吴恒安,中国科学技术大学工程科学学院近代力学系,教授,博士生导师,工程科学学院执行院长,安徽省力学学会理事长。19757月出生于湖北省黄冈市红安县,19977月获得中国科学技术大学理论与应用力学学士学位,19987月获得中国科学技术大学计算机软件学士学位(双),20026月获得中国科学技术大学固体力学博士学位,同年获中国科学院院长奖。20028-20042月在新加坡国立大学机械工程系任博士后研究员,20042月任中国科学技术大学工程科学学院近代力学系副教授,20106月晋升教授。20106-20115月在英国曼彻斯特大学做访问学者。20157-20206月任中国科学院材料力学行为和设计重点实验室主任。曾获得2014年度和2023年度中国科学技术大学杰出研究校长奖、2015年度国家杰出青年科学基金、2017年度中国科学院朱李月华优秀教师奖、2017年度安徽省教学成果特等奖(第一完成人)、2017/2018/2024年度中国科学院优秀导师奖、2018年度高等教育国家级教学成果二等奖(第一完成人)、2018年度安徽省教学名师、2020年度宝钢优秀教师特等奖、2020年度中国科学院青年科学家国际合作伙伴奖、2021年度全国徐芝纶力学优秀教师奖、2022年度霍英东教育基金会高等院校教育教学奖、2023年度国务院特殊津贴、2024年度安徽省教书育人楷模,入选2015年度科技部创新人才推进计划中青年科技创新领军人才、2017年度第三批国家高层次人才特殊支持计划领军人才、2022年度教育部长江学者特聘教授。主讲本科生<<材料力学>><<计算力学基础>>(首批国家级一流本科课程),主持教育部首批新工科研究与实践项目和教育部基础学科拔尖学生培养计划研究重点课题。研究领域为:[1]“微纳结构材料力学行为和设计”[2]“固液界面微尺度力学与限域传质”[3]“计算力学数值方法及其工程应用”。已在ScienceNature等学术期刊发表被SCI收录论文200余篇,被SCI他引20000余次。

【仅此网站信息为本人维护,百度搜索其它介绍信息均不可靠。】

欢迎关注我们课题组微信公众号,搜索公众号“计算力学实验室”。硕士推免生可提前联系,要求大学期间有科研或者学科竞赛经历,请拟申请同学在每年3-5月联系,招满即止。关于博士生招生,本课题组主要是硕转博方式,一般没有名额接受申请考核制博士生。wuha@ustc.edu.cn,0551-63601245

详细研究方向介绍可参考 中国科大研究生招生公众号导师推介

Contact Hengan Wuwuha#ustc.edu.cn 0551-6360-1245 (CV in English (pdf)

Publication List ( ResearcherID: http://www.researcherid.com/rid/A-3646-2009 ):

257. He, Q.S., Z.X. Wang, C. Liu*, and H.A. Wu, Identifying nonuniform distributions of rock properties and hydraulic fracture trajectories through deep learning in unconventional reservoirs. Energy, 2024. 291: p. 130329. (https://doi.org/10.1016/j.energy.2024.130329)

256. Fan, J.N. J.C. Fan, X.Y. Hong, H.Y. Xu, H.A. Wu*, and F.C. Wang*, Exploring wettability variations on minerals surfaces: Insights from spreading coefficient and interaction energy analysis. Geoenergy Science and Engineering, 2024. 234: p. 212672. (https://doi.org/10.1016/j.geoen.2024.212672)

255. Xiao, J. H., Z.B. Zhang, J.H. Li, S.M. Chen*, H.L. Gao, Y.X. Liao, L. Chen, Z.S. Wang, Y.F. Lu, Y.Z. Hou, H.A. Wu, D.H. Zou*, and S.H. Yu*, Bioinspired polysaccharide-based nanocomposite membranes with robust wet mechanical properties for guided bone regeneration. National Science Review, 2024. 11(13): p. nwad333. (https://doi.org/10.1093/nsr/nwad333)

254. Zhu,Y.B.#, Z.Y. Fang#, Z.T. Zhang, and H.A. Wu*, Discontinuous phase diagram of amorphous carbons. National Science Review, 2024. 12: p. nwae051. (https://doi.org/10.1093/nsr/nwae051)

253. Zhou, N.,Y.b. Zhu*, and H.A. Wu*, Effect of the sonic shock wave on void evolution in materials under irradiation. Mechanics of Materials, 2024. 189: p. 104907. (https://doi.org/10.1016/j.mechmat.2023.104907)

252. Wang, Q., H. Yu*, W.L. Xu, H.W. Huang, F.D. Li, and H.A. Wu, How does the heterogeneous interface influence hydraulic fracturing? International Journal of Engineering Science, 2024. 195: p. 104000. (https://doi.org/10.1016/j.ijengsci.2023.104000)

251. Li,B., H. Yu*, D.Q. Ji, F.C. Wang, Z.D. Lei*, and H.A. Wu, Pore-scale imbibition patterns in layered porous media with fractures. Physics of Fluids, 2024. 36(1): p. 012120. (https://doi.org/10.1063/5.0182210)

250. Zhang, Z.T.#, Z.Y. Fang#, H.A. Wu, and Y.B. Zhu*, Temperature-dependent paracrystalline nucleation in atomically disordered diamonds. Nano Letters, 2023. 24(1): p. 312-318. (https://doi.org/10.1021/acs.nanolett.3c04037)

249. Zhang, H.L., H. Yu*, Q. Wang, W.L. Xu, M.C. Huang, F.D. Li, and H.A. Wu*, How to achieve the fast computation for voxel-based irregular structures by few finite elements? Extreme Mechanics Letters, 2023. 65: p. 102103. (https://doi.org/10.1016/j.eml.2023.102103)

248. Li, J.C., K.L. Zhang, J.C. Fan, H.A. Wu*, and F.C. Wang*, Boundary slip moderated by interfacial hydrogen bond dynamics. Microfluidics and Nanofluidics, 2023. 27(12): p. 86. (https://doi.org/10.1007/s10404-023-02695-8)

247. Li, B., H. Yu*, W.l. Xu, H.W. Huang, M.C. Huang, S.W. Meng*, H. Liu, and H.A. Wu, A multi-physics coupled multi-scale transport model for CO2 sequestration and enhanced recovery in shale formation with fractal fracture networks. Energy, 2023. 284: p. 129285. (https://doi.org/10.1016/j.energy.2023.129285)

246. Liu, X.Y., Y.F. Xu, J.C. Shi, Y.B. Zhu, S. Zhang* and H.A. Wu*, Anti-fatigue nanomechanics in the pre-cracked graphene-copper artificial nacre under cyclic tension. Carbon, 2023. 215: p. 118505. (https://doi.org/10.1016/j.carbon.2023.118505)

245. Huang, M.C., H. Yu*, H.Y. Xu, H.L. Zhang, X.Y. Hong and H.A. Wu, Fast and accurate calculation on CO2/CH4 competitive adsorption in shale nanopores: From molecular kinetic theory to machine learning model. Chemical Engineering Journal, 2023. 474(15): p. 145562. (https://doi.org/10.1016/j.cej.2023.145562)

244. Huang, X., J.C. Fan, H.A. Wu* and F.C. Wang*, Local molecular asymmetry mediated self-adaptive pinning force on the contact line. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023. 674(5): p. 131987. (https://doi.org/10.1016/j.colsurfa.2023.131987)

243. Liu, C.* and H.A. Wu, A variational formulation of physics-informed neural network for the applications of homogeneous and heterogeneous material properties identification. International Journal of Applied Mechanics, 2023. 15(8): p. 2350065. (https://dx.doi.org/10.1142/S1758825123500655)

242. Cui, F.L., J. Xu*, J. Xia, H. Liu, H.A. Wu and F.C. Wang*, Micromechanical mechanism of oil/brine/rock interfacial interactions based on first-principles calculations. Journal of Molecular Liquids, 2023. 386(15): p. 122502. (https://doi.org/10.1016/j.molliq.2023.122502)

241. Liu, C.* and H.A. Wu, cv-PINN: Efficient learning of variational physics-informed neural network with domain decomposition. Extreme Mechanics Letters, 2023. 63: p. 102051. (https://doi.org/10.1016/j.eml.2023.102051)

240. Wu, B., X.X. Wang, Y.B. Zhu, H.W. Wu, A.M. He, H.A. Wu* and P. Wang*, Atomic insight into the oxidation mechanism of a core-shell aluminum nanoparticle: Atomic diffusion or micro-explosion? Journal of Physical Chemistry C, 2023. 127(34): p. 16781-16791. (https://doi.org/10.1021/acs.jpcc.3c02577)

239. Yu, H.*, W.L. Xu, B. Li, H.W. Huang, M. Micheal, Q. Wang, M.C. Huang, S.W. Meng*, H. Liu and H.A. Wu, Hydraulic fracturing and enhanced recovery in shale reservoirs: Theoretical analysis to engineering applications. Energy Fuels, 2023. 37(14): p. 9956-9997. (https://doi.org/10.1021/acs.energyfuels.3c01029)

238. Meng, X.S.#, L.C. Zhou#, L. Liu#, Y.B. Zhu, Y.F. Meng, D.C. Zheng, B. Yang, Q.Z. Rao, L.B. Mao*, H.A. Wu* and S.H. Yu*, Deformable hard tissue with high fatigue resistance in the hinge of bivalve Cristaria plicat. Science, 2023. 380(6651): p. 1252-1257. (https://doi.org/10.1126/science.ade2038)

237. Kong, Z.#, Y.Z. Hou#, J.F. Gu, F.C. Li, Y.B. Zhu, X.Y. Ji, H.A. Wu and J.J. Liang*, Biomimetic ultratough, strong, and ductile artificial polymer fiber based on immovable and slidable cross-links. Nano Letters, 2023. 23(13): p. 6216-6225. (https://doi.org/10.1021/acs.nanolett.3c01786)

236. Li, F.D, X.D. Chen, P. Xu, Z.C. Fan, Q. Wang, C.S. Lyu, Q. Zhang, H. Yu* and H.A. Wu, Optimal design of thin-layered composites for type IV vessels: Finite element analysis enhanced by ANN. Thin-Walled Structures, 2023. 187: p. 110752. (https://doi.org/10.1016/j.tws.2023.110752)

235. Gu, J.F.#, F.C. Li#, Y.B. Zhu#, D.H. Li, X. Liu, B. Wu, H.A. Wu*, X.Q. Fan, X.Y. Ji, Y.S. Chen and J.J. Liang*, Extremely robust and multifunctional nanocomposite fibers for strain-unperturbed textile electronics. Advanced Materials, 2023. 35(15): p. 2209527. (https://doi.org/10.1002/adma.202209527)

234. Marembo M, H. Yu*, S.W. Meng, W.L. Xu, H.W. Huang, M.C. Huang, H.L. Zhang, H. Liu, H.A. Wu, Gas production from shale reservoirs with bifurcating fractures: A modified quadruple-domain model coupling microseismic events. Energy, 2023. 278: p. 127780. (https://doi.org/10.1016/j.energy.2023.127780)

233. Wang, R.X.#, J.H. Qian#, X.F. Chen, Z.X. Low*, Y. Chen, H.Y. Ma, H.A. Wu, C.M. Doherty, D. Acharya, Z.L. Xie, M.R. Hill, W. Shen, F.C. Wang* and H.T. Wang*, Pyro-layered heterostructured nanosheet membrane for hydrogen separation. Nature Communications, 2023. 14(1): p. 2161. (https://doi.org/10.1038/s41467-023-37932-9)

232. Hu, Z.N.#, F.F. Li#, H.T. Wu#, J.H. Liao#, Wang, G. Chen, Z.F, Shi, Y.Q. Zhu, S.Y. Bu, Y.X. Zhao, M.P. Shang, Q. Lu, K.C. Jia, Q. Xie, G.R. Wang, X.D. Zhang, Y.B. Zhu, H.A. Wu*, H.L. Peng*, L. Lin*, Z.F. Liu*, Rapid and scalable transfer of large-area graphene wafers. Advanced Materials, 2023. p. 2300621. (https://doi.org/:10.1002/adma.2023)

