arcs from a given 

set of arcs. */ 

4: /* V o is the set of the selected customers for ϕ o . */ 

5: /* V f is the set of nodes, which will be not removed or inserted to

other positions in future operations. */ 

6: ϕ o ← ϕ s 

7: V o ← V s 
8: V f = ∅ 
9: A u ← RandomSel-Half-Arcs( A t \ A s ) 

10: for Each arc (a, b) ∈ A s ∩ A t do 

11: V f ← V f ∪ { a, b} 
12: end for

13: for Each arc (a, b) ∈ A u do 

14: if a / ∈ V o and b / ∈ V o then 

15: Insert (a, b) to the tail of some route in ϕ o 

16: else if a ∈ V o and b / ∈ V o then 

17: Insert b to the position after a in ϕ o 

18: else if a / ∈ V o and b ∈ V o then 

19: Insert a to the position before b in ϕ o 

20: else if b / ∈ V f then 

21: Remove b from ϕ o 

22: Insert b to the position after a in ϕ o 

23: else if a / ∈ V f and b ∈ V f then 

24: Remove a from ϕ o 

25: Insert a to the position before b in ϕ o 

26: end if

27: V o ← V o ∪ { a, b} 
28: V f ← V f ∪ { a, b} 
29: end for

30: return ϕ o 

 s is copied to ϕ o , V s is copied to V o , V f is initialized as empty, and

n arc set A u is generated by randomly selecting 50% arcs from 

 t \ A s (lines 6–9). To preserve the shared arcs (a, b) ∈ A s ∩ A t in

he offspring solution ϕ o , we add the vertices of these arcs into 

he set V f (lines 10–12). The vertices in V f are not considered in 

he future operations. Next, we insert each arc (a, b) ∈ A u into the

ffspring solution and remove the duplicated vertices (lines 13–29) 

ccording to the following conditions: 

(1) If both a and b are not included in V o , the arc (a, b) is added

to the tail of some route (lines 14–15). 

(2) If only a is contained in V o , node b is inserted at the position

after a in ϕ o (lines 16–17). 

(3) If only b belongs to V o , node a is inserted at the position 

before b in ϕ o (lines 18–19). 

(4) If the two nodes are already in V o and b is not in V f , we

remove b from ϕ o and insert it at the position after a (lines 

20–22). 

(5) If the two nodes are already in V o and a is not in V f , we

remove a from ϕ o and insert it at the position before b (lines 

23–26). 

Both a and b are added into the set V o and V f after the afore-

entioned operations (lines 27–28), and the whole loop ends 

hen all the arcs (a, b) ∈ A u are added into the offspring. Finally,

he new generated offspring ϕ o is returned (line 30). 

Fig. 2 displays an illustrative example of the proposed crossover. 
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.6. Pool updating 

After the improvement of the offspring solution by the local re- 

nement procedure, the population is updated by the improved 

ffspring solution ϕ lb (See line 28 in Algorithm 1 ). In this study, 

e use a simple strategy: if ϕ lb differs from all the solutions in the 

opulation and is better than the worst solution in terms of the 

bjective value, ϕ lb replaces the worst solution in the population. 

therwise, ϕ lb is abandoned. We tested a diversity-quality updat- 

ng strategy, which considers not only the quality of the newly ob- 

ained solution but also its average distance to the other solutions 

o determine whether to accept ϕ lb into the population. However, 

he proposed simple updating strategy exhibited a superior perfor- 

ance. 

.7. Discussion 

EHSA-MTRPP differs from the reference algorithms ( Avci & Avci, 

019; Lu et al., 2019a ) in two aspects. 

EHSA-MTRPP employs fast neighborhood evaluation techniques 

n its local optimization procedure for the MTRPP for the first time. 

hese evaluation techniques ensure a higher computational effi- 

iency of neighborhood examination than those of the existing al- 

orithms such as ALNS-MTRPP ( Avci & Avci, 2019 ) and MA-MTRPP 

 Lu et al., 2019a ). To illustrate this point, Table 1 summarizes the 

arious neighborhoods as well as the complexities in investigating 

ach neighborhood in ALNS-MTRPP and MA-MTRPP. 

From Table 1 , we clearly remark that the proposed algorithm 

nvestigates the used neighborhoods efficiently. Notably, evaluating 

ne neighboring solution in the Inter - Or - opt neighborhood and the 

ouble - bridge neighborhood ( Double - bridge is a popular operator 

or the traveling salesman problem ( Lin & Kernighan, 1973 )) could 

lso be done in O (1) using Eq. (2) and the auxiliary data struc- 

ures. However, these neighborhoods are not helpful in improving 

he performance of our algorithm. Therefore, these two neighbor- 

oods are not used in the proposed algorithm. As these two neigh- 

orhoods are widely used in related routing problems, we give the 

etailed proof of their complexities in Appendix Appendix A . 

Additionally, the proposed algorithm adopts a dedicated arc- 

ased crossover, which can generate new offspring solutions in- 

eriting meaningful components (the shared arcs) and diversified 

rom the parent solutions. MA-MTRPP ( Lu et al., 2019a ) applies a 

oute-based crossover (RBX) ( Potvin & Bengio, 1996 ), which simply 

opies one parent solution to the offspring solution, replaces some 

oute of the offspring solution with a route from another parent 

olution, and removes the duplicated vertices if required. Our ex- 

eriments and observations revealed that the key components of 

he solutions are the “arcs” and not the “routes,” rendering ABX 

ore appropriate than RBX for solving the MTRPP. Experimental 

esults in Section 4.4 confirm these observations and demonstrate 

he effectiveness of the proposed algorithm with ABX compared to 

ts variant with RBX. 

. Computational results and comparative study 

This section presents computational experiments over the 

enchmark instances in the literature to evaluate the EHSA-MTRPP 

lgorithm. 

.1. Instances, reference algorithms and parameter setting 

Our computational experiments are based on two groups of 470 

enchmark instances from Avci & Avci (2019) (230 instances de- 

oted by Ins_Avci) and Lu et al. (2019a) (240 instances denoted by 

ns_Lu) 2 
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Fig. 2. Illustration of ABX on a 18-customer instance with two routes. ϕ s and ϕ t are two parent solutions, ϕ o is the solution copied from ϕ s , and ϕ ′ o is the generated offspring 

solution. A u is the set of arcs, which are randomly selected from the nonshared arcs of ϕ t . Here, V \ V i represents the set of unselected customers for the solution ϕ i , which 

can be ϕ s , ϕ t , ϕ o , and ϕ ′ o . The nodes of the shared arcs between ϕ s and ϕ t are marked in blue, while the nodes involved in inserting and removing are marked in red. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 

Summary of the neighborhood structures as well as their complexities in the reference algorithms and the proposed 

algorithm, where n depicts the number of customers, m is the number of selected customers, and h is the number of 

consecutive customers in the block for N 4 . 

