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Abstract. We propose a novel approach to address one aspect of the non-stationarity
problem in multi-agent reinforcement learning (RL), where the other agents may
alter their policies due to environment changes during execution. This violates
the Markov assumption that governs most single-agent RL methods and is one of
the key challenges in multi-agent RL. To tackle this, we propose to train multiple
policies for each agent and postpone the selection of the best policy at execu-
tion time. Specifically, we model the environment non-stationarity with a finite
set of scenarios and train policies fitting each scenario. In addition to multiple
policies, each agent also learns a policy predictor to determine which policy is
the best with its local information. By doing so, each agent is able to adapt its
policy when the environment changes and consequentially the other agents alter
their policies during execution. We empirically evaluated our method on a variety
of common benchmark problems proposed for multi-agent deep RL in the litera-
ture. Our experimental results show that the agents trained by our algorithm have
better adaptiveness in changing environments and outperform the state-of-the-art
methods in all the tested environments.

Keywords: Reinforcement Learning, Multi-Agent Reinforcement Learning, Multi-
Agent Deep Deterministic Policy Gradient

1 Introduction

The development of modern deep learning has made reinforcement learning (RL) more
powerful to solve complex decision problems. This leads to success in many real-world
applications, such as Atari games [19], playing Go [22] and robotics control [12]. Re-
cently, there is growing focus on applying deep RL techniques to multi-agent systems.
Many promising approaches for multi-agent deep RL have been proposed to solve a va-
riety of multi-agent problems, such as traffic control [18, 27], multi-player games (e.g.,
StarCraft, Dota 2), and multi-robot systems [16].

Despite the recent success of deep RL in single-agent domains, there are additional
challenges in multi-agent RL. One major challenge is the non-stationarity of multi-
agent environment caused by agents that change their policies during the training and
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testing procedures. Specifically, at the training time, each agent’s policy is changing si-
multaneously and therefore the environment becomes non-stationary from the perspec-
tive of any individual agent. To handle this issue, multi-agent deep deterministic policy
gradient (MADDPG) [17] proposed to utilized a centralized critic with decentralized
actors in the actor-critic learning framework. Since the centralized Q-function of each
agent is conditioned on the actions of all the other agents, each agent can perceive the
learning environment as stationary even when the other agents’ policies change.

Although using a centralized critic stabilizes training, the learned policy of each
agent can still be brittle and sensitive to its training environment and partners. It has
been observed that the performance of the learned policies can be drastically worse
when some agents alter their policies during execution [11]. To improve the robust-
ness of the learned policies, minimax multi-agent deep deterministic policy gradient
(M3DDPG) [13] — a minimax extension of MADDPG — proposed to update policies
considering the worst-case situation by assuming that all the other agents acts adversar-
ially. This minimax optimization is useful to learn robust policies in very competitive
domains but can be too pessimistic in mixed competitive and cooperative or fully coop-
erative problems as shown later in our experiments.

In this paper, we consider one aspect of the non-stationarity issue in multi-agent
RL, where the other agents may alter their policies as a result of changes in some en-
vironmental factors. This frequently happens in real-world activities. For example, in a
soccer game, a heavy rain or high temperature usually causes the teams to change their
strategies against each other. Take disaster response as another example. First respon-
ders often need to constantly adjust their plan in order to complete their tasks in the
highly dynamic and danger environment. Therefore, it is often desirable for the agents
to learn policies that can adapt with changes of the environment and others’ policies.

Against this background, we propose policy adaptive multi-agent deep determin-
istic policy gradient (PAMADDPG) — a novel approach based on MADDPG — to
learn adaptive policies for non-stationary environments. Specifically, it learns multi-
ple policies for each agent and postpone the selection of the best policy at execution
time. By doing so, each agent is able to adapt its policy when the environment changes.
Specifically, we model the non-stationary environment by a finite set of known scenar-
ios, where each scenario captures possible changing factors of the environment (e.g.,
weather, temperature, wind, etc. in soccer). For each scenario, a policy is learned by
each agent to perform well in that specific scenario. Together with multiple policies for
each agent, we also train a policy predictor to predict the best policy using the agent’s
local information. At execution time, each agent first selects a policy based on the pol-
icy predictor and then choose an action according to the selected policy. We evaluated
our PAMADDPG algorithm on three common benchmark environments and compared
it with MADDPG and M3DDPG. Our experimental results show that PAMADDPG
outperforms both MADDPG and M3DDPG in all the tested environments.