231. Huang, H.W., H. Yu*, W.L. Xu, C.S. Lyu, M. Micheal, H.Y. Xu, H. Liu, H.A. Wu*, A coupled thermo-hydro-mechanical-chemical model for production performance of oil shale reservoirs during in-situ conversion process. Energy, 2023. 268: p. 126700. (https://doi.org/10.1016/j.energy.2023.126700)

230. Zhou, L.C., Z.Z. He, Z.T. Zhang, Y.B. Zhu*, H.A. Wu*, Maximum utilization of nacre-mimetic composites by architecture manipulation and interface modification towards critical damage state. Composites Science and Technology, 2023. 233: p. 109893. (https://doi.org/10.1016/j.compscitech.2022.109893)

229. Wang, Q., H. Yu*, W.L. Xu, C.S. Lyu, J.N. Zhang, M. Micheal, H.A. Wu*, Spatial and temporal constraints of the cohesive modeling: A unified criterion for fluid‐driven fracture. International Journal for Numerical Methods in Engineering, 2023. 124: p. 2756-2782. (https://doi.org/10.1002/nme.7227)

228. Qian, J.H., H.A. Wu*, F.C. Wang*, Molecular geometry effect on gas transport through nanochannels: Beyond Knudsen theory. Applied Surface Science, 2023. 611: p. 155613. (https://doi.org/10.1016/j.apsusc.2022.155613)

227. Yuan, G.Q.#, Y.Y. Liu#, J. Xia#, Y.C. Su, W.X. Wei, Y.B. Zhu, Y. An, H.A. Wu, Q. Xu and H. Pang*, Two-dimensional CuO nanosheets-induced MOF composites and derivatives for dendrite-free zinc-ion batteries. Nano Research, 2023. 16(5): p. 6881-6889. (https://doi.org/10.1007/s12274-023-5424-x)

226. Chen, S.M.#, S.C. Zhang#, H.L. Gao*, Q. Wang, L.C. Zhou, H.Y. Zhao, X.Y. Li, M. Gong, X.F. Pan, C. Cui, Z.Y. Wang, Y.L. Zhang, H.A. Wu, S.H. Yu*, Mechanically robust bamboo node and its hierarchically fibrous structural design. National Science Review, 2023. 10(2): p. nwac195. (https://doi.org/10.1093/nsr/nwac195)

225. Pan, X.F.#, Z. Bao#, W.L. Xu#, H.L. Gao*, B.Wu, Y.B. Zhu, G.H. Yu, J. Chen, S.C. Zhang, L. Li, H.A. Wu, X. Li*, S.H. Yu*, Recyclable Nacre-Like Aramid-Mica Nanopapers with Enhanced Mechanical and Electrical Insulating Properties. Advanced Functional Materials, 2023. 33(9): p. 2210901. (https://doi.org/10.1002/adfm.202210901)

224. Huang, Z.C.#, Z.Z. He#, Y.B. Zhu*, H.A. Wu*, A general theory for the bending of multilayer van der Waals materials. Journal of the Mechanics and Physics of Solids, 2023. 171: p. 105144. (https://doi.org/10.1016/j.jmps.2022.105144)

223. Xu, W.L., H. Yu*, M. Micheal, H.W. Huang, H. Liu, H.A. Wu*. An integrated model for fracture propagation and production performance of thermal enhanced shale gas recovery. Energy, 2023. 263: p. 125682. (https://doi.org/10.1016/j.energy.2022.125682).

222. Sia, G.D.#, X.Y. Hong#, H. Yu*, H.A. Wu, Y.M. Hung*, Preservable superhydrophilicity of thermally cured graphene-nanoplatelets/epoxy nanocomposite coatings. Composites Part B: Engineering, 2023. 252: p. 110500. (https://doi.org/10.1016/j.compositesb.2023.110500)

221. Liu, C.*, A.G. Zhao, H.A. Wu, Competition growth of biwing hydraulic fractures in naturally fractured reservoirs. Gas Science and Engineering, 2023. 109: p. 204873. (https://doi.org/10.1016/j.jgsce.2023.204873)

220. He, Z.Z.*, H.A. Wu, J. Xia, Y.Z. Hou, Y.B. Zhu*, How weak hydration interfaces simultaneously strengthen and toughen nanocellulose materials. Extreme Mechanics Letters, 2023. 58: p. 101947. (https://doi.org/10.1016/j.eml.2022.101947)

219. Zhang, Z.B.#, Z.Z. He#, X.F. Pan#, H.L. Gao*, S.M. Chen, Y.B. Zhu, S. Cao, C. Zhao, S. Wu, X. Gong, H.A. Wu*, S.H. Yu*. Bioinspired Impact-Resistant and Self-Monitoring Nanofibrous Composites. Small, 2023. 19(2): p. 2205219. (https://doi.org/10.1002/smll.202205219)

218. Hou, Y.Z., J. Xia*, Z.Z. He, Y.B. Zhu, H.A. Wu*, Molecular levers enable anomalously enhanced strength and toughness of cellulose nanocrystal at cryogenic temperature. Nano Research, 2023. 16: p. 8036–8041. (https://doi.org/10.1007/s12274-022-5293-3)

217. Hong, X.Y., H.Y. Xu, H. Yu, J. Xu*, H. Liu, F.C. Wang, H.A. Wu*, Molecular Understanding on Migration and Recovery of Shale Gas/Oil Mixture through a Pore Throat. Energy & Fuels, 2023. 37 (1): p. 310-318. (http://doi.org/10.1021/acs.energyfuels.2c03315)

216. Cheng, H., J. Xia, M. Wang, C. Wang, R.J. Gui, X.M. Cao, T.P. Zhou, X.S. Zheng, W.S. Chu, H.A. Wu, Y. Xie, and C.Z. Wu*. Surface Anion Promotes Pt Electrocatalysts with High CO Tolerance in Fuel-Cell Performance. Journal of the American Chemical Society, 2022. 144(48): p.22018-22025. (http://doi.org/10.1021/jacs.2c09147)

215. Ng, V. O.#, X.Y. Hong#, H. Yu*, H.A. Wu, Y.M. Hung*. Anomalously enhanced thermal performance of micro heat pipes coated with heterogeneous superwettable graphene nanostructures. Applied Energy, 2022. 326: p.119994. (https://doi.org/10.1016/j.apenergy.2022.119994)

214. Huang, M.C.#, H.Y. Xu#, H. Yu*, H.L. Zhang, M. Micheal, X.H. Yuan, H.A. Wu*. Fast prediction of methane adsorption in shale nanopores using kinetic theory and machine learning algorithm. Chemical Engineering Journal, 2022. 446: p.137221. (https://doi.org/10.1016/j.cej.2022.137221)

213. Zhang, H.L., H. Yu*, S.W. Meng, M.C. Huang, M. Micheal, J. Su, H. Liu, H.A. Wu*, Fast and accurate reconstruction of large-scale 3D porous media using deep learning. Journal of Petroleum Science and Engineering, 2022, 217: p.110937. (https://doi.org/10.1016/j.petrol.2022.110937)

212. Xu, W.L., H. Yu*, J. N. Zhang, C.S. Lyu, Q.Wang, M. Micheal, H.A. Wu*, Phase-field method of crack branching during SC-CO2 fracturing: A new energy release rate criterion coupling pore pressure gradient. Computer Methods in Applied Mechanics and Engineering, 2022, 399: p.115366. (https://doi.org/10.1016/j.cma.2022.115366)

211. Cui, F.L., X. Jin*, H. Liu, H.A. Wu*. F.C. Wang, Molecular modeling on Gulong shale oil and wettability of reservoir matrix. Capillarity, 2022, 5(4): p.65-74. (https://doi.org/10.46690/capi.2022.04.01)

210. Zhang, J.N., H. Yu*, W.L. Xu, C.S. Lv, M. Micheal, F. Shi, H.A. Wu*, A hybrid numerical approach for hydraulic fracturing in a naturally fractured formation combining the XFEM and phase-field model. Engineering Fracture Mechanics, 2022. 271: p. 108621. (https://doi.org/10.1016/j.engfracmech.2022.108621)

209. Hong, X.Y., H. Yu, H.Y. Xu, X.Q. Wang, X. J, H.A. Wu*, F.C. Wang*, Competitive adsorption of asphaltene and n-heptane on quartz surfaces and its effect on crude oil transport through nanopores. Journal of Molecular Liquids, 2022. 359: p. 119312. (https://doi.org/10.1016/j.molliq.2022.119312)

208. Wang, F.C., J.H. Qian, J.C. Fan, J.C. LiH.Y. Xu, H.A. Wu*, Molecular transport under extreme confinement. Science China Physics, Mechanics & Astronomy, 2022. 65: p. 264601. (https://doi.org/10.1007/s11433-021-1853-3)

207. Lv, C., G.J. Wang*, X.P. Zhang, B.Q. Luo, N. Luo, H.F. Song, F.C. Wu, H.A. Wu, F.L. Tan, J.H. Zhao, C.L. Liu*, C.W. Sun. New explanation for the existence of B19′ phase in NiTi alloy from the perspective of twinning martensite. Scripta Materialia, 2022. 214: p. 114644. (https://doi.org/10.1016/j.scriptamat.2022.114644)

206. Cao, G., J.N. Zhang, Y.B. Guo, C. Liu, M. Micheal, C.S. Lv, H. Yu*, H.A. Wu. Numerical modeling on friction and wear behaviors of all-metal progressive cavity pump. Journal of Petroleum Science and Engineering, 2022. 213: p. 110443. (https://doi.org/10.1016/j.petrol.2022.110443)

205. Micheal, M., W.L. Xu, J. J, H. Yu*, J.D. Liu, W.D. Jiang*, H. Liu, H.A. Wu. A multi-scale quadruple-continuum model for production evaluation of shale gas reservoirs considering complex gas transfer mechanisms and geomechanics. Journal of Petroleum Science and Engineering, 2022. 213: p. 110419. (https://doi.org/10.1016/j.petrol.2022.110419)

204. Chen, S.M, K.J. Wu, H.L. Gao*, X.H. Sun, S.C. Zhang, X.Y. Li, Z.B. Zhang, S.M. Wen, Y.B. Zhu, H.A. Wu, Y. Ni, S.H. Yu*. Biomimetic discontinuous Bouligand structural design enables high-performance nanocomposites. Matter, 2022. 5(5): p. 1563-1577. (https://doi.org/10.1016/j.matt.2022.02.023)

203. Shi, L.X#, Y.B. Zhu#, X.Q. Fan#, H.A. Wu*, P.Q. Wu, X.Y. Ji, Y.S. Chen, J.J. Liang*. An auxetic cellular structure as a universal design for enhanced piezoresistive sensitivity. Matter, 2022. 5(5): p. 1547-1562. (https://doi.org/10.1016/j.matt.2022.02.022)

202. Wang, C.#, H.Y. Xu#, H. Cheng, H. Yu, S. Liu, W. J. Wang, R.L. Yuan, H.F. Liu, T.P. Zhou, W.S. Chu, H.A. Wu, Y. Xie, C.Z. Wu, Interfacial ion regulation on 2D layered double hydroxide nanosheets for enhanced thermal insulation. Science China Chemistry, 2022. 65: p.898–904. (https://doi.org/10.1007/s11426-021-1201-0).