Neighborhood ALNS-MTRPP ( Avci & Avci, 2019 ) MA-MTRPP ( Lu et al., 2019a ) EHSA-MTRPP 

Employment Complexity Employment Complexity Employment Complexity 

Swap
√ 

O (m 

2 lg n ) 
√ 

O (m 

3 ) 
√ 

O (m 

2 ) 

Insert
√ 

O (m 

2 lg n ) 
√ 

O (m 

3 ) 
√ 

O (m 

2 ) 

2 - opt
√ 

O (m 

2 lg n ) 
√ 

O (m 

3 ) 
√ 

O (m 

2 ) 

Or - opt
√ 

O (m 

2 lg n ) 
√ 

O (m 

3 ) 
√ 

O (m 

2 · h ) 

Inter - Swap
√ 

O (m 

2 lg n ) 
√ 

O (m 

3 ) 
√ 

O (m 

2 ) 

I nter - I nsert
√ 

O (m 

2 lg n ) 
√ 

O (m 

3 ) 
√ 

O (m 

2 ) 

Inter - 2 - opt
√ 

O (m 

2 lg n ) 
√ 

O (m 

3 ) 
√ 

O (m 

2 ) 

Inter - Or - opt
√ 

O (m 

2 lg n ) 
√ 

O (m 

3 ) ✕ - 

Ad d ✕ - ✕ - 
√ 

O (m · (n − m )) 

Drop ✕ - ✕ - 
√ 

O (m ) 

Double - bridge ✕ - 
√ 

O (m 

3 ) ✕ - 
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The 230 Ins_Avci instances were divided into 14 sets of in- 

tances according to the number of customers and servers (re- 

airmen). The first ten sets of instances were converted from in- 

tances of the TRPP ( Dewilde et al., 2013 ) ( n = 10, 20, 50, 10 0, 20 0)

y considering two and three servers. As each set of instances 

f the TRPP is composed of 20 instances, the authors have cre- 

ted 5 × 2 × 20 = 200 instances. The other four sets of instances 

re of larger sizes, including 10 instances with 500 customers and 

0 servers, 10 instances with 500 customers and 20 servers, five 

nstances with 750 customers and 100 servers, and five instances 

ith 10 0 0 customers and 50 servers. 

The 240 Ins_Lu instances are also based on instances of the 

RPP ( Dewilde et al., 2013 ) and were divided into 12 sets of in-

tances (with n = 20, 50, 100, 200 and two, three, and four servers),

here each set is composed of 20 instances. Unlike the Ins_Avci 

nstances, Lu et al. (2019a) adjusted the profit for each customer 

f the instances to ensure a high-quality solution to hold approx- 

mately 75% to 95% of all the customers. Therefore, each customer 

 was assigned a non-negative profit p i , which is a random integer 

etween � d 0 ,i � and � n 
k 

×
∑ 

(i, j) ∈ E d i, j 

| E| � , where n is the number of all

ustomers and k is the number of servers. 

The proposed EHSA-MTRPP algorithm was programmed in C++ 

nd compiled with the g++ 7.5.0 compiler and the -O3 opti- 

ization flag 3 All the experiments reported in this work were 

erformed on a computer with Intel Xeon(R) E5-2695 processor 
2 These instances are available from: https://github.com/REN-Jintong/MTRPP . 
3 The code of our algorithm will be available at the Github page of footnote 2 . 

i

M

f

c

o

386 
2.1 GHz CPU and 2 GB RAM). The experimental environments of 

he reference algorithms are listed as follows. 

- The ALNS-MTRPP algorithm ( Avci & Avci, 2019 ) was coded 

in Matlab 9.1.0, and run on a personal computer equipped 

with Intel(R) Core (TM) i7-5500U processor (2.4 GHz and 8 

GB RAM). 

- The MA-MTRPP algorithm ( Lu et al., 2019a ) was programmed 

in C++ and compiled with g++. The experiments were ex- 

ecuted on a computer with an Intel Xeon(R) CPU E5-2695 

processor (2.1 GHz CPU and 2 GB RAM). 

The reference results for the ALNS-MTRPP algorithm are ex- 

racted from Avci & Avci (2019) for the 230 Ins_Avci instances, 

hile the results for the MA-MTRPP algorithm are from Lu et al. 

2019a) for the 240 Ins_Lu instances. Unfortunately, the source 

odes of these reference algorithms are not available. Therefore, 

o ensure a fair comparison, we performed two experiments on 

he two groups of instances. Following the experimental setup in 

he literature, EHSA-MTRPP was run independently five times with 

ifferent seeds on each Ins_Avci instance while 10 times on the 

ns_Lu instances. The stopping condition in the literature is a pre- 

xed maximum number of iterations, whereas in EHSA-MTRPP a 

aximum cut-off time is used. The average running time of ALNS- 

TRPP ( Avci & Avci, 2019 ) was typically several hours for large 

nstances, and the average time to get the best solution for MA- 

TRPP ( Lu et al., 2019a ) was approximately 300 and 500 seconds 

or the 200 customer instances. For fair comparisons, we set our 

ut-off time T max to be twice the number of customers (in sec- 

nds). In practice, EHSA-MTRPP can attain superior solutions than 

https://github.com/REN-Jintong/MTRPP
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Table 2 

Parameters of EHSA-MTRPP tuned with the Irace package. 

Parameter Description Type Value range 

Limi Search limit Integer [0, 30] 

St Strength of the Insert perturbation Integer [0, 100] 

Np Number of population Categorical {6, 8, 10, 20, 50, 100} 

Table 3 

Results of the reference algorithm ALNS-MTRPP( Avci & Avci, 2019 ) and EHSA-MTRPP on the 230 Ins_Avci instances. Each instance was solved five times according 

to Avci & Avci (2019) . The optimal solutions for the instances of “Size = 10 , K = 2 , 3 ” are known, but their timing information is not available. 