The rest of the paper is organized as follows. We first briefly review the related work
about handling non-stationary in multi-agent deep RL. Then, we describe the back-
ground on the Markov game and the MADDPG method, which are building blocks of
our algorithm. Next, we propose our PAMADDPG algorithm to learn multiple policies



PAMADDPG 3

and policy predictors. After that, we present the experiments with environments, setup,
and results. Finally, we conclude the paper with possible future work.

2 Related Work

In recent years, various approaches [20] have been proposed to tackle different aspects
of non-stationarity in multi-agent deep RL. We sample a few related work about multi-
agent deep RL as listed below.

2.1 Centralized Critic

Using the centralized critic techniques, [17] proposed MADDPG for multi-agent RL
using a centralized critic and a decentralized actor, where the training of each agent is
conditioned on the observation and action of all the other agents so the agent can per-
ceive the environment as stationary. [13] extended MADDPG and proposed M3DDPG
using minimax Q-learning in the critic to exhibit robustness against different adver-
saries with altered policies. [8] proposed COMA using also a centralized critic with
the counterfactual advantage estimation to address the credit assignment problem —
another key challenge in multi-agent RL.

2.2 Decentralized Learning

A useful decentralized learning technique to handle non-stationarity is self-play. Re-
cent self-play approaches store the neural network parameters at different points during
learning. By doing so, self-play managed to train policies that can generalize well in
environments like Go [23] and complex locomotion tasks [2]. Another technique [6]
is by stabilizing experience replay using importance sampling corrections to adjust the
weight of previous experience to the current environment dynamics.

2.3 Opponent Modeling

By modeling the opponent, [9] developed a second separate network to encode the op-
ponent’s behaviour. The combination of the two networks is done either by concatenat-
ing their hidden states or by the use of a mixture of experts. In contrast, [21] proposed
an actor-critic method using the same policy network for estimating the goals of the
other agents. [5] proposed a modification of the optimization function to incorporate
the learning procedure of the opponents in the training of agents.

2.4 Meta-Learning

By extending meta-learning approaches for single-agent RL such as model agnostic
meta-learning [3] to handle non-stationarity in multi-agent domains, [1] proposed an
optimization method to search for initial neural network parameters that can quickly
adapt to non-stationarity, by explicitly optimizing the initial model parameters based on
their expected performance after learning. This was tested in iterated adaptation games,
where an agent repeatedly play against the same opponent while only allowed to learn
in between each game.
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2.5 Communication

In this direction, [7] proposed the deep distributed recurrent Q-networks, where all the
agents share the same hidden layers and learn to communicate to solve riddles. [26] pro-
posed the CommNet architecture, where the input to each hidden layer is the previous
layer and a communication message. [25] proposed the individualized controlled con-
tinuous communication model, which is an extension of CommNet in competitive set-
ting. [4] proposed reinforced inter-agent learning with two Q-networks for each agents
where the first network outputs an action and the second a communication message.

As briefly reviewed above, most of the existing work focus on handling non-stationarity
mainly during training procedure. Although meta-learning approaches can learn to adapt
agents’ policies between different game, it requires to repeatedly play iterated adapta-
tion games. In contrast, we build our algorithm on top of MADDPG to address the non-
stationarity problem in general multi-agent RL at execution time. Besides, we do not
assume explicit communication among the agents during execution as in MADDPG.

A complete survey about recent efforts of dealing non-stationarity in multi-agent
RL can be found in [10, 20].

3 Background

In this section, we introduce our problem settings and some basic algorithms on which
our approach is based.

3.1 Partially Observable Markov Games

In this work, we consider a partially observable Markov games [15] with N agents,
defined by: a set of states S describing the possible configurations of all agents, a set of
actions A1, . . . ,AN and a set of observations O1, . . . ,ON for each agent. To choose
actions, each agent i uses a stochastic policy µθi : Oi × Ai 7→ [0, 1], which produces
the next state according to the state transition function T : S ×A1 × . . .×AN 7→ S.