201. Zhang, J.N., H. Yu, Q. Wang, C.S. Lv, C. Liu, F. Shi, H.A. Wu*, Hydraulic fracture propagation at weak interfaces between contrasting layers in shale using XFEM with energy-based criterion. Journal of Natural Gas Science and Engineering, 2022. 101: p.104502. (https://doi.org/10.1016/j.jngse.2022.104502)

200. Lu, J.#, H.Y. Xu#, H. Yu#, X.Y. Hu#, J. Xia, Y.L. Zhu, F.C. Wang, H.A. Wu*, L. Jiang, H.T. Wang*, Ultrafast rectifying counter-directional transport of proton and metal ions in metal-organic framework–based nanochannels. Science Advances, 2022. 8: p.eabl5070. (https://doi.org/10.1126/sciadv.abl5070)

199. Shi, X.L., X.Q. Fan, Y.B. Zhu, Y. Liu, P.Q. Wu, R.H. Jiang, B. Wu, H.A. Wu, H. Zheng, J.B. Wang, X.Y. Ji, Y.S. Chen*, J.J. Liang*, Pushing detectability and sensitivity for subtle force to new limits with shrinkable nanochannel structured aerogel. Nature Communications, 2022. 13: p.1119. (https://doi.org/10.1038/s41467-022-28760-4)

198. Meng, Y.F.#, Y.B. Zhu#, L.C. Zhou, X.S. Meng, Y.L. Yang, R. Zhao, J. Xia, B. Yang, Y.J. Lu, H.A. Wu, L.B. Mao*, S.H. Yu*, Artificial Nacre with High Toughness Amplification Factor: Residual Stress-Engineering Sparks Enhanced Extrinsic Toughening Mechanisms. Advanced Materials, 2022. 34: p.2108267. (https://doi.org/10.1002/adma.202108267)

197. Xu, H.Y., H. Yu*, J.C. Fan, J. Xia, H. Liu, H.A. Wu*, Formation mechanism and structural characteristic of pore-networks in shale kerogen during in-situ conversion process. Energy, 2022. 242: p.122992. (https://doi.org/10.1016/j.energy.2021.122992)

196. Zhang, R.G., Y. Wang, Y.B. Zhu, J.D. Jin, H.A. Wu, P. Gu*, Y. Zhao*, Stress analysis of double-walled pipes undergone mechanical drawing process. The International Journal of Advanced Manufacturing Technology, 2022. 119: p.2525–2535. (https://doi.org/10.1007/s00170-021-08283-w)

195. Wang, J.N., B. Wu, F.C. Wu, P. Wang, A.M. He*, H.A. Wu*, Spall and recompression processes with double shock loading of polycrystalline copper. Mechanics of Materials, 2022. 165: p.104194. (https://doi.org/10.1016/j.mechmat.2021.104194)

194. Lim, E.#, X.Y. Hong#, M.K. Tan, H. Yu*, H.A. Wu*, Y. M. Hung*, Distinctive evaporation characteristics of water and ethanol on graphene nanostructured surfaces. International Journal of Heat and Mass Transfer, 2022, 183: p. 122174. (https://doi.org/10.1016/j.ijheatmasstransfer.2021.122174)

193. Liu, S.#, H. Cheng#, J. Xia#, C. Wang, R.J. Gui, T.P. Zhou, H.F. Liu, J. Peng, N. Zhang, W.J. Wang, W.S. Chu, H.A. Wu*, Y.Xie*, Surface microenvironment optimization- induced robust oxygen reduction for neutral zinc-air batteries. Natural Sciences, 2021, 1(2): p. e20210005. (https://doi.org/10.1002/ntls.20210005)

192. Yuan, X.H., H. Yu, H.L. Zhang, L. Zheng, E.B. Dong*, H.A. Wu*, A Multi-Scale Grasp Detector Based on Fully Matching Model. Computer Modeling in Engineering & Sciences, 2022, 133(2): p. 281-301. (https://dio.org/10.32604/cmes.2022.021383)

191. He, Z.Z., Y.B. Zhu, H.A. Wu*, Multiscale mechanics of noncovalent interface in graphene oxide layered nanocomposites. Theoretical and Applied Mechanics Letters, 2022, 12(1): p. 100304. (https://doi.org/10.1016/j.taml.2021.100304)

190. Zhang, H.L., H. Yu*, X.H. Yuan, H.Y. Xu, M. Micheal, J.N. Zhang, H.L. Shu, G.C. Wang, H.A. Wu*, Permeability prediction of low-resolution porous media images using autoencoder-based convolutional neural network. Journal of Petroleum Science and Engineering, 2022, 208: p. 109589. (https://doi.org/10.1016/j.petrol.2021.109589)

189. He, Z.Z., Y.B. Zhu* and H.A. Wu*, A universal mechanical framework for noncovalent interface in laminated nanocomposites. Journal of the Mechanics and Physics of Solids, 2022. 158: p. 104560. (https://doi.org/10.1016/j.jmps.2021.104560)

188. Pan, X.F.#, B. Wu#, H.L. Gao*, S.M. Chen, Y.B. Zhu, L.C. Zhou, H.A. Wu and S.H. Yu*, Double-layer nacre-inspired polyimide-mica nanocomposite films with excellent mechanical stability for LEO environmental conditions. Advanced Materials, 2022. 34: p. 2105299. (https://doi.org/10.1002/adma.202105299)

187. Cheng, Z.#, L.F. Bu#, Y. Zhang#, H.A. Wu, T. Zhu*, H.J. Gao* and L. Lu*, Unraveling the origin of extra strengthening in gradient nanotwinned metals. Proceedings of the National Academy of Sciences, 2022. 119(3): p. e2116808119. (https://doi.org/10.1073/pnas.2116808119)

186. Cheng, H.#, R.J. Gui#, H. Yu#, C. Wang, S. Liu, H.F. Liu, T.P. Zhou, N. Zhang, X.S. Zheng, W.S. Chu, Y. Lin, H.A. Wu, C.Z. Wu* and Y. Xie, Subsize Pt-based intermetallic compound enables long-term cyclic mass activity for fuel-cell oxygen reduction. Proceedings of the National Academy of Sciences, 2021. 118(35): p. e2104026118. (https://doi.org/10.1073/pnas.2104026118)

185. Zhao, S.#, C.H. Jiang#, J.C. Fan#, S.S. Hong, P. Mei, R.X. Yao, Y.L. Liu, S.L. Zhang, H. Li, H.Q. Zhang, C. Sun, Z.B. Guo, P.P. Shao, Y.H Zhu, J.W. Zhang, L.S. Guo, Y.H. Ma, J.Q. Zhang, X. Feng*, F.C. Wang*, H.A. Wu and B. Wang*, Hydrophilicity gradient in covalent organic frameworks for membrane distillation. Nature Materials, 2021. 20: p. 1551-1558. (https://doi.org/10.1038/s41563-021-01052-w)

184. Zhu, Y.B., Y.C. Wang, B. Wu, Z.Z. He, J. Xia and H.A. Wu*, Micromechanical Landscape of Three-Dimensional Disordered Graphene Networks. Nano Letters, 2021. 21(19): p. 8401-8408. (https://doi.org/10.1021/acs.nanolett.1c02985)

183. Lv, C., G.J. Wang*, X.P. Zhang, B.Q. Luo, N. Luo, F.C. Wu, H.A. Wu, F.L. Tan, J.H. Zhao, C.L. Liu* and C.W. Sun, Spalling modes and mechanisms of shocked nanocrystalline NiTi at different loadings and temperatures. Mechanics of Materials, 2021. 161: p. 104004. (https://doi.org/10.1016/j.mechmat.2021.104004)

182. Hou, Y.Z., Z.Z. He, Y.B. Zhu* and H.A. Wu, Intrinsic kink deformation in nanocellulose. Carbohydrate Polymers, 2021. 273: p. 118578. (https://doi.org/10.1016/j.carbpol.2021.118578)

181. Gao, H.L.#, Z.Y. Wang#, C. Cui#, J.Z. Bao, Y.B. Zhu, J. Xia, S.M. Wen, H.A. Wu and S.H. Yu*, A highly compressible and stretchable carbon spring  for smart vibration and magnetism sensors. Advanced Materials, 2021. 33: p. 2102724. (https://doi.org/10.1002/adma.202102724)

180. Wang, Q., W.J. Yin, H. Yu, Y.B. Zhu* and H.A. Wu*, Hyperbolic-like structure with negative Poisson’s ratio:deformation mechanism and structural design. Physica Status Solidi B, 2021. 258(10): p. 2100011. (https://doi.org/10.1002/pssb.202100011)

179. Micheal, M.#, W.L. Xu#, H.Y. Xu, J.N. Zhang, H.J. Jin, H. Yu* and H.A. Wu*, Multi-scale modelling of gas transport and production evaluation in shale reservoir considering crisscrossing fractures. Journal of Natural Gas Science and Engineering, 2021. 95: p. 104156. (https://doi.org/10.1016/j.jngse.2021.104156)

178. Deng, Y., Z.J. Chen, Y.B. Zhu, H.A. Wu and P. Gu*, The device using a polydimethylsiloxane membrane and the phase transition of water. Coatings, 2021. 11: p. 1102. (https://doi.org/10.3390/coatings11091102)

177. Ng, V.O.#, H. Yu#, H.A. Wu and Y.M. Hung*, Thermal performance enhancement and optimization of two-phase closed thermosyphon with graphene-nanoplatelets coatings. Energy Conversion and Management, 2021. 236: p. 114039. (https://doi.org/10.1016/j.enconman.2021.114039)

C.11 宋戎妆,侯远震,何泽洲,夏骏,朱银波*,吴恒安. 纳米纤维素序构材料界面力学行为和设计的研究进展[J].中国科学技术大学学报,2021,51(10):766-786. pdf

176. Li, J.C., Y.B. Zhu, J. Xia, J.C. Fan, H.A. Wu* and F.C. Wang*, Anomalously low friction of confined monolayer water with a quadrilateral structure. Journal of Chemical Physics, 2021. 154(22): p. 224508. (https://doi.org/10.1063/5.0053361)

175. Li, Y.H.#, Y.Z. Yu#, J.H. Qian, H.A Wu* and F.C. Wang*, Anomalous ion transport through angstrom-scale pores: Effect of hydration shell exchange on ion mobility. Applied Surface Science, 2021. 560: p. 150022. (https://doi.org/10.1016/j.apsusc.2021.150022)

174. Qian, J.H., Y.H. Li, H.A. Wu* and F.C. Wang*, Surface morphological effects on gas transport through nanochannels with atomically smooth walls. Carbon, 2021. 180: p. 85-91. (https://doi.org/10.1016/j.carbon.2021.04.087)

173. Zhang, S., Y.B. Zhu, F.C. Wang, X.Y. Liu*, H.A. Wu and S.N. Luo, Theoretical analysis of high strength and anti-buckling of three-dimensional carbon honeycombs under shear loading. Composites Part B: Engineering, 2021. 219: p. 108967. (https://doi.org/10.1016/j.compositesb.2021.108967)

172. Wu, B., F.C. Wu, P. Wang, A.M. He* and H.A Wu*, Ignition and Combustion of Hydrocarbon Fuels Enhanced by Aluminum Nanoparticle Additives: Insights from Reactive Molecular Dynamics Simulations. The Journal of Physical Chemistry C, 2021. 125(21): p. 11359–11368. (https://doi.org/10.1021/acs.jpcc.1c01435)

171. Zhu, Y.D., Z.J. Zheng*, Y.L. Zhang, H.A. Wu and J.L. Yu, Adhesion of elastic wavy surfaces: Interface strengthening/weakening and mode transition mechanisms. Journal of the Mechanics and Physics of Solids, 2021. 151: p. 104402. (https://doi.org/10.1016/j.jmps.2021.104402)

170. Wang, Y.C., Y.B. Zhu* and H.A. Wu, Formation and topological structure of three-dimensional disordered graphene networks. Physical Chemistry Chemical Physics, 2021. 23(17): p. 10290-10302.  (https://doi.org/10.1039/D1CP00617G)