Size K ALNS-MTRPP EHSA-MTRPP p-value δ W M F 

Best Average Tavg Best Average Tavg 

10 2 2114.85 2114.85 0.00 2114.85 2114.85 0.03 NA 0.000% 0 20 0 

10 3 2230.60 2230.60 0.00 2230.60 2230.60 0.03 NA 0.000% 0 20 0 

20 2 9074.60 9074.60 3.15 9074.60 9074.60 0.06 NA 0.000% 0 20 0 

20 3 9450.45 9450.45 3.10 9450.45 9450.45 0.06 NA 0.000% 0 20 0 

50 2 55469.15 55468.55 35.50 55469.15 55469.15 0.82 NA 0.000% 0 20 0 

50 3 57184.85 57184.45 30.85 57185.35 57185.35 0.78 3.17 ×10 −1 0.001% 1 19 0 

100 2 226899.95 226895.80 346.45 226900.95 226900.47 22.96 1.02 ×10 −1 0.000% 0 20 0 

100 3 231954.05 231947.30 551.05 231958.70 231954.23 29.80 1.80 ×10 −1 0.002% 1 19 0 

200 2 893183.35 892864.45 3600.00 893513.85 893374.88 263.23 1.20 ×10 −4 0.037% 19 0 1 

200 3 907775.35 907611.55 3600.00 907950.35 907841.50 258.94 8.84 ×10 −5 0.019% 20 0 0 

500 10 1428716.30 1422361.10 10800.00 1437256.40 1436265.76 898.97 5.06 ×10 −3 0.598% 10 0 0 

500 20 692074.30 688804.60 10800.00 694406.60 694114.40 897.70 5.06 ×10 −3 0.337% 10 0 0 

750 100 4000199.00 3966184.40 43200.00 4000585.60 4000541.60 1352.60 4.31 ×10 −2 0.010% 5 0 0 

1000 50 5186645.80 5066567.40 43200.00 5191726.40 5191527.76 1757.60 4.31 ×10 −2 0.098% 5 0 0 

Avg. 500212.50 496401.17 3527.83 500848.55 500765.52 195.88 
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he reference algorithms with less time for most of the benchmark 

nstances. 

To determine the parameters listed in Table 2 , we used an au- 

omatic parameter tuning tool Irace ( López-Ibáñez, Dubois-Lacoste, 

áceres, Birattari, & Stützle, 2016 ). In this experiment, we selected 

0 large and difficult instances as the training instances and set the 

aximum number of runs (tuning budget) to 20 0 0. 

According to the tuning experiment, the parameters determined 

y Irace are Limi = 2 , St = 11 , and Np = 10 . We used this parameter

etting for EHSA-MTRPP for all our computational experiments. 

.2. Comparative studies 

This section presents the experimental results obtained by 

HSA-MTRPP with respect to the reference algorithms ( Avci & Avci, 

019; Lu et al., 2019a ) over the two groups of 470 benchmark in-

tances. 

Table 3 lists the overall results of the reference algorithm ALNS- 

TRPP and our EHSA-MTRPP algorithm on the 230 Ins_Avci in- 

tances (better results are indicated in bold). Columns “Size” and 

K” display the numbers of customers and servers. Columns “Best,”

Average,” and “Tavg” (columns 3–5) denote the best found re- 

ults, average found results, and average time to obtain the best 

ound solutions, respectively, for ALNS-MTRPP. The following three 

olumns depict the same information for EHSA-MTRPP (all the 

forementioned values are averaged over the instances of each set). 

olumn “p-value” lists the results of the Wilcoxon signed rank 

ests of the best found results (column “Best”) between ALNS- 

TRPP and EHSA-MTRPP, where “NA” indicates no difference be- 

ween the two groups of results. Next, column “δ” presents an im- 

rovement in the percentage of the best objective value found by 

HSA-MTRPP over the best objective value of ALNS-MTRPP. The last 

hree columns list the number of instances for which the EHSA- 

TRPP algorithm improved (“W”), matched (“M”), or failed (“F’) to 

ttain the best found results reported in Avci & Avci (2019) . Finally, 

ow “Avg.” depicts the average values of the corresponding indica- 

ors. 
387 
From row “Avg.” of Table 3 , we remark that EHSA-MTRPP out- 

erformed ALNS-MTRPP in terms of the best found results and 

he average found results. The two algorithms exhibited the same 

erformance for the first five sets of instances (instances of small 

izes), whereas for the remaining nine sets of instances, EHSA- 

TRPP outperformed the reference algorithm ALNS-MTRPP both in 

erms of solution quality (“Best” and “Average”) and running time 

column “Tavg”). In particular, the results of the Wilcoxon signed 

ank test (column “p-value”) revealed that a considerable differ- 

nce exists between the best found results between ALNS-MTRPP 

nd EHSA-MTRPP over the last six set of instances (p-value < 0.05). 

verall, EHSA-MTRPP clearly dominated ALNS-MTRPP by updating 

he best records (new lower bounds) for 71 instances, matching 

he best-known results for 158 instances, and only missing one 

est-known result. 

Using similar column headings as Table 3, Table 4 summarizes 

he overall results of MA-MTRPP and EHSA-MTRPP on the 240 

ns_Lu instances. 

Row “Avg.” in Table 4 reveals that EHSA-MTRPP achieved a su- 

erior performance (column “Best” and “Average”) to that of MA- 

TRPP with a shorter average time (66.45 seconds compared to 

he 102.64 seconds achieved by MA-MTRPP). For each set of in- 

tances, EHSA-MTRPP exhibited a superior or equal performance in 

erms of the best found results and average found results. In par- 

icular, the proposed algorithm outperformed MA-MTRPP on the 

ast three sets of large instances confirmed by the Wilcoxon signed 

ank test (p-value < 0.05). In addition, EHSA-MTRPP required less 

ime (column “Tavg”) than MA-MTRPP did to attain the best found 

olutions for each set of instances. Overall, EHSA-MTRPP updated 

6 best records (new lower bounds), matched the best-known re- 

ults for 172 instances, and missed only two best-known results. 

In summary, EHSA-MTRPP provided considerably superior re- 

ults than the reference algorithms on the 470 benchmark in- 

tances by establishing 137 new record results (29%) and match- 

ng best-known results for 330 instances (70%). The detailed com- 

arisons between the reference algorithms ( Avci & Avci, 2019; Lu 

t al., 2019a ) and EHSA-MTRPP are available at https://github.com/ 

EN-Jintong/MTRPP . 

https://github.com/REN-Jintong/MTRPP
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Table 4 

Results of the reference algorithm MA-MTRPP ( Lu et al., 2019a ) and EHSA-MTRPP on the instances of Ins_Lu. Each instance was solved 10 times 

according to Lu et al. (2019a) . The optimal solutions for small instances (“Size = 20 , K = 2 , 3 , 4 ”) are known. 