At each time step, each agent i obtains rewards as a function of the state and agent’s
action ri : S × Ai 7→ R, and receives a local observation correlated with the state
oi : S 7→ Oi. The initial states are determined by a state distribution ρ : S 7→ [0, 1].
Each agent i aims to maximize its own total expected return: Ri =

∑T
t=0 γ

trti , where
γ ∈ (0, 1] is a discount factor and T is the time horizon.

Here, we assume that the state transition function T is unknown and therefore con-
sider to learn the policies µθi for each agent i using multi-agent reinforcement learning
(RL) methods. Note that each agent must choose an action based on its own policy and
local observation during execution.

3.2 Multi-Agent Deep Deterministic Policy Gradient

Policy gradient methods are a popular choice for a variety of RL tasks. The main idea
is to directly adjust the parameters θ of the policy in order to maximize the objective
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J(θ) = Es∼pµ,a∼µθ [R(s, a)] by taking steps in the direction of∇θJ(θ), i.e., the gradi-
ent of the policy written as:

∇θJ(θ) = Es∼pµ,a∼µθ [∇θ logµθ(a|s)Qµ(s, a)] (1)

where pµ is the state distribution and Qµ is the Q-function.
The policy gradient framework has been extended to deterministic policies µθ :

S 7→ A. In particular, under certain conditions the gradient of the objective J(θ) =
Es∼pµ [R(s, a)] can be written as:

∇θJ(θ) = Es∼D
[
∇θµθ(a|s)∇aQµ(s, a)

∣∣
a=µθ(s)

]
(2)

Since the deterministic policy gradient (DPG) [24] relies on ∇aQµ(s, a), it requires
that the action spaceA (and thus the policy µ) be continuous. Deep deterministic policy
gradient (DDPG) [14] is a variant of DPG where the policy µ and critic Qµ are ap-
proximated with deep neural networks. DDPG is an off-policy algorithm, and samples
trajectories from a replay buffer of experiences that are stored throughout training. It
also makes use of a target network, as in DQN [19].

Multi-agent DDPG (MADDPG) [17] extends the DDPG method to multi-agent do-
mains. The main idea behind MADDPG is to consider action policies of other agents.
The environment is stationary even as the policies change, since P (s′|s, a1, . . . , aN ,
π1, . . . , πN ) = P (s′|s, a1, . . . , aN ) = P (s′|s, a1, . . . , aN , π′1, . . . , π′N ) for any πi 6=
π′i. The gradient can be written as:

∇θiJ(µi) = Ex,a∼D

[
∇θiµi(ai|oi)∇aiQ

µ
i (x, a1, . . . , aN )

∣∣
ai=µi(oi)

]
(3)

where Qµi (x, a1, ..., aN ) is a centralized action-value function that takes as input the
actions of all agents, a1, . . . , aN , in addition to the state information x, and outputs the
Q-value for agent i. Here, Qµi can be updated as:

L(θi) = Ex,a,r,x′
[
(Qµi (x, a1, . . . , aN )− y)2

]
,

y = ri + γQµ
′

i (x′, a′1, . . . , a
′
N )
∣∣
a′j=µ

′
j(oj)

(4)

where (x, a, r,x′) is sampled from the experience replay buffer D, recoding experi-
ences of all agents.

3.3 Dealing Non-Stationarity in MADDPG

As aforementioned, one of the key challenges in multi-agent RL is the environment
non-stationarity. This non-stationarity stems from breaking the Markov assumption that
governs most single-agent RL algorithms. Since the transitions and rewards depend on
actions of all agents, whose decision policies keep changing in the learning process,
each agent can enter an endless cycle of adapting to other agents. Although using a
centralized critic stabilizes training in MADDPG, the learned policies can still be brittle
and sensitive to changes of the other agents’s policies.
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To obtain policies that are more robust to changes in the policy of other agents,
MADDPG proposes to first train a collection of K different sub-policies and then max-
imizing the ensemble objective maxθi J(θi) as:

J(θi) = Ek∼uniform(1,K),s∼pµ,a∼µ(k) [Ri(s, a)]

= Ek,s

[
T∑
t=0

γtri(s
t, at1, . . . , a

t
N )
∣∣∣
ati=µ

(k)
i (oti)

]

= Es

[
1

K

K∑
k=1

Qµi (s, a1, . . . , aN )
∣∣∣
ai=µ

(k)
i (oi)

] (5)

where µ(k)
i is the k-th sub-policies of agent i. By training agents with an ensemble

of policies, the agents require interaction with a variety of the other agents’ policies.
Intuitively, this is useful to avoid converging to local optima of the agents’ policies.
However, the ensemble objective only considers the average performance of agents’
policies training by uniformly sampling the policies of the other agents.