169. Liu, H.F.#, J. Xia#, N. Zhang, H. Cheng, W.T. Bi, X.L. Zu, W.S. Chu, H.A. Wu, C.Z. Wu* and Y. Xie, Solid–liquid phase transition induced electrocatalytic switching from hydrogen evolution to highly selective CO2 reduction. Nature Catalysis, 2021. 4: p. 202–211. (https://doi.org/10.1038/s41929-021-00576-3)

168. Zhou, L.C., Y.B. Zhu, Z.Z. He, X. Jin* and H.A. Wu*, Multi-parameter structural optimization to reconcile mechanical conflicts in nacre-like composites. Composite Structures, 2021. 259: p. 113225. (https://doi.org/10.1016/j.compstruct.2020.113225)

C.10 洪祥宇,徐亨宇,崔风路,余昊,吴一宁,吴恒安,王奉超*. 分子模拟在非常规油气开发中的应用[J].计算力学学报,2021,38(03):313-320. pdf

167. Chen, Z.J., G. Cheng, Y.B. Zhu, H.A. Wu, E.B. Dong, P. Gu* and Y. Zhao*, Biomimetic polydimethylsiloxane (PDMS)/carbon fiber lamellar adhesive composite in thermal vacuum environment. International Journal of Adhesion and Adhesives, 2021. 105: p. 102778. (https://doi.org/10.1016/j.ijadhadh.2020.102778)

166. Fan, J.C., J. De Coninck, H.A. Wu* and F.C. Wang*, A generalized examination of capillary force balance at contact line: On rough surfaces or in two-liquid systems. Journal of Colloid and Interface Science, 2021. 585: p. 320-327. (https://doi.org/10.1016/j.jcis.2020.11.100)

165. Xu, H.Y., H. Yu*, J.C. Fan, J. Xia, F.C. Wang and H.A. Wu, Enhanced gas recovery in kerogen pyrolytic pore network: Molecular simulations and theoretical analysis. Energy & Fuels, 2021. 35(3): p. 2253-2267. (https://doi.org/10.1021/acs.energyfuels.0c04137)

164. Wang, Y.C., Y.B. Zhu* and H.A. Wu, Porous Characteristics of Three-Dimensional Disordered Graphene Networks. Crystals, 2021. 11(2): p. 127. (https://doi.org/10.3390/cryst11020127)

163. Guan, Q.F.#, Z.M. Han#, Y.B. Zhu#, W.L. Xu, H.B. Yang, Z.C. Ling, B.B. Yan, K.P. Yang, C.H. Yin, H.A. Wu and S.H. Yu*, Bio-Inspired Lotus-Fiber-Like Spiral Hydrogel Bacterial Cellulose Fibers. Nano Letters, 2021. 21(2): p. 952-958. (https://dx.doi.org/10.1021/acs.nanolett.0c03707)

C.09 吕超,张旭平,王桂吉*,罗斌强,罗宁,吴恒安,谭福利,赵剑衡,刘仓理,孙承纬. 冲击载荷下Ni52Ti48合金的微观响应特性[J].高压物理学报,2021,35(04):128-141. pdf

C.08 王嘉楠,伍鲍,何安民,吴凤超,王裴,吴恒安*.强冲击下金属材料动态损伤与破坏的分子动力学模拟研究进展[J].高压物理学报,2021,35(04):4-17. pdf

162. Hou, Y.Z.#, Q.F. Guan#, J. Xia#, Z.C. Ling, Z.Z. He, Z.M. Han, H.B. Yang, P. Gu, Y.B. Zhu*, S.H. Yu* and H.A. Wu*, Strengthening and Toughening Hierarchical Nanocellulose via Humidity-Mediated Interface. ACS Nano, 2021. 15(1): p. 1310-1320. (https://dx.doi.org/10.1021/acsnano.0c08574)

161. Yu, H.#, H.Y. Xu#, J.C. Fan, Y.B. Zhu, F.C. Wang and H.A. Wu*, Transport of Shale Gas in Microporous/Nanoporous Media: Molecular to Pore-Scale Simulations. Energy & Fuels, 2021. 35(2): p. 911-943. (Cover paper) (https://dx.doi.org/10.1021/acs.energyfuels.0c03276)

160. Ullah, A.*, H.A. Wu, A. Rehman, Y.B. Zhu, T.T Liu and K. Zhang, Influence of laser parameters and Ti content on the surface morphology of L-PBF fabricated Titania. Rapid Prototyping Journal, 2021. 27(1): p. 71-80. (https://doi.org/10.1108/RPJ-03-2020-0050)

159. Chen, X.F., Y.B. Zhu, H. Yu, J.Z. Liu, C.D. Easton, Z.Y. Wang, Y.X. Hu, Z.L. Xie, H.A. Wu, X.W. Zhang, D. Li and H.T. Wang*, Ultrafast water evaporation through graphene membranes with subnanometer pores for desalination. Journal of Membrane Science, 2021. 621: p. 118934. (https://doi.org/10.1016/j.memsci.2020.118934)

158. Zhou, T.P.#, H. Shan#, H. Yu#, C.A. Zhong#, J. K. Ge, N. Zhang, W.S. Chu, W.S. Yan, Q. Xu, H.A. Wu, C.Z. Wu* and Y. Xie, Nanopore confinement of electrocatalysts optimizing triple transport for an ultrahigh-power-density Zinc–air fuel cell with robust stability. Advanced Materials, 2020. 32: p. 2003251. (https://doi.org/10.1002/adma.202003251)

157. He, Z.Z., Y.B. Zhu and H.A. Wu*, Edge effect on interlayer shear in multilayer two-dimensional material assemblies. International Journal of Solids and Structures, 2020. 204-205: p. 128-137. (https://doi.org/10.1016/j.ijsolstr.2020.08.021)

156. Wang, Y.C., Y.B. Zhu*, Z.Z. He and H.A. Wu, Multiscale investigations into the fracture toughness of SiC/graphene composites: Atomistic simulations and crack-bridging model. Ceramics International, 2020. 46(18): p. 29101-29110. (https://doi.org/10.1016/j.ceramint.2020.08.082)

155. Xia, J., Y.B. Zhu, X. Jin and H.A. Wu*, Unravelling the Interactions Between Organic Molecules and Reduced Graphene Oxide in an Aqueous Environment. Carbon, 2020. 167: p. 345-350. (https://doi.org/10.1016/j.carbon.2020.06.034)

154. Yu, H., H.Y. Xu, J. Xia, J.C. Fan, F.C. Wang and H.A. Wu*, Nanoconfined Transport Characteristic of Methane in Organic Shale Nanopores: The Applicability of the Continuous Model. Energy & Fuels, 2020. 34(8): p. 9552-9562. (https://doi.org/10.1021/acs.energyfuels.0c01789)

153. Wu, B., F.C. Wu, P. Wang, A.M. He* and H.A. Wu*, Shock-induced ejecta transport and breakup in reactive gas. Physical Chemistry Chemical Physics, 2020. 22: p. 14857-14867. (https://doi.org/10.1039/D0CP01831G)

152. Lim, F.S., S.T. Tan, Y.M Zhu, J.W. Chen, B. Wu, H. Yu, J.M. Kim, R.T. Ginting, K.S. Lau, C.H. Chia, H.A. Wu, M. Gu and W.S. Chang*, Tunable Plasmon-Induced Charge Transport and Photon Absorption of Bimetallic Au-Ag Nanoparticles on ZnO Photoanode for Photoelectrochemical Enhancement under Visible Light. The Journal of Physical Chemistry C, 2020. 124(26): p. 14105-14117. (https://doi.org/10.1021/acs.jpcc.0c03967)

151. Yu, H., H.Y. Xu, J.C. Fan, F.C. Wang and H.A. Wu*, Roughness Factor-Dependent Transport Characteristic of Shale Gas through Amorphous Kerogen Nanopores. The Journal of Physical Chemistry C, 2020. 124(23): p. 12752-12765. (Cover paper) (https://doi.org/10.1021/acs.jpcc.0c02456)

150. Xu, H.Y., H. Yu*, J.C. Fan, Y.B. Zhu, F.C. Wang and H.A. Wu*, Two-phase transport characteristic of shale gas and water through hydrophilic and hydrophobic nanopores. Energy & Fuels, 2020. 34(4): p. 4407-4420. (https://doi.org/10.1021/acs.energyfuels.0c00212)

149. Chen, M.W.#, B. Wu#, L.C. Zhou, Y.B. Zhu* and H.A. Wu, Micromechanical Properties of Pyrolytic Carbon with Interlayer Crosslink. Carbon, 2020. 159: p. 549-560. (https://doi.org/10.1016/j.carbon.2019.12.096)

148. Wang, J.N., F.C. Wu, P. Wang, A.M. He* and H.A. Wu*, Double-Shock-Induced Spall and Recompression Processes in Copper. Journal of Applied Physics, 2020. 127: p. 135903. (https://doi.org/10.1063/1.5144567)

147. Liu, C., J.N. Zhang, H. Yu, J. Chen, D.T. Lu and H.A. Wu*, New Insights of Natural Fractures Growth and Stimulation Optimization Based on a Three-Dimensional Cohesive Zone Model. Journal of Natural Gas Science and Engineering, 2020. 76: p. 103165. (https://doi.org/10.1016/j.jngse.2020.103165)

146. Yu, H., J.C. Fan, J. Xia, H. Liu and H.A. Wu*, Multiscale gas transport behavior in heterogeneous shale matrix consisting of organic and inorganic nanopores. Journal of Natural Gas Science and Engineering, 2020. 75: p. 103139. (https://doi.org/10.1016/j.jngse.2019.103139)

145. Wu, Y.Q., P. Tahmasebi*, H. Yu, C.Y. Lin*, H.A. Wu and C.M. Dong, Pore-Scale 3D Dynamic Modeling and Characterization of Shale Samples: Considering the Effects of Thermal Maturation. Journal of Geophysical Research: Solid Earth, 2020. 125(1): p. e2019JB018309. (https://doi.org/10.1029/2019JB018309)

144. Fan, J.C., H.A. Wu* and F.C. Wang*, Evaporation-driven liquid flow through nanochannels. Physics of Fluids, 2020. 32(1): p. 012001. (https://doi.org/10.1063/1.5137803)

143. Gao, H.L.#, R. Zhao#, C. Cui, Y.B. Zhu, S.M. Chen, Z. Pan, S.M. Wen, Y.F. Meng, C. Liu, H.A. Wu and S.H. Yu*, Bioinspired hierarchical helical nanocomposite macrofibers based on bacterial cellulose nanofibers. National Science Review, 2020. 7(1): p. 73-83. (https://doi.org/10.1093/nsr/nwz077)

142. Ma, Z.Y.#, Z.L. Yu#, Z.L. Xu#, L.F. Bu, H.R. Liu, Y.B. Zhu, B. Qin, T. Ma, H.J. Zhan, H.A. Wu, H. Ding* and S.H. Yu*, Origin of Batch Hydrothermal Fluid Behavior and Its Influence on Nanomaterial Synthesis. Matter, 2020. 2(5): p. 1270-1282. (https://doi.org/10.1016/j.matt.2020.02.015)

141. Guan, Q.F.#, H.B. Yang#, Z.M. Han#, L.C. Zhou, Y.B. Zhu, Z.C. Ling, H.B. Jiang, P.F. Wang, T. Ma, H.A. Wu and S.H. Yu*, Lightweight, tough, and sustainable cellulose nanofiber-derived bulk structural materials with low thermal expansion coefficient. Science Advances, 2020. 6(18): p. eaaz1114. (http://dx.doi.org/10.1126/sciadv.aaz1114)

140. Kueh, T.C.#, H. Yu#, A.K. Soh, H.A. Wu* and Y.M. Hung*, Influence of Substrate on Ultrafast Water Transport Property of Multilayer Graphene Coatings. Nanotechnology, 2020. 31(37): p. 375704. (https://doi.org/10.1088/1361-6528/ab9864)