Size K MA-MTRPP EHSA-MTRPP p-value δ W M F 

Best Average Tavg Best Average Tavg 

20 2 3937.60 3937.60 1.31 3937.60 3937.60 0.05 NA 0.000% 0 20 0 

20 3 2399.20 2399.20 1.29 2399.20 2399.20 0.05 NA 0.000% 0 20 0 

20 4 1733.40 1733.40 1.23 1733.40 1733.40 0.06 NA 0.000% 0 20 0 

50 2 27172.15 27172.15 7.38 27173.55 27173.55 1.02 1.09 ×10 −1 0.005% 3 17 0 

50 3 17523.55 17523.55 6.26 17523.55 17523.55 0.66 NA 0.000% 0 20 0 

50 4 13049.05 13049.05 5.72 13049.25 13049.25 0.75 1.80 ×10 −1 0.002% 2 18 0 

100 2 113566.35 113560.76 46.13 113567.10 113566.60 21.44 1.80 ×10 −1 0.001% 2 18 0 

100 3 76976.35 76972.48 37.85 76976.65 76976.24 23.31 3.17 ×10 −1 0.000% 1 19 0 

100 4 57188.40 57186.69 32.55 57188.55 57188.53 21.07 3.17 ×10 −1 0.000% 1 19 0 

200 2 472301.40 472002.08 455.39 472499.25 472354.94 254.16 1.03 ×10 −4 0.042% 19 0 1 

200 3 321136.55 320912.21 358.27 321278.75 321175.57 245.66 8.86 ×10 −5 0.044% 20 0 0 

200 4 236694.15 236539.09 278.37 236805.20 236720.93 229.22 1.55 ×10 −4 0.047% 18 1 1 

Avg. 111973.18 111915.69 102.64 112011.00 111983.28 66.45 

Table 5 

Results of EHSA-MTRPP-NoFast and EHSA-MTRPP on large benchmark instances. Each instance was solved 10 times, and the cut-off time was set to be twice the 

number of customers. 

Size K EHSA-MTRPP-NoFast EHSA-MTRPP p-value δ W M F 

Best Average Tavg Best Average Tavg 

Ins_Avci 

200 2 893247.90 892891.18 169.58 893513.85 893374.88 263.23 1.03 ×10 −4 0.030% 19 0 1 

200 3 907732.95 907532.35 169.48 907950.35 907841.50 258.94 8.86 ×10 −5 0.024% 20 0 0 

500 10 1431017.90 1428561.78 500.05 1437256.40 1436265.76 898.97 5.06 ×10 −3 0.436% 10 0 0 

500 20 692814.30 691839.16 500.21 694406.60 694114.40 897.70 5.06 ×10 −3 0.230% 10 0 0 

750 100 3999139.60 3948547.72 754.74 4000585.60 4000541.60 1352.60 4.31 ×10 −2 0.036% 5 0 0 

1000 50 5180266.20 5116501.24 1003.76 5191726.40 5191527.76 1757.60 4.31 ×10 −2 0.221% 5 0 0 

Ins_Lu 

200 2 472354.10 471965.12 325.62 472499.25 472354.94 254.16 7.80 ×10 −4 0.031% 19 0 1 

200 3 321165.95 320919.83 327.09 321278.75 321175.57 245.66 1.32 ×10 −4 0.035% 19 1 0 

200 4 236709.90 236544.92 330.46 236805.20 236720.93 229.22 1.32 ×10 −4 0.040% 19 1 0 
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. Additional results 

This section first presents additional results to demonstrate the 

ritical roles of the fast evaluation technique, the Drop operator 

nd the arc-based crossover for the proposed algorithm. Further- 

ore, we experimentally compared the proposed algorithm to the 

ariant with RBX and revealed the rationale behind the proposed 

rossover. 

.1. Influence of the fast evaluation technique in the neighborhood 

tructure 

To investigate the influence of the fast evaluation technique 

n our algorithm, we created a variant of EHSA-MTRPP where 

he fast evaluation technique (named EHSA-MTRPP-NoFast) was 

isabled. We used the parameters in Section 3.1 and ran both 

HSA-MTRPP-NoFast and EHSA-MTRPP independently 10 times on 

ach large-size instance ( n ≥ 200 ). The cut-off time was set to be 

wice the number of customers. Using similar column headings 

s Table 4, Table 5 summarizes the comparative results of EHSA- 

TRPP-NoFast and EHSA-MTRPP over large instances from Ins_Avci 

nd Ins_Lu (Better results are marked in bold). 

From columns “Best” and “Average” in Table 5 , one can con- 

lude that EHSA-MTRPP outperformed EHSA-MTRPP-NoFast for 

ach set of instances, which was also confirmed by the Wilcoxon 

igned rank tests ( p-value < 0 . 05 ). 

To illustrate the effectiveness of the fast evaluation technique, 

e performed another experiment by running both algorithms 

ndependently 10 times on nine instances of various sizes and 

ecorded the numbers of the visited neighboring solutions. The 

ut-off time was also set to be twice the number of customers. 
388 
ig. 3 displays the average ratio of the visited solutions of EHSA- 

TRPP over EHSA-MTRPP-NoFast for the instances of different 

izes. EHSA-MTRPP visited more neighboring solutions than EHSA- 

TRPP-NoFast did for all selected instances. The dominance of our 

lgorithm with the fast evaluation technique becomes even more 

lear as the size of the instance increases. In summary, the results 

n Table 5 and in Fig. 3 demonstrate that the fast evaluation tech- 

ique can help the proposed algorithm to efficiently explore the 

earch space and contributes to the performance of the proposed 

lgorithm. 

.2. Influence of the Drop operator in the neighborhood structure 

As shown in Section 2.3 , the Drop operator (line 13 in 

lgorithm 2 ) is applied after the local optimization with a neigh- 

orhood to eliminate the negative revenue nodes and get more ac- 

urate fitness function by the fast evaluation technique. This sec- 

ion investigates the influences of the Drop operator on the per- 

ormance of the proposed algorithm, by focusing on the following 

uestions: what happens if the Drop operator is disabled or if it is 

pplied very frequently after each solution transition? 

To answer these questions, we first studied the impacts of the 

rop operator over the VNS procedure. For this, we extracted the 

NS procedure from EHSA-MTRPP to create two variants: VNS- 

oDrop by deleting the Drop operator (line 13 in Algorithm 2 ) and 

NS-EachDrop by applying the Drop operator after each move (i.e., 

fter each solution transition) in the local optimization. We ran the 

wo variants VNS-NoDrop and VNS-EachDrop to solve 9 represen- 

ative instances (100 runs per variant and per instance). The best 

ound solutions and the running time were recorded. 
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Fig. 3. Average ratio of the visited solutions of EHSA-MTRPP over EHSA-MTRPP-NoFast for nine instances of different sizes. “Size_index_K” for each instance indicates the 

number of customers, the instance index, and the number of routes. Each instance was solved 10 times independently, and the cut-off time was set to twice the number of 

customers. 