Alternatively, M3DDPG [13] — a variation of MADDPG — proposes to update
policies considering the worst situation for the purpose of learning robust policies. Dur-
ing training, it optimizes the policy of each agent i under the assumption that all other
agents acts adversarially, which yields the minimax objective maxθi J(θi) as:

J(θi) = min
aj 6=i

Es∼pµ,ai∼µi [Ri(s, a)]

= min
atj 6=i

Es

[
T∑
t=0

γtri(s
t, at1, . . . , a

t
N )
∣∣∣
ati=µi(o

t
i)

]

= Es
[
min
aj 6=i

QµM,i(s, a1, . . . , aN )
∣∣∣
ai=µi(oi)

] (6)

where QµM,i(s, a1, . . . , aN ) is the modified Q function representing the current reward
of executing a1, . . . , aN in s plus the discounted worst case future return starting from s.
With the minimax objective, the training environment of each agent becomes stationary
because the behavior of all the other agents only depends on −ri, i.e., the negative
reward of agent i itself. However, this adversarial assumption could be too pessimistic
if the game among the agents is not zero-sum or even is cooperative.

Ideally, the well trained agents should be able to adapt their policies with the
changes in the environment. This motivated the development of our algorithm that will
be introduced in details next.

4 Policy Adaptive MADDPG

In this section, we propose policy adaptive multi-agent deep deterministic policy gra-
dient (PAMADDPG), which is based on MADDPG, to deal with environment non-
stationarity in multi-agent RL. As in MADDPG, our algorithm operate under the frame-
work of centralized training with decentralized execution. Thus, we allow the agents to
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Algorithm 1: Training and execution for PAMADDPG
1 # At training time:
2 ∀i : Πi ← ∅, φi ← initialize the predictor parameters
3 foreach scenario c ∈ C do
4 ∀i : Πi ← learn and add a set of policies for agent i
5 ∀i : φi ← learn and update the predictor for agent i

6 # At execution time:
7 ∀i : h0

i ← ∅
8 for time step t = 1 to T do
9 for agent i = 1 to N do

10 oti ← receive a local observation for agent i
11 µi ← select a policy from Πi by φi(oti, h

t−1
i )

12 ati ← select an action by µθi(o
t
i)

13 hti ← append oti to ht−1
i

14 Execute actions 〈at1, . . . , atN 〉 to the environment
15 Collect rewards 〈rt1, . . . , rtN 〉 from the environment

16 return ∀i : Ri =
∑T
t=0 γ

trti

share extra information for training, as long as this information is not used at execution
time. We assume that the learned policies can only use local information and there is no
explicit communication among agents during execution. Specifically, our algorithm is
an extension of actor-critic policy gradient methods with multiple decentralized actors
and one centralized critic, where the critic is augmented with extra information on the
policies of the other agents.

In this work, we consider a setting where agents are trained and executed in an en-
vironment that can categorized into a finite set of scenarios. These scenarios are known
during training. However, at execution time, agents have no prior knowledge about
which scenario they will locate in. Therefore, the agents must act adaptively during ex-
ecution. Note that the scenarios cannot be modeled as state variables because we make
no assumption about the initial distribution and transition probabilities of scenarios,
which can be any probabilities in our setting. Intuitively, a scenario in our setting mod-
els a collection of environmental factors that can cause the agents to alter their policies.

Let C denote a finite set of scenarios for the agents. Here, each scenario c ∈ C can be
modeled by a partially observable Markov game as aforementioned. We assume that all
the scenarios in C have identical state space and the same action and observation space
for all the agents. Particularly, each scenario c ∈ C may have different state transition
function T c and different reward function rci for each agent i, so that agents in different
scenarios may require different policies. Formally, we define a scenario c ∈ C as a tuple:
〈S, {Ai}, {Oi}, T c, {rci }〉 with notations in Markov games.