139. Li, X.Y.#, H.C. Zhang#*, H. Yu#, J. Xia, Y.B. Zhu, H.A. Wu*, J. Hou, J. Lu, R.W. Ou, C.D. Easton, C. Selomulya, M.R. Hill, L. Jiang and H.T. Wang*, Unidirectional and Selective Proton Transport in Artificial Heterostructured Nanochannels with Nano-to-Subnano Confined Water Clusters. Advanced Materials, 2020. 32(24): p. 2001777. (https://doi.org/10.1002/adma.202001777)

138. Gan, J.S.#, H. Yu#, M.K. Tan, A.K. Soh, H.A. Wu* and Y.M. Hung*, Performance Enhancement of Graphene-Coated Micro Heat Pipes for Light-Emitting Diode Cooling. International Journal of Heat and Mass Transfer, 2020. 154: p. 119687. (https://doi.org/10.1016/j.ijheatmasstransfer.2020.119687)

137. Fan, J.C., J. De Coninck, H.A. Wu* and F.C. Wang*, Microscopic Origin of Capillary Force Balance at Contact Line. Physical Review Letters, 2020. 124(12): p. 125502. (https://doi.org/10.1103/PhysRevLett.124.125502)

136. Wang, K.#, X.H. Sun#, Y. Zhang, Y.C. Wei, D.Y. Chen, H.A. Wu, Z.J. Song, R. Long*, J.B. Wang* and J. Chen*, Microfluidic cytometry for high-throughput characterization of single cell cytoplasmic viscosity using crossing constriction channels. Cytometry Part A, 2019. 97(6): p. 630-637. (http://dx.doi.org/10.1002/cyto.a.23921)

135. Wang, K.#, X.H. Sun#, Y. Zhang, T. Zhan, Y. Zheng, Y.C. Wei, P. Zhao, D.Y. Chen, H.A. Wu, W.H. Wang, R. Long*, J.B. Wang* and J. Chen*, Characterization of cytoplasmic viscosity of hundreds of single tumour cells based on micropipette aspiration. Royal Society Open Science, 2019. 6: p. 181707. (http://dx.doi.org/10.1098/rsos.181707)

134. Xia, J., Y.B. Zhu*, Z.Z. He, F.C. Wang and H.A. Wu*, Superstrong Noncovalent Interface between Melamine and Graphene Oxide. ACS Applied Materials & Interfaces, 2019. 11(18): p. 17068-17078. (http://dx.doi.org/10.1021/acsami.9b02971)

133. Liu, C., Y.K. Shen, J.N. Zhang, D.T. Lu, H. Liu and H.A. Wu*, Production analysis in shale gas reservoirs based on fracturing-enhanced permeability areas. Science China: Physics, Mechanics & Astronomy, 2019. 62. (https://doi.org/10.1007/s11433-019-9427-x)

132. Wu, B., F.C. Wu, Y.B. Zhu, A.M. He, P. Wang* and H.A. Wu*, Fast reaction of aluminum nanoparticles promoted by oxide shell. Journal of Applied Physics, 2019. 126(14): p. 144305. (https://doi.org/10.1063/1.5115545)

131. Hu, X.Y.#., X.R. Wang#, Z.P. Ge, L. Zhang, Y.R. Zhou, J.Y., Li, L.F. Bu, H.A. Wu, P. Li*, W.P. Xu*, Bimetallic plasmonic Au@Ag nanocuboids for rapid and sensitive detection of phthalate plasticizers with label-free surface-enhanced Raman spectroscopy. Analyst, 2019. 144: p. 3861-3869. (https://doi.org/10.1039/C9AN00251K)

130. Yu, L.X.#, C. Zhu#, X.H. Sun, J. Salter, H.A. Wu, Y. Jin, W. Zhang*, R. Long*, Rapid Fabrication of Malleable Fiber Reinforced Composites with Vitrimer Powder. ACS Applied Polymer Materials, 2019. 1(9): p. 2535-2542. (http://dx.doi.org/10.1021/acsapm.9b00641)

129. He, Z.Z., Y.B. Zhu*, J. Xia and H.A. Wu, Optimization design on simultaneously strengthening and toughening graphene-based nacre-like materials through noncovalent interaction. Journal of the Mechanics and Physics of Solids, 2019. 133: p. 103706. (https://doi.org/10.1016/j.jmps.2019.103706)

128. Zhou, N., F.C. Wu, Y.B. Zhu, X.Z. Li, Q. Wu* and H.A. Wu*, Defect production and segregation induced by collision cascades in U-10Zr alloy. Journal of Nuclear Materials, 2019. 526(2): p. 151769. (https://doi.org/10.1016/j.jnucmat.2019.151769)

127. Chen, S.M.#, H.L. Gao#, X.H. Sun#, Z.Y. Ma, T. Ma, J. Xia, Y.B. Zhu, R. Zhao, H.B. Yao, H.A. Wu* and S.H. Yu*, Superior Biomimetic Nacreous Bulk Nanocomposites by a Multiscale Soft-Rigid Dual-Network Interfacial Design Strategy. Matter, 2019. 1(2): p. 412-427. (https://doi.org/10.1016/j.matt.2019.03.012)

126. Wang, W.B.#, Y.B. Zhu#, Q.L. Wen, Y.T. Wang, J. Xia, C.C. Li, M.W. Chen, Y.W. Liu*, H.Q. Li, H.A. Wu* and T.Y. Zhai*, Modulation of Molecular Spatial Distribution and Chemisorption with Perforated Nanosheets for Ethanol Electro‐oxidation. Advanced Materials, 2019. 31(28): p. 1900528. (https://doi.org/10.1002/adma.201900528)

125. Yu, Z.L.#, B. Qin#, Z.Y. Ma, J. Huang, S.C. Li, H.Y. Zhao, H. Li, Y.B. Zhu, H.A. Wu and S.H. Yu*, Superelastic Hard Carbon Nanofiber Aerogels. Advanced Materials, 2019. 31(23): p. 1900651. (https://doi.org/10.1002/adma.201900651)

124. Wu, F.C., Y.B. Zhu, X.Z. Li, P. Wang, Q. Wu* and H.A. Wu*, Peculiarities in breakup and transport process of shock-induced ejecta with surrounding gas. Journal of Applied Physics, 2019. 125: p. 185901. (https://doi.org/10.1063/1.5086542)

123. Yu, Y.Z., J.C. Fan, J. Xia, Y.B. Zhu, H.A. Wu and F.C. Wang*, Dehydration impeding ionic conductance through two-dimensional angstrom-scale slits. Nanoscale, 2019. 11: p. 8449-8457. (https://doi.org/10.1039/C9NR00317G)

122. Chen, M.W., Y.B. Zhu*, J. Xia and H.A. Wu*, Molecular insights into the initial formation of pyrolytic carbon upon carbon fiber surface. Carbon, 2019. 148: p. 307-316. (https://doi.org/10.1016/j.carbon.2019.04.003)

121. Yu, H., Y.B. Zhu, X. Jin*, H. Liu and H.A. Wu*, Multiscale simulations of shale gas transport in micro/nano-porous shale matrix considering pore structure influence. Journal of Natural Gas Science and Engineering, 2019. 64: p. 28-40. (https://doi.org/10.1016/j.jngse.2019.01.016)

120. Zhou, L.C., X.H. Sun, M.W. Chen, Y.B. Zhu and H.A. Wu*, Multiscale modeling and theoretical prediction for the thermal conductivity of porous plain-woven carbonized silica/phenolic composites. Composite Structures, 2019. 215: p. 278-288. (https://doi.org/10.1016/j.compstruct.2019.02.053)

119. Yu, Y.Z., J.C. Fan, A. Esfandiar, Y.B. Zhu, H.A. Wu and F.C. Wang*, Charge Asymmetry Effect in Ion Transport through Angstrom-Scale Channels. Journal of Physical Chemistry C, 2019. 123(2): p. 1462-1469. (https://doi.org/10.1021/acs.jpcc.8b09742)

118. Wang, J.N., F.C. Wu, Y.B. Zhu, A.M. He, P. Wang* and H.A. Wu*, Unsupported shock wave induced dynamic fragmentation of matrix in lead with surface grooves. Computational Materials Science, 2019. 156: p. 404-410. (https://doi.org/10.1016/j.commatsci.2018.10.018)

117. Sun, X.H., L.X. Yu, M. Rentschler, H.A. Wu* and R. Long*, Delamination of a rigid punch from an elastic substrate under normal and shear forces. Journal of the Mechanics and Physics of Solids, 2019. 122: p. 141-160. (https://doi.org/10.1016/j.jmps.2018.09.009)

C.07 王奉超,朱银波,吴恒安.纳米通道受限液体的结构和输运[J].中国科学:物理学 力学 天文学(约稿),2018,48(9):094609. pdf

116. Chen, S.M.#, H.L. Gao#, Y.B. Zhu#, H.B. Yao, L.B. Mao, Q.Y. Song, J. Xia, Z. Pan, Z. He, H.A. Wu and S.H. Yu*, Biomimetic twisted plywood structural materials. National Science Review, 2018. 5(5): p. 703-714. (https://doi.org/10.1093/nsr/nwy080)

115. Liu, C., X. Jin*, F. Shi, D.T. Lu, H. Liu and H.A. Wu*, Numerical investigation on the critical factors in successfully creating fracture network in heterogeneous shale reservoirs. Journal of Natural Gas Science and Engineering, 2018. 59: p. 427-439. (https://doi.org/10.1016/j.jngse.2018.09.019)

114. Cai, Y., H.A. Wu* and S.N. Luo*, A loading-dependent model of critical resolved shear stress. International Journal of Plasticity, 2018. 109: p. 1-17. (https://doi.org/10.1016/j.ijplas.2018.03.011)

113. Zhou, L.C., M.W. Chen, C. Liu and H.A. Wu*, A multi-scale stochastic fracture model for characterizing the tensile behavior of 2D woven composites. Composite Structures, 2018. 204: p. 536-547. (https://doi.org/10.1016/j.compstruct.2018.07.128)

112. Yu, Z.L.#, N. Yang#, L.C. Zhou, Z.Y. Ma, Y.B. Zhu, Y.Y. Lu, B. Qin, W.Y. Xing, T. Ma, S.M. Chen, H.L. Gao, H.A. Wu and S.H. Yu*, Bioinspired polymeric woods. Science Advances, 2018. 4(8): p. eaat7223. (http://dx.doi.org/10.1126/sciadv.aat7223)

111. Tong, W.L., Y.M. Hung*, H. Yu, M.K. Tan, B.T. Ng, B.T. Tan, H.A. Wu and A.K. Soh, Ultrafast water permeation in graphene nanostructures anomalously enhances two-phase heat transfer. Advanced Materials Interfaces, 2018. 5(13): p. 1800286. (https://doi.org/10.1002/admi.201800286)

110. Fan, J.C., F.C. Wang*, J. Chen, Y.B. Zhu, D.T. Lu, H. Liu and H.A. Wu*, Molecular mechanism of viscoelastic polymer enhanced oil recovery in nanopores. Royal Society Open Science, 2018. 5(6): p. 180076. (http://dx.doi.org/10.1098/rsos.180076)

109. He, Z.Z., Y.B. Zhu and H.A. Wu*, Self-folding mechanics of graphene tearing and peeling from a substrate. Frontiers of Physics, 2018. 13(3): p. 138111. (https://doi.org/10.1007/s11467-018-0755-5)

108. Shi, F., X.L. Wang, C. Liu, H. Liu and H.A. Wu*, An XFEM-based numerical model to calculate conductivity of propped fracture considering proppant transport, embedment and crushing. Journal of Petroleum Science and Engineering, 2018. 167: p. 615-626. (https://doi.org/10.1016/j.petrol.2018.04.042)