Fig. 4. Bar charts of VNS-NoDrop, VNS and VNS-EachDrop for solving 9 representative instances. The results were averaged over 100 independent executions of each com- 

pared algorithm. 
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Fig. 4 summarizes the corresponding bar charts that describe 

he averaged best objective values (blue bars) and average running 

ime (red bars) of VNS with respect to its variants VNS-NoDrop and 

NS-EachDrop. We observe that VNS and VNS-EachDrop outper- 

orm VNS-NoDrop in terms of the best found solutions for all the 

ases. In particular, VNS uses equal or less time to achieve better 

esults than VNS-NoDrop. Between VNS and VNS-EachDrop, VNS- 

achDrop obtains better results (except for 750_1_100) than VNS 

ut uses more time. In summary, the Drop operator plays a pos- 

tive role to the local optimization procedure. By more frequently 

pplying the Drop operator (eliminating the influence of the neg- 

tive revenue nodes), VNS-EachDrop finds better results than VNS 

hile requiring more computation time. 
389 
To assess the impacts of the Drop operator within the 

HSA-MTRPP algorithm, we created an algorithmic variant 

HSA-MTRPP-EachDrop by replacing VNS with VNS-EachDrop in 

lgorithm 1 (line 19) and tested EHSA-MTRPP-EachDrop on the 

arge benchmark instances using the same experimental setup in 

ection 3.1 . The comparative results of EHSA-MTRPP-EachDrop and 

HSA-MTRPP are shown in Table 6 . For the best found results, 

HSA-MTRPP-EachDrop performed better than EHSA-MTRPP over 

 sets of instances, but the statistically significant differences were 

ot confirmed by the Wilcoxon signed rank tests (p-value > 0.05). 

n the other hand, EHSA-MTRPP had a better performance over 

he remaining instances, and dominated EHSA-MTRPP-EachDrop 

n three sets of them (confirmed by p-value < 0.05). For the av- 
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Table 6 

Results of EHSA-MTRPP-EachDrop and EHSA-MTRPP on large benchmark instances. Each instance was solved 10 times, and the cut-off time was set to be twice 

the number of customers. 

Size K EHSA-MTRPP-EachDrop EHSA-MTRPP p-value δ W M F 

Best Average Tavg Best Average Tavg 

Ins_Avci 

200 2 893515.30 893323.11 130.83 893513.85 893374.88 263.23 7.06 ×10 −1 -0.000% 7 6 7 

200 3 907921.85 907815.46 118.07 907950.35 907841.50 258.94 2.31 ×10 −2 0.003% 11 7 2 

500 10 1436975.30 1435948.48 464.07 1437256.40 1436265.76 898.97 3.86 ×10 −1 0.020% 6 0 4 

500 20 694387.30 694093.98 453.27 694406.60 694114.40 897.70 9.59 ×10 −1 0.003% 4 0 6 

750 100 4000562.40 4000520.92 708.07 4000585.60 4000541.60 1352.60 4.31 ×10 −2 0.001% 5 0 0 

1000 50 5191788.20 5191568.52 822.56 5191726.40 5191527.76 1757.60 3.45 ×10 −1 -0.001% 2 0 3 

Ins_Lu 

200 2 472508.80 472309.32 220.51 472499.25 472354.94 254.16 9.53 ×10 −1 -0.002% 5 11 4 

200 3 321278.25 321140.49 213.01 321278.75 321175.57 245.66 8.59 ×10 −1 0.000% 6 11 3 

200 4 236794.90 236682.46 206.16 236805.20 236720.93 229.22 4.69 ×10 −2 0.004% 7 10 3 

Table 7 

Results of ILS-MTRPP and EHSA-MTRPP on large instances from the benchmark. Each instance was solved 10 times, and the cut-off time was set to be twice the 

number of customers. 

Size K ILS-MTRPP EHSA-MTRPP p-value δ W M F 

Best Average Tavg Best Average Tavg 

Ins_Avci 

200 2 893225.25 892997.62 106.16 893513.85 893374.88 263.23 8.86 ×10 −5 0.032% 20 0 0 

200 3 907796.10 907666.30 97.70 907950.35 907841.50 258.94 8.84 ×10 −5 0.017% 20 0 0 

500 10 1435567.80 1434542.62 213.20 1437256.40 1436265.76 898.97 5.06 ×10 −3 0.118% 10 0 0 

500 20 693796.30 693456.04 215.12 694406.60 694114.40 897.70 5.06 ×10 −3 0.088% 10 0 0 

750 100 4000456.40 4000414.68 320.81 4000585.60 4000541.60 1352.60 4.31 ×10 −2 0.003% 5 0 0 

1000 50 5191550.60 5191326.92 520.71 5191726.40 5191527.76 1757.60 4.31 ×10 −2 0.003% 5 0 0 

Ins_Lu 

200 2 472282.15 472016.28 198.16 472499.25 472354.94 254.16 2.93 ×10 −4 0.046% 19 0 1 

200 3 321140.15 320982.75 201.67 321278.75 321175.57 245.66 8.84 ×10 −5 0.043% 20 0 0 

200 4 236703.05 236592.84 199.80 236805.20 236720.93 229.22 8.84 ×10 −5 0.043% 20 0 0 
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rage results, EHSA-MTRPP dominated the EHSA-MTRPP-EachDrop 

lmost over all sets of instances. 

Finally, we investigated the impacts of the Drop operator over 

he EHSA-MTRPP algorithm in terms of time-consumption. We ob- 

erve that the Drop operator generally consumed more time with 

HSA-MTRPP-EachDrop than with EHSA-MTRPP. As an example, 

he Drop operator consumed 3.45% of the total time for EHSA- 

TRPP-EachDrop against 0.20% for EHSA-MTRPP, when they were 

sed to solve the large instance 10 0 0_1_50. Nevertheless, call- 

ng the Drop operator after each move (in EHSA-MTRPP-EachDrop) 

oesn’t excessively increase the time given that Drop has a linear 

ime complexity. Instead, the most time-consuming component in 

oth algorithms is the local search with the other neighborhoods 

line 12, Algorithm 2 ). 

To sum, EHSA-MTRPP has a slightly better performance than 

HSA-MTRPP-EachDrop on the benchmark instances. However, 

HSA-MTRPP-EachDrop also provides a number of results better 

han EHSA-MTRPP. We conclude that EHSA-MTRPP-EachDrop is a 

iable alternative for solving the MTRPP. 

.3. Influence of the crossover operator 

This section explores the contributions of the arc-based 

rossover to our algorithm. We created an EHSA-MTRPP variant 

ILS-MTRPP) by disabling ABX (lines 15–16) in Algorithm 1 . Using 

he same experimental setup in Section 3.1 , another experiment 

as performed on the benchmark instances of large size, and the 

esults are presented in Table 7 with the same column headings as 

able 5 (better results are marked in bold). 

Columns “Best” and “Average” in Table 7 indicate that EHSA- 

TRPP clearly dominated ILS-MTRPP for each set of instances (only 

issing one instance in “Size = 200, K= 2” in Ins_Lu). The domi- 

ance is confirmed by the results of the Wilcoxon signed rank tests 
390 
 p-value < 0 . 05 ). This experiment revealed that ABX contributed 

ositively to the performance of our EHSA-MTRPP algorithm. 