As aforementioned, to be able to adapt in different scenarios, we propose to train
multiple policies for each agent and postpone the selection of its policy at execution
time. In addition to multiple policies for each agent, we also train a policy predictor
that can be used by the agent to determine the best policy during execution. Given this,
the agent is able to adapt its policy when the environment changes. As summarized
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in Algorithm 1, PAMADDPG consists of two main procedures: 1) learning multiple
policies and 2) learning policy predictors, which will be described in details next.

4.1 Learning Multiple Policies

We can extend the actor-critic policy gradient method as described in MADDPG to
work with each scenario. Specifically, given a scenario c ∈ C, the gradient for policy µci
with respect to parameters θci can be written as:

∇θci J(µci ) = Ex,a∼Dc
[
∇θciµ

c
i (ai|oi)∇aiQ

µ,c
i (x, a1, . . . , aN )

∣∣
ai=µci (oi)

]
(7)

whereDc is the experience replay buffer recording experiences with tuples (x, a1, . . . , aN ,
rc1, . . . , r

c
N ,x

′) of all agents at the scenario c and x = (o1, . . . , oN ). Here, the central-
ized action-value function Qµ,ci is updated as:

L(θci ) = Ex,a,r,x′ [(Qµ,ci (x, a1, . . . , aN )− y)2]

y = ri + γ Qµ
′,c
i (x′, a′1, . . . , a

′
N )
∣∣
a′j=µ

′c
j (oj)

(8)

where µ′c = {µθ′c1 , . . . , µθ′cN } is the set of target policies with delayed parameters θ′ci .
Here, the key challenge is that policies trained by MADDPG may converge to dif-

ferent local optima. Therefore, the other agents may choose policies that are different
from the ones learned by MADDPG. To address this, we propose to train a collection of
K different policies for each agent in a single scenario. Each policy can have different
initial parameters and selection of the partners’ policies. This will grow the populations
in the policy set of each agent and further improve the robustness during testing. Un-
like MADDPG, we do not ensemble the K policies to a single policy but keep all the
individual policies as candidates for execution.

4.2 Learning Policy Predictors

We denote φi : Hi → ∆(Πi) the policy predictor that uses agent i’s local observation
history hti = (o1i , . . . , o

t
i) to compute the distribution over agent i’s policy set Πi. Our

goal is to determine at execution time which policy should be used by agent i in order to
achieve the best performance. Here, we use a recurrent neural network to train a policy
predictor φi, containing a layer of LSTM and some other layers. This structure allows
the agent to reason about the current scenario using its observation sequence.

Here, φi(oti, h
t−1
i ) is a function that takes the input of the current observation oti

and the last-step history ht−1i at the time step t, and outputs the policy distribution
pti(·) ∈ [0, 1] over agent i’s policy set Πi. Now, the action selection process of agent i
at time step t can be written as:

pti = φi(o
t
i, h

t−1
i )

µi = arg maxµ′
i∈Πip

t
i(µ
′
i)

ati = µθi(o
t
i)

(9)
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Together with training the policy, we use replay buffer to train φi in order to avoid
the early instability and adverse effects during training process. Specifically, we create
a dedicated replay buffer Bi for φi during training. It stores (hi, µi) at the end of each
episode, where hi = (o1i , . . . , o

T
i ) is agent i’s observation sequence at this episode

and µi is the currently trained policy. The main training procedure of φi is to sample
a random minibatch of samples (hi, µi) from Bi and update the parameters of φi by
minimizing the cross-entropy loss function as follow:

∇piJ(φi) = E(hi,µi)∼Bi

[
T∑
t=1

CE
(
φi(o

t
i, h

t−1
i ), t

)]

= E(hi,µi)

 T∑
t=1

∑
µ′
i∈Πi

−yµ
′
i log

(
pti(µ

′
i)
)

where yµ
′
i =

{
1, µ′i = µi

0, µ′i 6= µi
and pti = φi(o

t
i, h

t−1
i ).

(10)

The overall learning procedures of PAMADDPG are outlined in Algorithm 2.

5 Experiments

We empirically evaluate our algorithm on three domains built on top of the particle-
world environments1 originally used by the MADDPG paper [17]. To create various
scenarios, we modify some of the physical properties of the environments so that the
agents must alter their policies in order to success in different scenarios. By doing so,
we expect to examine the adaptiveness of our PAMADDPG algorithm when testing in
different scenarios.