107. Wang, G.F., H.L. Qin, X. Gao, Y. Cao, W. Wang, F.C. Wang, H.A. Wu, H.P. Cong* and S.H. Yu*, Graphene Thin Films by Noncovalent-Interaction-Driven Assembly of Graphene Monolayers for Flexible Supercapacitors. Chem, 2018. 4(4): p. 896-910. (https://doi.org/10.1016/j.chempr.2018.01.008)

106. Wu, B., F.C. Wu, Y.B. Zhu, P. Wang, A.M. He* and H.A. Wu*, Molecular dynamics simulations of ejecta production from sinusoidal tin surfaces under supported and unsupported shocks. AIP Advances, 2018. 8(4): p. 045002. (https://doi.org/10.1063/1.5021671)

105. Zhu, W.D., Y.B. Zhu, L. Wang, Q. Zhu, W.H. Zhao, C.Q. Zhu, J. Bai, J.L. Yang, L.F. Yuan*, H.A. Wu* and X.C. Zeng*, Water Confined in Nanocapillaries: Two-Dimensional Bilayer Squarelike Ice and Associated Solid–Liquid–Solid Transition. Journal of Physical Chemistry C, 2018. 122(12): p. 6704-6712. (http://dx.doi.org/10.1021/acs.jpcc.8b00195)

104. Yu, H., J.C. Fan, J. Chen, Y.B. Zhu and H.A. Wu*, Pressure-dependent transport characteristic of methane gas in slit nanopores. International Journal of Heat and Mass Transfer, 2018. 123: p. 657-667. (https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.003)

103. Ou, X.W.#, Y.Z. Yu#, R.Z. Wu, A. Tyagi, M.H. Zhuang, Y. Ding, I.H. Abidi, H.A. Wu, F.C Wang* and Z.T. Luo*, Shuttle Suppression by Polymer-Sealed Graphene-Coated Polypropylene Separator. ACS Applied Materials & Interfaces, 2018. 10(6): p. 5534-5542. (http://dx.doi.org/10.1021/acsami.7b17251)

102. Li, X.Z., J.C. Fan, H. Yu, Y.B. Zhu* and H.A. Wu*, Lattice Boltzmann method simulations about shale gas flow in contracting nano-channels. International Journal of Heat and Mass Transfer, 2018. 122: p. 1210-1221. (https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.066)

101. Wang, X.L., F. Shi, C. Liu, D.T. Lu, H. Liu and H.A. Wu*, Extended finite element simulation of fracture network propagation in formation containing frictional and cemented natural fractures. Journal of Natural Gas Science and Engineering, 2018. 50: p. 309-324. (https://doi.org/10.1016/j.jngse.2017.12.013)

C.06 王奉超,孙长庆,吴恒安.受限水的超流特性[J].科学通报(约稿),2017,62(11):1111-1114.pdf

C.05 范竞存,余昊,陈杰,李向哲,王奉超,吴恒安.非常规油气开采中的微纳米力学问题研究进展[J].中国科学技术大学学报(约稿),2017,47(02):142-154.pdf

100. Wu, F.C., Y.B. Zhu, Q. Wu, X.Z. Li, P. Wang and H.A. Wu*, Helium bubbles aggravated defects production in self-irradiated copper. Journal of Nuclear Materials, 2017. 496: p. 265-273. (https://doi.org/10.1016/j.jnucmat.2017.09.042)

99. Liu, C., F. Shi, D.T. Lu, H.A. Wu*, H. Wang and H. Liu*, Numerical simulation of simultaneous multiple fractures initiation in unconventional reservoirs through injection control of horizontal well. Journal of Petroleum Science and Engineering, 2017. 159: p. 603-613. (https://doi.org/10.1016/j.petrol.2017.09.064)

98. Hou, Y., Y.B. Zhu, X.Y. Liu, Z.H. Dai, L.Q. Liu, H.A. Wu* and Z. Zhang*, Elastic–plastic properties of graphene engineered by oxygen functional groups. Journal of Physics D: Applied Physics, 2017. 50(38): p. 385305. (http://dx.doi.org/10.1088/1361-6463/aa7fd4)

97. Zhu, Y.B.#, F.C. Wang# and H.A. Wu*, Structural and dynamic characteristics in monolayer square ice. Journal of Chemical Physics, 2017. 147(4): p. 044706. (http://dx.doi.org/10.1063/1.4995432)

96. Xia, J., Y.B. Zhu*, F.C. Wang and H.A. Wu*, Effect of grain boundaries on mechanical transverse wave propagations in graphene. Journal of Applied Physics, 2017. 121(21): p. 215105. (http://dx.doi.org/10.1063/1.4984763)

95. Ge, J.#, L.A. Shi#, Y.C. Wang#, H.Y. Zhao, H.B. Yao, Y.B. Zhu, Y. Zhang, H.W. Zhu, H.A. Wu and S.H. Yu*, Joule-heated graphene-wrapped sponge enables fast clean-up of viscous crude-oil spill. Nature Nanotechnology, 2017. 12(5): p. 434-440. (http://dx.doi.org/10.1038/nnano.2017.33)

94. Chen, M.W., H.F. Zhan*, Y.B. Zhu, H.A. Wu* and Y.T. Gu, Mechanical properties of penta-graphene nanotubes. Journal of Physical Chemistry C, 2017. 121(17): p. 9642-9647. (http://dx.doi.org/10.1021/acs.jpcc.7b02753)

93. Yu, H., J. Chen, Y.B. Zhu*, F.C. Wang and H.A. Wu*, Multiscale transport mechanism of shale gas in micro/nano-pores. International Journal of Heat and Mass Transfer, 2017. 111: p. 1172-1180. (https://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.04.050)

92. Chen, J., H. Yu, J.C. Fan, F.C. Wang, D.T. Lu, H. Liu and H.A. Wu*, Channel-width dependent pressure-driven flow characteristics of shale gas in nanopores. AIP Advances, 2017. 7(4): p. 045217. (http://dx.doi.org/10.1063/1.4982729)

91. Cox, L.M.*, X.H. Sun, C. Wang, N. Sowan, J.P. Killgore, R. Long, H.A. Wu, C.N. Bowman and Y.F. Ding*, Light-stimulated permanent shape reconfiguration in crosslinked polymer microparticles. ACS Applied Materials & Interfaces, 2017. 9(16): p. 14422-14428. (http://dx.doi.org/10.1021/acsami.7b02759)

90. Wang, L.Y., H.A. Wu and F.C. Wang*, Water desalination using nano screw pumps with a considerable processing rate. RSC Advances, 2017. 7: p. 20360-20368. (http://dx.doi.org/10.1039/C7RA00890B)

89. Wang, Y.C., Y.B. Zhu*, F.C. Wang, X.Y. Liu and H.A. Wu*, Super-elasticity and deformation mechanism of three-dimensional pillared graphene network structures. Carbon, 2017. 118: p. 588-596. (http://dx.doi.org/10.1016/j.carbon.2017.03.092)

88. Zhu, Y.B., F.C. Wang* and H.A. Wu, Superheating of monolayer ice in graphene nanocapillaries. Journal of Chemical Physics, 2017. 146(13): p. 134703. (http://dx.doi.org/10.1063/1.4979478)

87. Liu, C., F. Shi, Y.P. Zhang, Y.G. Zhang, D.W. Deng, X.L. Wang, H. Liu and H.A. Wu*, High injection rate stimulation for improving the fracture complexity in tight-oil sandstone reservoirs. Journal of Natural Gas Science and Engineering, 2017. 42: p. 133-141. (http://dx.doi.org/10.1016/j.jngse.2017.03.007)

86. Cai, Y., H.A. Wu* and S.N. Luo*, Spall strength of liquid copper and accuracy of the acoustic method. Journal of Applied Physics, 2017. 121(10): p. 105901. (http://dx.doi.org/10.1063/1.4978251)

85. Wang, L.Y., H.A. Wu and F.C. Wang*, Design of nano screw pump for water transport and its mechanisms. Scientific Reports, 2017. 7: p. 41717. (http://dx.doi.org/10.1038/srep41717)

84. He, Z.Z., F.C. Wang, Y.B. Zhu, H.A. Wu* and H.S. Park*, Mechanical properties of copper octet-truss nanolattices. Journal of the Mechanics and Physics of Solids, 2017. 101: p. 133-149. (http://dx.doi.org/10.1016/j.jmps.2017.01.019)

83. Shi, F., X.L. Wang, C. Liu, H. Liu and H.A. Wu*, An XFEM-based method with reduction technique for modeling hydraulic fracture propagation in formations containing frictional natural fractures. Engineering Fracture Mechanics, 2017. 173: p. 64-90. (http://dx.doi.org/10.1016/j.engfracmech.2017.01.025)

82. Hakonen, A.*, F.C. Wang, P.O. Andersson, H. Wingfors, T. Rindzevicius, M.S. Schmidt, V.R. Soma, S.C. Xu, Y.Q Li, A. Boisen and H.A. Wu, Hand-held femtogram detection of hazardous picric acid with hydrophobic Ag nanopillar SERS substrates and mechanism of elasto-capillarity. ACS Sensors, 2017. 2(2): p. 198-202. (http://dx.doi.org/10.1021/acssensors.6b00749)

81. Zhong, H.K., J. Xia, F.C. Wang, H.S. Chen, H.A. Wu and S.S. Lin*, Graphene-piezoelectric material heterostructure for harvesting energy from water flow. Advanced Functional Materials, 2017. 27(5): p. 1604226. (http://dx.doi.org/10.1002/adfm.201604226)

80. Chen, J., F.C. Wang*, H. Liu and H.A. Wu, Molecular mechanism of adsorption/desorption hysteresis: dynamics of shale gas in nanopores. Science China: Physics, Mechanics & Astronomy, 2017. 60(1): p. 014611. (http://dx.doi.org/10.1007/s11433-016-0335-5)

79. Wu, F.C., P. Wang, X.Y. Liu and H.A. Wu*, Radiation damage in gallium-stabilized δ-plutonium with helium bubbles. Journal of Nuclear Materials, 2017. 484: p. 7-15. (http://dx.doi.org/10.1016/j.jnucmat.2016.11.018)

C.04 刘晓毅,王奉超,吴恒安.石墨及其复合材料纳米力学研究进展[J].固体力学学报(约稿),2016,37(05):398-420.pdf

C.03 吴凤超,刘晓毅,吴恒安.δ相钚镓合金的结构稳定性与力学特性[J].科学通报(约稿),2016,61(20):2207-2215.pdf

C.02 赵天武,申永宽,陈杰,刘闯,刘合,吴恒安.页岩裂缝系统产量预测的敏感性研究[J].应用数学和力学(编委供稿),2016,37(07):718-728.pdf

78. Li, Y.Q., H.A. Wu and F.C. Wang*, Effect of a Single Nanoparticle on the Contact Line Motion. Langmuir, 2016. 32(48): p. 12676-12685. (http://dx.doi.org/10.1021/acs.langmuir.6b03595)

77. Sun, X.H., H.A. Wu* and R. Long*, Thermomechanics of a temperature sensitive covalent adaptable polymer with bond exchange reactions. Soft Matter, 2016. 12(43): p. 8847-8860. (http://dx.doi.org/10.1039/C6SM01857B)

76. Radha, B.*, A. Esfandiar, F.C. Wang*, A.P. Rooney, K. Gopinadhan, A. Keerthi, A. Mishchenko, A. Janardanan, P. Blake, L. Fumagalli, M. Lozada-Hidalgo, S. Garaj, S.J. Haigh, I.V. Grigorieva, H.A. Wu and A.K. Geim*, Molecular transport through capillaries made with atomic-scale precision. Nature, 2016. 538(7624): p. 222-225. (http://dx.doi.org/10.1038/nature19363)