.4. Compared to the route-based crossover (RBX) in the literature 

This section compares the arc-based crossover and the route- 

ased crossover, which is used in the reference algorithm MA- 

TRPP ( Lu et al., 2019a ). We created an EHSA-MTRPP vari- 

nt (EHSA-MTRPP-RBX) by replacing ABX with RBX (line 16 in 

lgorithm 1 ). On each large-size instance, both algorithms were in- 

ependently run 10 times using the parameters in Section 3.1 . The 

ut-off time was always set to be twice the number of customers. 

he results are summarized in Table 8 , which uses the same col- 

mn headings as Table 5 (Better results are indicated in bold). 

The results revealed that with the exception of a few cases, 

HSA-MTRPP outperformed EHSA-MTRPP-RBX on all sets of in- 

tances in terms of the best found results (column “Best”) and the 

verage found results (column “Average”), and the Wilcoxon signed 

ank tests ( p-value < 0 . 05 ) indicate that significant differences ex- 

st for eight sets of results (except for the instances of “Size = 750, 

= 100”). This experiment confirmed that the ABX crossover is 

ore appropriate than RBX for the MTRPP. 

.5. Rationale behind the arc-based crossover 

We experimentally investigated the rationale behind ABX by 

nalyzing the structural similarities between high-quality solu- 

ions. For two given solutions ϕ 1 and ϕ 2 with their correspond- 

ng arc sets A 1 and A 2 , their similarity is defined by Sim (ϕ 1 , ϕ 2 ) =| A 1 ∩ A 2 | | A 1 ∪ A 2 | . Generally, the larger the similarity between two solutions 

s, the more arcs they share. 

We ran the EHSA-MTRPP algorithm 100 times on each of the 

elected 16 instances (in different sizes) while recording the best 



J. Ren, J.-K. Hao, F. Wu et al. European Journal of Operational Research 304 (2023) 381–394 

Table 8 

Results of EHSA-MTRPP-RBX and EHSA-MTRPP on large instances from the benchmark. Each instance was solved 10 times, and the cut-off time was set to be 

twice the number of customers. 

Size K EHSA-MTRPP-RBX EHSA-MTRPP p-value δ W M F 

Best Average Tavg Best Average Tavg 

Ins_Avci 

200 2 893420.60 893254.29 156.76 893513.85 893374.88 263.23 2.35 ×10 −4 0.010% 19 0 1 

200 3 907886.65 907784.43 154.88 907950.35 907841.50 258.94 1.28 ×10 −3 0.007% 18 1 1 

500 10 1436503.90 1435606.38 379.31 1437256.40 1436265.76 898.97 5.06 ×10 −3 0.052% 10 0 0 

500 20 694289.30 693986.20 406.29 694406.60 694114.40 897.70 5.06 ×10 −3 0.017% 10 0 0 

750 100 4000559.80 4000520.52 641.77 4000585.60 4000541.60 1352.60 2.25 ×10 −1 0.001% 4 0 1 

1000 50 5191587.40 5191416.32 751.44 5191726.40 5191527.76 1757.60 4.31 ×10 −2 0.003% 5 0 0 

Ins_Lu 

200 2 472466.60 472286.13 300.66 472499.25 472354.94 254.16 3.76 ×10 −3 0.007% 17 1 2 

200 3 321230.30 321127.52 297.78 321278.75 321175.57 245.66 3.40 ×10 −4 0.015% 18 1 1 

200 4 236781.60 236703.33 302.65 236805.20 236720.93 229.22 7.37 ×10 −4 0.010% 16 2 2 

Fig. 5. Similarity between high-quality solutions for 16 instances of different sizes. Each instance was solved 100 times independently with a cut-off time per run set to 

twice the number of customers. 
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ound solution in each run, and the cut-off time per run was al- 

ays set to twice the number of customers. For each instance, 

e calculated the maximum similarity (denoted sim _ max ) between 

ny two solutions by sim _ max = max 1 ≤i< j≤100 Sim (ϕ i , ϕ j ) , the min-

mum similarity (denoted sim _ min ) between any two solutions 

y sim _ min = min 1 ≤i< j≤100 Sim (ϕ i , ϕ j ) , and the average similarity 

denoted sim _ a v g) between any two solutions by sim _ a v g = 

1 
4950 ·

 

1 ≤i< j≤100 Sim (ϕ i , ϕ j ) . Fig. 5 displays the results of the solution

imilarities for various instances. 

From Fig. 5 , one concludes that a high similarity exists be- 

ween high-quality solutions. In particular, the maximum similar- 

ty of the 100 high-quality solutions was more than 0.6, and the 

verage similarity was over 0.4 for each instance. Thus, numerous 

rcs frequently appeared in high-quality solutions, which provides 

 solid foundation for the design of the arc-based crossover in this 

ork. The maximum similarities for the last six largest instances 

 n ≥ 500 ) were not as high as the other instances ( n ≤ 200 ). This

henomenon could be attributed to the unsatisfactory results for 

hese difficult instances ( n ≥ 500 ). 

. Conclusions 

An effective hybrid search algorithm for the MTRP with profit 

as proposed under the framework of the memetic algorithm. 

he proposed algorithm is unique from the existing algorithms in 
391 
erms of three key features, namely its fast neighborhood evalu- 

tion techniques designed to quickly and approximately examine 

he neighborhoods, a correcting procedure to ensure an accurate 

valuation of the neighboring solutions by using the Drop opera- 

or and the dedicated arc-based crossover that generates diversi- 

ed and meaningful offspring solutions. 

The assessment on the 470 benchmark instances in the lit- 

rature revealed that the performance of the proposed algo- 

ithm competed favorably with the existing algorithms by up- 

ating the best records (new lower bounds) for 137 instances 

29%) and matching the best-known results for 330 instances (70%) 

ithin a reasonable time. Additional experiments revealed that 

he fast evaluation technique, the Drop operator and the arc-based 

rossover play positive roles in terms of influencing the perfor- 

ance of the algorithm. We analyzed both formally and experi- 

entally the reduced complexities of neighborhood examinations 

nd explored the influence of the correcting step (the frequency 

f calling Drop operator) on the algorithm performance. Besides 

hat, we also provided experimental evidences (high similarity be- 

ween high-quality solutions) to support the design of the arc- 

ased crossover. The source code of our algorithm will be made 

vailable upon the publication of this paper. It can be used to solve 

ractical applications and adapted to related problems. In the fu- 

ure, we will develop efficient algorithms based on the arc-based 

rossover for some other related problems such as the TOP. 
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ppendix A. Proof of the complexity of neighborhood 

xploration 

roof of Proposition 1. ( Section 2.3 ). Pei et al. (2020) has proved

hat for the related TRPP, evaluating one neighboring solution of 

nsert , 2 - opt , Or - opt , Ad d and Drop can be finished in O (1) by using

ome specific data structures. It is easy to find that these conclu- 

ions are equally applicable in the MTRPP because the operations 

nvolved in N 1 - N 4 as well as N Add and N Drop are confined inside one

oute, which is the same situation as in the TRPP. 