5.1 Environments

The particle world environment consists ofN cooperative agents,M adversarial agents
and L landmarks in a two-dimensional world with continuous space. In the experi-
ments, we consider two mixed cooperative and competitive domains (i.e., Keep-away
and Predator-prey) and one fully cooperative domain (i.e., Cooperative navigation), as
shown in Fig. 1, and modify these domains to generate different scenarios as below.

Keep-away. This environment consists of L landmarks including a target landmark,
N = 2 cooperating agents who know the target landmark and are rewarded based
on their distance to the target, and M = 2 agents who must prevent the cooperating
agents from reaching the target. Adversaries accomplish this by physically pushing the
agents away from the landmark, temporarily occupying it. While the adversaries are
also rewarded based on their distance to the target landmark, they do not know the
correct target.

1 Code from: https://github.com/openai/multiagent-particle-envs
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Algorithm 2: Learning agents’ policies and predictors
1 foreach episode do
2 Initialize a random processN for action exploration
3 Receive initial observations x = (o1, . . . , oN )
4 for time step t = 1 to T do
5 For each agent i, select ai = µθi(oi) +Nt w.r.t the current policy and

exploration noise
6 Execute action a = (a1, . . . , aN ) and observe reward r = (r1, . . . , rN ) and new

state x′

7 Store (x, a, r,x′) in D and set x← x′

8 for agent i = 1 to N do
9 Sample a random minibatch of M samples (xm, am, rm,x′m) from replay

buffer D
10 Set ym = rmi + γ Qµ

′

i (x′, a′)
∣∣
a′j=µ

′
j(o

m
j )

11 Update critic by minimizing the loss:

L(θi) =
1

M

M∑
m=1

(ym −Qµi (x
m, am))2

12 Update actor using the sampled gradient:

∇θiJ(µi) ≈
1

M

M∑
m=1

∇θiµi(o
m
i )

∇aiQ
µ
i (x

m, am)
∣∣
ai=µi(o

m
i )

13 Sample a random minibatch of K samples (hki , µ
k
i ) from replay buffer Bi

14 Update predictor φi by minimizing the loss:

∇piJ(φi) ≈
1

K

K∑
k=1

T∑
t=1

∑
µ′
i

−yµ
′
i log(pti(µ

′
i))

15 Update target network parameters θi for each agent i as: θ′i ← τθi + (1− τ)θ′i
16 Collect history hi = (o1i , . . . , o

T
i ) and store (hi, µi) in replay buffer Bi for each

agent i
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(a) Keep-away

agent 1

landmark

  p 

agent 2

predator 1

prey

predator 2

predator 3

(b) Predator-prey (c) Cooperative navigation

Fig. 1. Illustrations of the three environments.

We create K = 3 scenarios that require agents to learn to adapt with. In each
scenario, we simulate different “wind” conditions in the environment. The wind will
affect the moving speed of the agents in a certain direction computed as: v′i = vi +w ∗
βi, where vi is the original speed, w = [wN , wW , wS , wE ] is the wind force for four
directions, and βi = 5 is the acceleration rate. In the experiments, we consider no wind
(i.e., w = 0) in Scenario 1, southwest wind (i.e., wS = wW = 0.5 and 0 otherwise) in
Scenario 2, and northeast wind (i.e., wN = wE = 0.5 and 0 otherwise) in Scenario 3
respectively.

Predator-prey. In this environment, N = 4 slower cooperating agents must chase
M = 2 faster adversary around a randomly generated environment with L = 2 large
landmarks impeding the way. Each time the cooperative agents collide with an adver-
sary, the agents are rewarded while the adversary is penalized. Agents observe the rela-
tive positions and velocities of the agents, and the landmark positions.

We create K = 3 scenarios to simulate different body conditions for the good and
bad agents. This is done by using different maximum speeds v̄ and accelerations β for
the agents in the environment, i.e., (v̄good, βgood, v̄bad, βbad). We set the parameters so
that the agents will compete in different levels, i.e., weak, medium, and strong. Specif-
ically, we set (3.0, 3.0, 3.9, 4.0) in Scenario 1, (2.0, 4.0, 2.6, 5.0) in Scenario 2, and
(3.0, 5.0, 3.9, 6.0) in Scenario 3.

Cooperative navigation. In this environment, agents must cooperate through physical
actions to reach a set of L landmarks. Agents observe the relative positions of other
agents and landmarks, and are collectively rewarded based on the proximity of any
agent to each landmark. In other words, the agents have to “cover” all of the landmarks.
Furthermore, the agents occupy significant physical space and are penalized when col-
liding with each other.