75. Gao, H.L.#, Y.B. Zhu#, L.B. Mao, F.C. Wang, X.S. Luo, Y.Y. Liu, Y. Lu, Z. Pan, J. Ge, W. Shen, Y.R. Zheng, L. Xu, L.J. Wang, W.H. Xu, H.A. Wu* and S.H. Yu*, Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure. Nature Communications, 2016. 7: p. 12920. (http://dx.doi.org/10.1038/ncomms12920)

74. Zhu, Y.B., F.C. Wang, J. Bai, X.C. Zeng* and H.A. Wu*, AB-stacked square-like bilayer ice in graphene nanocapillaries. Physical Chemistry Chemical Physics, 2016. 18(32): p. 22039-22046. (http://dx.doi.org/10.1039/C6CP03061K)

73. Zhu, Y.B., F.C. Wang* and H.A. Wu, Buckling failure of square ice-nanotube arrays constrained in graphene nanocapillaries. Journal of Chemical Physics, 2016. 145(5): p. 054704. (http://dx.doi.org/10.1063/1.4959902)

72. Liu, X.Y., F.C. Wang*, W.Q. Wang* and H.A. Wu, Interfacial strengthening and self-healing effect in graphene-copper nanolayered composites under shear deformation. Carbon, 2016. 107: p. 680-688. (http://dx.doi.org/10.1016/j.carbon.2016.06.071)

71. Shi, F., X.L. Wang, C. Liu, H. Liu and H.A. Wu*, A coupled extended finite element approach for modeling hydraulic fracturing in consideration of proppant. Journal of Natural Gas Science and Engineering, 2016. 33: p. 885-897. (http://dx.doi.org/10.1016/j.jngse.2016.06.031)

70. Xia, J., X.Y. Liu, W. Zhou, F.C. Wang and H.A. Wu*, Transformation between divacancy defects induced by an energy pulse in graphene. Nanotechnology, 2016. 27(27): p. 274004. (http://dx.doi.org/10.1088/0957-4484/27/27/274004)

69. Wang, X.L., F. Shi, H. Liu and H.A. Wu*, Numerical simulation of hydraulic fracturing in orthotropic formation based on the extended finite element method. Journal of Natural Gas Science and Engineering, 2016. 33: p. 56-69. (http://dx.doi.org/10.1016/j.jngse.2016.05.001)

68. Zhu, Y.B., F.C. Wang*, J. Bai, X.C. Zeng* and H.A. Wu, Formation of Trilayer Ices in Graphene Nanocapillaries under High Lateral Pressure. Journal of Physical Chemistry C, 2016. 120(15): p. 8109-8115. (http://dx.doi.org/10.1021/acs.jpcc.6b00258)

67. Zhao, Y.L., J. Yao, L. Xu, M.N. Mankin, Y.B. Zhu, H.A. Wu, L.Q. Mai, Q.J. Zhang and C.M. Lieber*, Shape-controlled deterministic assembly of nanowires. Nano Letters, 2016. 16(4): p. 2644-2650. (http://dx.doi.org/10.1021/acs.nanolett.6b00292)

66. Cai, Y., J.Y. Huang, H.A. Wu*, M.H. Zhu, W.A. Goddard and S.N. Luo*, Tensile strength of liquids: equivalence of temporal and spatial scales in cavitation. Journal of Physical Chemistry Letters, 2016. 7(5): p. 806-810. (http://dx.doi.org/10.1021/acs.jpclett.5b02798)

65. Wang, X.L., C. Liu, H. Wang, H. Liu and H.A. Wu*, Comparison of consecutive and alternate hydraulic fracturing in horizontal wells using XFEM-based cohesive zone method. Journal of Petroleum Science and Engineering, 2016. 143: p. 14-25. (http://dx.doi.org/10.1016/j.petrol.2016.02.014)

64. Li, Y.Q., H.A. Wu and F.C. Wang*, Stagnation of a droplet on a conical substrate determined by the critical curvature ratio. Journal of Physics D: Applied Physics, 2016. 49(8): p. 085304. (http://dx.doi.org/10.1088/0022-3727/49/8/085304)

63. Liu, C., X.L. Wang, D.W. Deng, Y.P. Zhang, Y.G. Zhang, H.A. Wu* and H. Liu*, Optimal spacing of sequential and simultaneous fracturing in horizontal well. Journal of Natural Gas Science and Engineering, 2016. 29: p. 329-336. (http://dx.doi.org/10.1016/j.jngse.2016.01.024)

62. Zhang, S.J., S.S. Lin*, X.Q. Li, X.Y. Liu, H.A. Wu, W.L. Xu, P. Wang, Z.Q. Wu, H.K. Zhong and Z.J. Xu, Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells. Nanoscale, 2016. 8(1): p. 226-232. (http://dx.doi.org/10.1039/C5NR06345K)

61. Wu, H.A.* and X.Y. Liu, Tuning electromechanics of dynamic ripple pattern in graphene monolayer. Carbon, 2016. 98: p. 510-518. (http://dx.doi.org/10.1016/j.carbon.2015.11.010)

60. Wang, L.Y., H.A. Wu and F.C. Wang*, Efficient transport of droplet sandwiched between saw-tooth plates. Journal of Colloid and Interface Science, 2016. 462: p. 280–287. (http://dx.doi.org/10.1016/j.jcis.2015.09.071)

C.01 王奉超,吴恒安.石墨烯类二维材料的质子输运特性[J].物理(约稿),2015,44(07):453-455.pdf

59. Zhu, Y.B., F.C. Wang, J. Bai, X.C. Zeng* and H.A. Wu*, Compression limit of two-dimensional water constrained in graphene nanocapillaries. ACS Nano, 2015. 9(12): p. 12197–12204. (http://dx.doi.org/10.1021/acsnano.5b06572)

58. Shen, Y.K., H. Liu, H. Wang and H.A. Wu*, Wellbore instability induced by alternating water injection and well washing with an elasto-plastic erosion model. Journal of Natural Gas Science and Engineering, 2015. 27: p. 1863-1870. (http://dx.doi.org/10.1016/j.jngse.2015.11.016)

57. Wang, F.C. and H.A. Wu*, Molecular origin of contact line stick-slip motion during droplet evaporation. Scientific Reports, 2015. 5: p. 17521. (http://dx.doi.org/10.1038/srep17521)

56. Liu, X.Y., F.C. Wang* and H.A. Wu, Anomalous twisting strength of tilt grain boundaries in armchair graphene nanoribbons. Physical Chemistry Chemical Physics, 2015. 17(47): p. 31911-31916. (http://dx.doi.org/10.1039/c5cp04343c)

55. Lin, S.S.*, S.J. Zhang, X.Q. Li, W.L. Xu, X.D. Pi, X.Y. Liu, F.C. Wang, H.A. Wu* and H.S. Chen, Quasi-two-dimensional SiC and SiC2: interaction of silicon and carbon at atomic thin lattice plane. Journal of Physical Chemistry C, 2015. 119(34): p. 19772-19779. (http://dx.doi.org/10.1021/acs.jpcc.5b04113)

54. Cai, Y., L. Wang, H.A. Wu*, M.H. Zhu*, C.L. Liu and S.N. Luo*, Homogeneous crystal nucleation in liquid copper under quasi-isentropic compression. Physical Review B, 2015. 92(1): p. 014108. (http://dx.doi.org/10.1103/PhysRevB.92.014108)

53. Wang, H., H. Liu*, H.A. Wu and X.X. Wang, A 3D numerical model for studying the effect of interface shear failure on hydraulic fracture height containment. Journal of Petroleum Science and Engineering, 2015. 133: p. 280-284. (http://dx.doi.org/10.1016/j.petrol.2015.06.016)

52. Wu, H.A.*, J. Chen and H. Liu, Molecular dynamics simulations about adsorption and displacement of methane in carbon nanochannels. Journal of Physical Chemistry C, 2015. 119(24): p. 13652-13657. (http://dx.doi.org/10.1021/acs.jpcc.5b02436)

51. Liu, C., H. Liu, Y.P. Zhang, D.W. Deng and H.A. Wu*, Optimal spacing of staged fracturing in horizontal shale-gas well. Journal of Petroleum Science and Engineering, 2015. 132: p. 86-93. (http://dx.doi.org/10.1016/j.petrol.2015.05.011)

50. Algara-Siller, G., O. Lehtinen, F.C. Wang, R.R. Nair, U. Kaiser*, H.A. Wu*, A.K. Geim and I.V. Grigorieva*, Square ice in graphene nanocapillaries. Nature, 2015. 519(7544): p. 443-445. (http://dx.doi.org/10.1038/nature14295)

49. Wei, Q.L., S.S. Tan, X.Y. Liu, M.Y. Yan, F.C. Wang, Q.D. Li, Q.Y. An, R.M. Sun, K.N. Zhao, H.A. Wu and L.Q. Mai*, Novel polygonal vanadium oxide nanoscrolls as stable cathode for lithium storage. Advanced Functional Materials, 2015. 25(12): p. 1773-1779. (http://dx.doi.org/10.1002/adfm.201404311)

48. E, J.C., L. Wang, Y. Cai, H.A. Wu* and S.N. Luo*, Crystallization in supercooled liquid Cu: Homogeneous nucleation and growth. Journal of Chemical Physics, 2015. 142(6): p. 064704. (http://dx.doi.org/10.1063/1.4907627)

47. Shen, Y.K., H. Liu, H. Wang, J. Chen and H.A. Wu*, Initiation and propagation of wormhole in unconsolidated rock matrix induced by long-term water injection. Journal of Petroleum Science and Engineering, 2015. 127: p. 93-100. (http://dx.doi.org/10.1016/j.petrol.2015.01.032)

46. Liu, X.Y., F.C. Wang and H.A. Wu*, Anisotropic growth of buckling-driven wrinkles in graphene monolayer. Nanotechnology, 2015. 26(6): p. 065701. (Cover paper) (http://dx.doi.org/10.1088/0957-4484/26/6/065701)

45. Li, Y.Q., F.C. Wang*, H. Liu and H.A. Wu*, Nanoparticle-tuned spreading behavior of nanofluid droplets on the solid substrate. Microfluidics and Nanofluidics, 2015. 18(1): p. 111-120. (http://dx.doi.org/10.1007/s10404-014-1422-y)

44. Chen, J., F.S. Wang, G.C. Shi, G. Cao, Y. He, W.T. Ge, H. Liu* and H.A. Wu*, Finite element analysis for adhesive failure of progressive cavity pump with stator of even thickness. Journal of Petroleum Science and Engineering, 2015. 125: p. 146-153. (http://dx.doi.org/10.1016/j.petrol.2014.11.011)

43. Hu, S., M. Lozada-Hidalgo*, F.C. Wang, A. Mishchenko, F. Schedin, R.R. Nail, E.W. Hill, D.W. Boukhvalov, M.I. Katsnelson, R.A.W. Dryfe, I.V. Grigorieva, H.A. Wu* and A.K. Geim, Proton transport through one-atom-thick crystals. Nature, 2014. 516(7530): p. 227-230. (http://dx.doi.org/10.1038/nature14015)

42. Wang, L.Y., F.C. Wang*, F.Q. Yang and H.A. Wu*, Molecular kinetic theory of boundary slip on textured surfaces by molecular dynamics simulations. Science China: Physics, Mechanics and Astronomy, 2014. 57 (11): p. 2152-2160. (http://dx.doi.org/10.1007/s11433-014-5586-y)

41. Zhao, Y.L.#, J.G. Feng#, X. Liu#, F.C. Wang, L.F. Wang, C.W. Shi, L. Huang, X. Feng, X.Y. Chen, L. Xu, M.Y. Yan, Q.J. Zhang, X.D. Bai, H.A. Wu* and L.Q. Mai*, Self-adaptive strain-relaxation optimization for high-energy lithium storage material through crumpling of graphene. Nature Communications, 2014. 5: p. 4565. (http://dx.doi.org/10.1038/ncomms5565)

40. Liu, X.Y., F.C. Wang,  H.A. Wu* and W.Q. Wang, Strengthening metal nanolaminates under shock compression through dual effect of strong and weak graphene interface. Applied Physics Letters, 2014. 104(23): p. 231901. (http://dx.doi.org/10.1063/1.4882085)

39. Cai, Y., H.A. Wu* and S.N. Luo*, Cavitation in a metallic liquid: Homogeneous nucleation and growth of nanovoids. Journal of Chemical Physics, 2014. 140(21): p. 214317. (http://dx.doi.org/10.1063/1.4880960)

38. Liu, H.*, H. Wang, H.A. Wu and X.X. Wang, A proppant settling model and its application to the hydraulic fracturing process. Oil Gas-European Magazine, 2014. 40(2): p. 109-112.