For the Swap operator, the proof is given as follows. Let 

be a solution composed of K routes { X 1 , X 2 , . . . , X K } , where

 k = (x k 
0 
, . . . , x k 

i −1 
, x k 

i 
, x k 

i +1 
, . . . , x k 

j−1 
, x k 

j 
, x k 

j+1 
, . . . , x k m k 

) is one route

ith m k selected customers. Swapping x k 
i 

and x k 
j 

( 0 < i < j ≤ m k )

eads to a neighboring solution ϕ 

′ whose k -th route is X ′ 
k 

= 

x k 
0 
, . . . , x k 

i −1 
, x k 

j 
, x k 

i +1 
, . . . , x k 

j−1 
, x k 

i 
, x k 

j+1 
, . . . , x k m k 

) . Using Eq. (2) , the

ove gain � f = f (ϕ 

′ ) − f (ϕ) can be reached by 

(1) If x k 
i 

and x k 
j 

are not adjacent, then 

� f = (m k − i + 1) ·
(

d x k 
i −1 

,x k 
i 
− d x k 

i −1 
,x k 

j 

)

+(m k − i ) ·
(

d x k 
i 
,x k 

i +1 
− d x k 

j 
,x k 

i +1 

)

+(m k − j + 1) ·
(

d x k 
j−1 

,x k 
j 
− d x k 

j−1 
,x k 

i 

)

+(m k − j) ·
(

d x k 
j 
,x k 

j+1 
− d x k 

i 
,x k 

j+1 

)

(2) If x k 
i 

and x k 
j 

are adjacent, then 

� f = (m k − i + 1) ·
(

d x k 
i −1 

,x k 
i 
− d x k 

i −1 
,x k 

j 

)

+(m k − j) ·
(

d x k 
j 
,x k 

j+1 
− d x k 

i 
,x k 

j+1 

)

Thus, any neighboring solution in N 1 can be evaluated in O (1) 

nd the complexity of examining the N 1 neighborhood is bounded 

y O (m 

2 ) . �

roof of Proposition 2. ( Section 2.3 ). Let ϕ be a solution com- 

osed of K routes { X 1 , X 2 , . . . , X K } , where X k = (x k 
0 
, x k 

1 
, . . . , x k m k 

) is

ne route with m k selected customers ( k = 1 , 2 , . . . , K). As the

et of selected customers does not change, we only consider the 

hange of the accumulated distance according to Eq. (2) . 

(a) For the Inter - Swap neighborhood, we suppose two routes in 

the solution ϕ

X a = 

(
x a 0 , x 

a 
1 , . . . , x 

a 
i −1 , x 

a 
i , x 

a 
i +1 , . . . , x 

a 
m a 

)

X b = 

(
x b 0 , x 

b 
1 , . . . , x 

b 
j−1 , x 

b 
j , x 

b 
j+1 , . . . , x 

b 
m 

)

b 

392 
Exchanging x a 
i 

( 0 < i ≤ m a ) and x b 
j 

( 0 < j ≤ m b ) leads to a

new solution ϕ 

′ whose a -th and b-th routes are: 

X 

′ 
a = 

(
x a 0 , x 

a 
1 , . . . , x 

a 
i −1 , x 

b 
j , x 

a 
i +1 , . . . , x 

a 
m a 

)

X 

′ 
b = 

(
x b 0 , x 

b 
1 , . . . , x 

b 
j−1 , x 

a 
i , x 

b 
j+1 , . . . , x 

b 
m b 

)

By Eq. (2) , the move gain � f = f (ϕ 

′ ) − f (ϕ) can be 

achieved by 

� f = (m a − i + 1) ·
(

d x a 
i −1 

,x a 
i 
− d x a 

i −1 
,x b 

j 

)

+(m a − i ) ·
(

d x a 
i 
,x a 

i +1 
− d x b 

j 
,x a 

i +1 

)

+(m b − j + 1) ·
(

d x b 
j−1 

,x b 
j 
− d x b 

j−1 
,x a 

i 

)

+(m b − j) ·
(

d x b 
j 
,x b 

j+1 
− d x a 

i 
,x b 

j+1 

)

Therefore, each neighboring solution in N 4 can be evaluated 

in O (1) , leading to the complexity of O (m 

2 ) for exploring

the Inter - Swap neighborhood. 

(b) For the I nter - I nsert neighborhood, we are given two routes 

for the solution ϕ. 

X a = 

(
x a 0 , x 

a 
1 , . . . , x 

a 
i −1 , x 

a 
i , x 

a 
i +1 , . . . , x 

a 
m a 

)

X b = 

(
x b 0 , x 

b 
1 , . . . , x 

b 
j , x 

b 
j+1 , . . . , x 

b 
m b 

)

Inserting x a 
i 

( 0 < i ≤ m a ) into the position between x b 
j 

and

x b 
j+1 

( 0 ≤ b ≤ m b ) produces a neighboring solution ϕ 

′ , whose 

two corresponding routes are: 

X 

′ 
a = 

(
x a 0 , x 

a 
1 , . . . , x 

a 
i −1 , x 

a 
i +1 , . . . , x 

a 
m a 

)

X 

′ 
b = 

(
x b 0 , x 

b 
1 , . . . , x 

b 
j , x 

a 
i , x 

b 
j+1 , . . . , x 

b 
m b 

)

The move gain � f can be obtained by 

� f = V sd a (i − 1) + (m a + 1 − i ) · d x a 
i −1 

,x a 
i 

+(m a − i ) ·
(
d x a 

i 
,x a 

i +1 
− d x a 

i −1 
,x a 

i +1 

)
−V sd b ( j) − (m b + 1 − j) · d x b 

j 
,x a 

i 

−(m b − j) ·
(

d x a 
i 
,x a 

j+1 
− d x b 

j 
,x b 

j+1 

)

where V sd a (i ) and V sd b (i ) are two auxiliary arrays used to

accelerate the evaluation procedure. For the k -th route in the 

solution, the auxiliary array is defined as follows. 

V sd k (i ) = 

i ∑ 

t=1 

d x k 
t−1 

,x k t 
. (A.1) 

The auxiliary arrays in Eq. (A.1) are pre-calculated and up- 

dated for each iteration (the complexity of updating these 

auxiliary arrays is O (n ) ). Therefore, each neighboring solu- 

tion can be assessed in O (1) while the complete I nter - I nsert

neighborhood can be examined in O (m 

2 ) . 

(c) For the Inter - 2 - opt neighborhood, we suppose two routes X a 
and X b . 