Similar to the Keep-away environment described above, we created K = 3 scenar-
ios in this environment also with three wind conditions, i.e., no wind for Scenario 1,
southeast wind for Scenario 2, and northwest wind for Scenario 3.
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5.2 Setup

We compared our PAMADDPG algorithm with MADDPG2 and M3DDPG3, which
are currently the leading algorithms for multi-agent deep RL, on the environments
as described above. In our implementation, the agents’ policies are represented by a
two-layer ReLU MLP with 64 units per layer, which is the same as MADDPG and
M3DDPG, and the policy predictors are represented by a two-layer ReLU MLP and a
layer of LSTM on top of them.

We used the same training configurations as MADDPG and M3DDPG, and ran
all the algorithms until convergence. Then, we tested the policies computed by the al-
gorithms on each environment with 10,000 further episodes and report the averaged
results. For fair comparison, all algorithms were tested on a fixed set of environment
configurations. Each testing environment is generated by randomizing the basic config-
urations and randomly selecting a scenario. As aforementioned, the agents do not know
which scenario is selected for the environment during testing procedure.

Note that MADDPG and M3DDPG do not consider different scenarios in their orig-
inal implementations. For fair comparison, we try to train their policies in a way that
their performance is improved when working with different scenarios. Specifically, in
our experiments, MADDPG trained policies with all scenarios and optimized the ob-
jective as:

J(θi) = Ec∼uniform(C),s∼pc,a∼µ[Ri(s, a)] (11)

As aforementioned, we do not know the true distribution before testing so MADDPG
was trained with the uniformly distributed scenarios. Following the minmax idea of the
standard version, M3DDPG maximized the objective in the worst-case scenario in the
experiments as:

J(θi) = minc∈C,aj 6=i Es∼pc,ai∼µi [Ri(s, a)] (12)

By doing so, we can evaluate the effectiveness of our algorithm with multiple policies
comparing with MADDPG and M3DDPG using only a single policy for each agent
when the environment changes.

5.3 Results

We measure the performance of agents with policies learned by our PAMADDPG and
agents with policies learned by MADDPG and M3DDPG in each environment. In the
first two mixed cooperative and competitive domains, we switch the roles of both nor-
mal agent and adversary as in the MADDPG and M3DDPG papers to evaluate the
quality of learned policies trained by different algorithms.

The results on the three environments are demonstrated in Fig. 2. As shown in the
figure, each group of bar shows the 0−1 normalized score for the environment, where a
higher score shows better performance for the algorithm. In the first two environments,
PAMADDPG outperforms M3DDPG and MADDPG because PAMADDPG achieves
higher scores when playing normal agents (i.e., PA vs MA, PA vs M3) than the ones

2 Code from: https://github.com/openai/maddpg
3 Code from: https://github.com/dadadidodi/m3ddpg
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Fig. 2. Overall performance of PAMADDPG (PA), MADDPG (MA), and M3DDPG (M3) on the
environments.

as adversaries (i.e., MA vs PA, M3 vs PA). Interestingly, PAMADDPG performs bet-
ter when playing against MADDPG (i.e., PA vs MA, MA vs PA) than the case against
M3DDPG (i.e., PA vs M3, M3 vs PA) in the Keep-away environment, while PAMAD-
DPG shows better performance against M3DDPG than the case against MADDPG
in the Predator-prey environment. Intuitively, this is because the Predator-prey envi-
ronment is more competitive than the Keep-away environment so that M3DDPG who
considers the worst-case situation works better than MADDPG when paired with our
algorithm. In the Cooperative navigation environment, PAMADDPG consistently out-
performs MADDPG and M3DDPG. M3DDPG has the worst performance in terms of
scores because this environment is a fully cooperative domain while M3DDPG makes
unrealistic assumption that all the other agents act adversarially.