37. Li, B., F.P. Zhao, H.A. Wu* and S.N. Luo*, Microstructure effects on shock-induced surface jetting. Journal of Applied Physics, 2014. 115(7): p. 073504. (http://dx.doi.org/10.1063/1.4865798)

36. Joshi, R.K., P. Carbone, F.C. Wang, V.G. Kravets, Y. Su, I.V. Grigorieva, H.A. Wu, A.K. Geim* and R.R. Nair*, Precise and ultrafast molecular sieving through graphene oxide membranes. Science, 2014. 343(6172): p. 752-754. (http://dx.doi.org/10.1126/science.1245711)

35. Yan, M.Y.#, F.C. Wang#, C.H. Han*, X.Y. Ma, X. Xu, Q.Y. An, L. Xu, C.J. Niu, Y.L. Zhao, X.C. Tian, P. Hu, H.A. Wu* and L.Q. Mai*, Nanowire templated semihollow bicontinuous graphene scrolls: designed construction, mechanism, and enhanced energy storage performance. Journal of the American Chemical Society, 2013. 135(48): p. 18176-18182. (http://dx.doi.org/10.1021/ja409027s)

34. Cai, Y., F.P. Zhao, Q. An, H.A. Wu*, W. Goddard III and S.N. Luo*, Shock response of single crystal and nanocrystalline pentaerythritol tetranitrate: implications to hotspot formation in energetic materials. Journal of Chemical Physics, 2013. 139(16): p. 164704. (http://dx.doi.org/10.1063/1.4825400)

33. Wang, F.C.* and H.A. Wu, Molecular dynamics studies on spreading of nanofluids promoted by nanoparticle adsorption on solid surface. Theoretical & Applied Mechanics Letters, 2013. 3: p. 054006. (http://dx.doi.org/10.1063/2.1305406)

32. Liu, X.Y., F.C. Wang* and H.A. Wu*, Anisotropic propagation and upper frequency limitation of terahertz waves in graphene. Applied Physics Letters, 2013. 103(7): p. 071904. (http://dx.doi.org/10.1063/1.4818683)

31. Chen, J., H. Liu, F.S. Wang, G.C. Shi, G. Cao and H.A. Wu*, Numerical prediction on volumetric efficiency of progressive cavity pump with fluid-solid interaction model. Journal of Petroleum Science and Engineering, 2013. 109: p. 12-17. (http://dx.doi.org/10.1016/j.petrol.2013.08.019)

30. Zhao, F.P., H.A. Wu and S.N. Luo*, Microstructure effects on shock response of Cu nanofoams. Journal of Applied Physics, 2013. 114(7): p. 073501. (http://dx.doi.org/10.1063/1.4818487)

29.  Liu, X.Y., F.C. Wang, H. S. Park and H.A. Wu*, Defecting controllability of bombarding graphene with different energetic atoms via reactive force field model. Journal of Applied Physics, 2013. 114(5): p. 054313. (http://dx.doi.org/10.1063/1.4817790)

28. Wang, F.C. and H.A. Wu*, Enhanced oil droplet detachment from solid surfaces in charged nanoparticle suspensions. Soft Matter, 2013. 9(33): p. 7974-7980. (http://dx.doi.org/10.1039/C3SM51425K)

27. Zhou, X.Z., G.C. Shi, G. Cao, C.L. Sun, Y. He, H. Liu and H.A. Wu*, Three dimensional dynamics simulation of progressive cavity pump with stator of even thickness. Journal of Petroleum Science and Engineering, 2013. 106: p. 71-76. (http://dx.doi.org/10.1016/j.petrol.2013.04.014)

26. Wang, F.C. and H.A. Wu*, Pinning and depinning mechanism of the contact line during evaporation of nano-droplets sessile on textured surfaces. Soft Matter, 2013. 9(24): p. 5703-5709. (http://dx.doi.org/10.1039/C3SM50530H)

25. Zhao, F.P., Q. An, B. Li, H.A. Wu, W.A. Goddard III, and S.N. Luo*, Shock response of a model structured nanofoam of Cu. Journal of Applied Physics, 2013. 113(6): p. 063516. (http://dx.doi.org/10.1063/1.4791758)

24. Wang, H., H. Liu*, X. Zhou, H.A. Wu, and X. Wang, A 3D finite element model for simulating hydraulic fracturing processes with viscoelastic reservoir properties. Oil Gas-European Magazine, 2012. 38(4): p. 210-213.

23. Wang, H.*, H. Liu, H.A. Wu, G.M. Zhang, and X.X. Wang, A 3D nonlinear fluid-solid coupling model of hydraulic fracturing for multi layered reservoirs. Petroleum Science and Technology, 2012. 30(21): p. 2273-2283. (http://dx.doi.org/10.1080/10916466.2010.516299)

22. Shen, Y.K. and H.A. Wu*, Interlayer shear effect on multilayer graphene subjected to bending. Applied Physics Letters, 2012. 100(10): p. 101909. (http://dx.doi.org/10.1063/1.3693390)

21. Nair, R.R., H.A. Wu, P.N. Jayaram, I.V. Grigorieva, and A.K. Geim*, Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science, 2012. 335(6067): p. 442-444. (http://dx.doi.org/10.1126/science.1211694)

Note: All journal papers published after 2012 are listed above, while only twenty selected journal papers published before 2011 are listed below.

20. Zhou, X.Z., H. Shen, and H.A. Wu*, Bio-optimum prestress in actin filaments with a polygonal cytoskeleton model. Archive of Applied Mechanics, 2011. 81(11): p. 1651-1658. (http://dx.doi.org/10.1007/s00419-011-0508-1)

19. Zhou, X.Z., F.P. Zhao, Z.H. Sun, and H.A. Wu*, The inverse problem of red blood cells deformed by optical tweezers. International Journal of Computational Methods, 2011. 8(3): p. 483-492. (http://dx.doi.org/10.1142/s0219876211002654)

18. Jiang, L.G., H.A. Wu*, X.Z. Zhou, and X.X. Wang, Coarse-grained molecular dynamics simulation of a red blood cell. Chinese Physics Letters, 2010. 27(2): p. 028704. (http://dx.doi.org/10.1088/0256-307X/27/2/028704)

17. Zhang, G.M.*, H. Liu, J. Zhang, H.A. Wu, and X.X. Wang, Three-dimensional finite element simulation and parametric study for horizontal well hydraulic fracture. Journal of Petroleum Science and Engineering, 2010. 72(3-4): p. 310-317. (http://dx.doi.org/10.1016/j.petrol.2010.03.032)

16. Qi, Z.N., F.P. Zhao, X.Z. Zhou, Z.H. Sun, H.S. Park, and H.A. Wu*, A molecular simulation analysis of producing monatomic carbon chains by stretching ultranarrow graphene nanoribbons. Nanotechnology, 2010. 21(26): p. 265702. (http://dx.doi.org/10.1088/0957-4484/21/26/265702)

15. Cheng, Q., H.A. Wu*, Y. Wang, and X.X. Wang, Atomistic simulations of shock waves in cubic silicon carbide. Computational Materials Science, 2009. 45(2): p. 419-422. (http://dx.doi.org/10.1016/j.commatsci.2008.10.020)

14. Cheng, Q., H.A. Wu*, Y. Wang, and X.X. Wang, Pseudoelasticity of Cu-Zr nanowires via stress-induced martensitic phase transformations. Applied Physics Letters, 2009. 95(2): p. 021911. (http://dx.doi.org/10.1063/1.3183584)

13. Sun, Z.H., X.X. Wang*, and H.A. Wu, Surface relaxation effect on the distributions of energy and bulk stresses in the vicinity of Cu surface: An embedded-atom method study. Journal of Applied Physics, 2008. 104(3): p. 033501. (http://dx.doi.org/10.1063/1.2958330)

12. Wu, H.A.* and X.X. Wang, An atomistic-continuum inhomogeneous material model for the elastic bending of metal nanocantilevers. Advances in Engineering Software, 2008. 39(9): p. 764-769. (http://dx.doi.org/10.1016/j.advengsoft.2007.10.005)

11. Sun, Z.H., X.X. Wang*, A.K. Soh, H.A. Wu, and Y. Wang, Bending of nanoscale structures: Inconsistency between atomistic simulation and strain gradient elasticity solution. Computational Materials Science, 2007. 40(1): p. 108-113. (http://dx.doi.org/10.1016/j.commatsci.2006.11.015)

10. Wu, H.A.*, R. Long, X.X. Wang, and F.C. Wang, Elastic interaction between a string of cells and an individual cell. Chinese Physics Letters, 2007. 24(5): p. 1407-1409. (http://dx.doi.org/10.1088/0256-307X/24/5/078)

9. Wu, H.A.*, Z.H. Sun, Q. Cheng, and X.X. Wang, Molecular mechanics modelling and simulation of the adsorption-induced surface stress in micro-nano-cantilever sensors. Journal of Physics Conference Series, 2007. 61: p. 1266-1270. (http://dx.doi.org/10.1088/1742-6596/61/1/250)

8. Wu, H.A.*, G.R. Liu, X. Han, and X.X. Wang, An atomistic simulation method combining molecular dynamics with finite element technique. Chaos Solitons & Fractals, 2006. 30(4): p. 791-796. (http://dx.doi.org/10.1016/j.chaos.2005.08.161)

7. Sun, Z.H., X.X. Wang*, A.K. Soh, and H.A. Wu, On stress calculations in atomistic simulations. Modelling and Simulation in Materials Science and Engineering, 2006. 14(3): p. 423-431. (http://dx.doi.org/10.1088/0965-0393/14/3/006)

6. Wu, H.A.*, Molecular dynamics study of the mechanics of metal nanowires at finite temperature. European Journal of Mechanics A-Solids, 2006. 25(2): p. 370-377. (http://dx.doi.org/10.1016/j.euromechsol.2005.11.008)

5. Wu, H.A.*, Molecular dynamics study on mechanics of metal nanowire. Mechanics Research Communications, 2006. 33(1): p. 9-16. (http://dx.doi.org/10.1016/j.mechrescom.2005.05.012)

4. Wang, Y., X.X. Wang*, X.G. Ni, and H.A. Wu, Simulation of the elastic response and the buckling modes of single-walled carbon nanotubes. Computational Materials Science, 2005. 32(2): p. 141-146. (http://dx.doi.org/10.1016/j.commatsci.2004.08.005)

3. Wu, H.A.*, Molecular dynamics simulation of loading rate and surface effects on the elastic bending behavior of metal nanorod. Computational Materials Science, 2004. 31(3-4): p. 287-291. (http://dx.doi.org/10.1016/j.commatsci.2004.03.017)

2. Wu, H.A.*, G.R. Liu, and J.S. Wang, Atomistic and continuum simulation on extension behaviour of single crystal with nano-holes. Modelling and Simulation in Materials Science and Engineering, 2004. 12(2): p. 225-233. (http://dx.doi.org/10.1088/0965-0393/12/2/004)

1. Wang, Y.*, X.G. Ni, X.X. Wang, and H.A. Wu, Effect of temperature on deformation of carbon nanotube under compression. Chinese Physics, 2003. 12(9): p. 1007-1010. (http://dx.doi.org/10.1088/1009-1963/12/9/315)