X a = 

(
x a 0 , x 

a 
1 , . . . , x 

a 
i , x 

a 
i +1 , . . . , x 

a 
m a 

)

X b = 

(
x b 0 , x 

b 
1 , . . . , x 

b 
j , x 

b 
j+1 , . . . , x 

b 
m b 

)

Removing two edges ( x a 
i 
, x a 

i +1 
) and ( x b 

j 
, x b 

j+1 
) and replacing

them with two other edges lead to a new solution ϕ 

′ , which 

has two corresponding routes X ′ a and X ′ 
b 
. 

X 

′ 
a = 

(
x a 0 , x 

a 
1 , . . . , x 

a 
i , x 

b 
j+1 , . . . , x 

b 
m 

)

b 
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Fig. A.1. Simple illustration of the Double - bridge operation: a) one route before the operation; b) the route after the operation and the lines in red are the new reconnecting 

edges.. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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)

The move gain � f can be obtained as follows. 

� f = (m a − i ) · d x a 
i 
,x a 

i +1 
− (m b − j) · d x a 

i 
,x b 

j+1 

+(m a − m b − i + j) · V sd a (i ) 

+(m b − j) · d x b 
j 
,x b 

j+1 
− (m a − i ) · d x b 

j 
,x a 

i +1 

+(−m a + m b + i − j) · V sd b ( j) 

The complexity of evaluating one neighboring solution is 

thus O (1) and exploring the complete Inter - 2 - opt neighbor- 

hood requires O (m 

2 ) . 

Additional results ( Section 2.7 ). This section gives the descrip- 

ions of the Double - bridge neighborhood and Inter - Or - opt neighbor- 

ood, which were employed in the reference algorithm ( Lu et al., 

019a ) but not applied in the proposed algorithm. As these two 

eighborhoods are widely applied in the algorithms for the related 

roblems, here we provide the detailed proof of their complexities 

f exploring the complete neighborhoods using the fast evaluation 

echniques. 

• Double - bridge ( Lin & Kernighan, 1973 ): Four edges in the 

same route are deleted and four new sub-tours are recon- 

nected without changing the orientation of the four sub- 

tours. A simple illustration is presented in Fig. A.1 . 
• Inter - Or - opt: A block of h (h = 2, 3) consecutive customers 

is removed from one route and inserted into two adjacent 

nodes in another route. 

Similar to other neighborhoods, the complexities of exploring 

heir complete neighborhoods are summarized as follows. 

• Exploring the complete Double - bridge neighborhood can be 

finished in O (m 

4 ) . 
• Exploring the complete Inter - Or - opt neighborhood can be 

finished in O (m 

2 ) . 

(1) For the Double - bridge neighborhood, we suppose a solution 

with K routes { X 1 , X 2 , . . . , X K } , where X k = (x k 
0 
, . . . , x k 

i 
, x k 

i +1 
, . . . , x k 

j 
,

 

k 
j+1 

, . . . , x k p , x 
k 
p+1 

, . . . , x k q , x k 
q +1 

, . . . , x k m k 
) is one route with m k se-

ected customers. For giving a general case, we random se- 

ect four positions i , j, p, q ( 0 ≤ i , i + 1 < j, j + 1 < p, p + 1 <

 and q + 1 ≤ m k ) to perform a double-bridge operation. This 

esults in a neighboring solution ϕ 

′ whose k -th route is X = 
k 

393 
x k 
0 
, . . . , x k 

i 
, x k 

p+1 
, . . . , x k q , x 

k 
j+1 

, . . . , x k p , x 
k 
i +1 

, . . . , x k 
j 
, x k 

q +1 
, . . . , x k m k 

) (See

ig. A.1 ). Using Eqs. (2) and (A.1) , the move gain � f = f (ϕ 

′ ) − f (ϕ)

ould be obtained as follows. 

f = (q − j) · (V sd k ( j) − V sd k (i + 1)) + (i − p) 

·(V sd k (q ) − V sd k (p + 1)) 

+(i + q − j − p) · (V sd k (p) − V sd k ( j + 1)) 

+(m k − i ) · d x k 
i 
,x k 

i +1 
+ (m k − j) · d x k 

j 
,x k 

j+1 

+(m k − p) · d x k p ,x k p+1 
+ (m k − q ) · d x k q ,x 

k 
q +1 

−(m k − i ) · d x k 
i 
,x k 

p+1 
− (m k − i − q + p) · d x k q ,x 

k 
j+1 

−(m k − i − q + j) · d x k p ,x k i +1 
− (m k − q ) · d x k 

j 
,x k 

q +1 

hus, any neighboring solution in the Double - bridge neighborhood 

an be evaluated in O (1) and the complexity of examining the 

omplete neighborhood is bounded by O (m 

4 ) . 

(2) For the Inter - Or - opt neighborhood, only the change of the 

ccumulated distance is taken into consideration to obtain the 

ove gain of the new neighboring solution. We suppose two 

outes in the solution ϕ. 

 a = 

(
x a 0 , x 

a 
1 , . . . , x 

a 
i −1 , x 

a 
i , x 

a 
i +1 , . . . , x 

a 
i + h −1 , x 

a 
i + h . . . , x 

a 
m a 

)

 b = 

(
x b 0 , x 

b 
1 , . . . , x 

b 
j , x 

b 
j+1 , . . . , x 

b 
m b 

)

nserting the block (x a 
i 
, x a 

i +1 
, . . . , x a 

i + h −1 
) ( 0 < i , 0 < i + h ≤ m a , h =

 , 3 ) to the position between x b 
j 

and x b 
j+1 

( 0 < j ≤ m b ) leads to a

ew solution ϕ 

′ whose a -th and b-th routes are: 

 

′ 
a = 

(
x a 0 , x 

a 
1 , . . . , x 

a 
i −1 , x 

a 
i + h . . . , x 

a 
m a 

)

 

′ 
b = 

(
x b 0 , x 

b 
1 , . . . , x 

b 
j , x 

a 
i , x 

a 
i +1 , . . . , x 

a 
i + h −1 , x 

b 
j+1 , . . . , x 

b 
m b 

)

y Eqs. (2) and (A.1) , the move gain � f = f (ϕ 

′ ) − f (ϕ) can be

chieved by 

f = h · V sd a (i − 1) − (m a − h − i + 1) · d x a 
i −1 

,x a 
i + h 

+(m a − i − h + 1) · d x a 
i + h −1 

,x a 
i + h 

+ (m a − i + 1) · d x a 
i −1 

,x a 
i 

+(m b − j) · d x b 
j 
,x b 

j+1 
− h · V sd b ( j) 

−(m b + h − j) · d x b 
j 
,x a 

i 
− (m b − j) · d x a 

i + h −1 
,x b 

j+1 

+(m a − m − h − i + j + 1) · (V sd a (i + h − 1) − V sd a (i )) 
b 
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herefore, each neighboring solution in the Inter - Or - opt neighbor- 

ood can be evaluated in O (1) , leading to the complexity of O (m 

2 )

or exploring the complete neighborhood. �
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