Fig. 3 shows the results of our PAMADDPG comparing with MADDPG and M3DDPG
when testing on different scenarios in each environment. In the Keep-away environ-
ment, PAMADDPG outperforms MADDPG and M3DDPG on Scenarios 2 and 3 while
performs similarly on Scenario 1. This is because MADDPG and M3DDPG tends to
converge to the policies fitting Scenario 1, which is expected to work poorly in Scenar-
ios 2 and 3. In contrast, our PAMADDPG can adapt its policies to fit different scenarios
during testing. In the Predator-prey environment, PAMADDPG outperforms MADDPG
on Scenarios 1 and 3 but not Scenario 2, and M3DDPG on Scenarios 1 and 2 but not
Scenario 3. Similar to the Keep-away environment, this is because MADDPG con-
verges to the policies fitting Scenario 2 while M3DDPG converges to the policies fitting
Scenario 3. As we can see from the figure, PAMADDPG achieves slightly less scores
than MADDPG and M3DDPG on Scenarios 2 and 3 respectively. This is because the
Predator-prey environment is very competitive and the policy predictors in PAMAD-
DPG take time to form correct predictions. In the Cooperative navigation environment,
our PAMADDPG outperforms MADDPG and M3DDPG for all the scenarios. Again,
M3DDPG has the worst performance because this is a fully cooperative environment.

Fig. 4 shows the average reward of different approaches on the Cooperative nav-
igation environment during the training process. As we can see from the figure, our
PAMADDPG algorithm converges to better reward than all the other methods. As ex-
pected, the reward of DDPG decreases after 80,000 episodes due to non-stationarity
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Fig. 3. Performance of PAMADDPG (PA), MADDPG (MA), and M3DDPG (M3) on different
scenarios.

in multi-agent RL. As shown in the figure, the reward of MADDPG fluctuates about
60,000 episodes while the reward of PAMADDPG becomes stable after convergence.

6 Conclusion

In this paper, we addressed the non-stationarity problem in multi-agent RL and pro-
posed the PAMADDPG algorithm. we model the non-stationarity in the environment
as a finite set of scenarios. At training time, each agent learns multiple policies, one
for each scenario, and trains a policy predictor that can be used to predict the best
policy during execution. With the multiple policies and policy predictor, each agent is
able to adapt its policy and choose the best one for the current scenario. We tested our
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Fig. 4. Learning reward of PAMADDPG (PA), MADDPG (MA), M3DDPG (M3), and DDPG on
the Cooperative navigation environment after 10,000 episodes.

algorithm on three common benchmark environments and showed that PAMADDPG
outperforms MADDPG and M3DDPG in all the tested environment. In the future, we
plan to conduct research on learning the scenarios directly from the environment.

References

1. Al-Shedivat, M., Bansal, T., Burda, Y., Sutskever, I., Mordatch, I., Abbeel, P.: Continuous
adaptation via meta-learning in nonstationary and competitive environments. arXiv preprint
arXiv:1710.03641 (2017)

2. Bansal, T., Pachocki, J., Sidor, S., Sutskever, I., Mordatch, I.: Emergent complexity via multi-
agent competition. arXiv preprint arXiv:1710.03748 (2017)

3. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep
networks. In: Proceedings of the 34th International Conference on Machine Learning. pp.
1126–1135 (2017)

4. Foerster, J., Assael, I.A., de Freitas, N., Whiteson, S.: Learning to communicate with deep
multi-agent reinforcement learning. In: Proceedings of the Advances in Neural Information
Processing Systems. pp. 2137–2145 (2016)

5. Foerster, J., Chen, R.Y., Al-Shedivat, M., Whiteson, S., Abbeel, P., Mordatch, I.: Learning
with opponent-learning awareness. In: Proceedings of the 17th International Conference on
Autonomous Agents and MultiAgent Systems. pp. 122–130 (2018)

6. Foerster, J., Nardelli, N., Farquhar, G., Afouras, T., Torr, P.H., Kohli, P., Whiteson, S.: Sta-
bilising experience replay for deep multi-agent reinforcement learning. In: Proceedings of
the 34th International Conference on Machine Learning. pp. 1146–1155 (2017)

7. Foerster, J.N., Assael, Y.M., de Freitas, N., Whiteson, S.: Learning to communicate to solve
riddles with deep distributed recurrent q-networks. arXiv preprint arXiv:1602.02672 (2016)

8. Foerster, J.N., Farquhar, G., Afouras, T., Nardelli, N., Whiteson, S.: Counterfactual multi-
agent policy gradients. In: Proceedings of the 32nd AAAI Conference on Artificial Intelli-
gence (2018)



16 Wang and Wu
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