吴恒安,中国科学技术大学工程科学学院近代力学系,教授,博士生导师,工程科学学院执行院长,安徽省力学学会理事长。1975年7月出生于湖北省黄冈市红安县,1997年7月获得中国科学技术大学理论与应用力学学士学位,1998年7月获得中国科学技术大学计算机软件学士学位(双),2002年6月获得中国科学技术大学固体力学博士学位,同年获中国科学院院长奖。2002年8月-2004年2月在新加坡国立大学机械工程系任博士后研究员,2004年2月任中国科学技术大学工程科学学院近代力学系副教授,2010年6月晋升教授。2010年6月-2011年5月在英国曼彻斯特大学做访问学者。2015年7月-2020年6月任中国科学院材料力学行为和设计重点实验室主任。曾获得2014年度中国科学技术大学杰出研究校长奖、2015年度国家杰出青年科学基金、2017年度中国科学院朱李月华优秀教师奖、2017年度安徽省教学成果特等奖、2017/2018/2024年度中国科学院优秀导师奖、2018年度高等教育国家级教学成果二等奖、2018年度安徽省教学名师、2020年度宝钢优秀教师特等奖、2020年度中国科学院青年科学家国际合作伙伴奖、2021年度全国徐芝纶力学优秀教师奖、2022年度霍英东教育基金会高等院校教育教学奖、2023年度国务院特殊津贴、2024年度安徽省教书育人楷模,入选2015年度科技部创新人才推进计划中青年科技创新领军人才、2017年度第三批国家高层次人才特殊支持计划领军人才、2022年度教育部长江学者特聘教授。主讲本科生<<材料力学>>和<<计算力学基础>>(首批国家级一流本科课程),主持教育部首批新工科研究与实践项目和教育部基础学科拔尖学生培养计划研究重点课题。研究领域为:[1]“微纳结构材料力学行为和设计”[2]“固液界面微尺度力学与限域传质”[3]“计算力学数值方法及其工程应用”。已在Science和Nature等学术期刊发表被SCI收录论文200余篇,被SCI他引20000余次。【仅此网站信息为本人维护,百度搜索其它介绍信息均不可靠。】 【欢迎关注我们课题组微信公众号,搜索公众号“计算力学实验室”。硕士推免生可提前联系,要求大学期间有科研或者学科竞赛经历,请拟申请同学在每年3-5月联系,招满即止。关于博士生招生,本课题组主要是硕转博方式,一般没有名额接受申请考核制博士生。wuha@ustc.edu.cn,0551-63601245】 详细研究方向介绍可参考 中国科大研究生招生公众号导师推介 Publication
List ( ResearcherID: http://www.researcherid.com/rid/A-3646-2009
): 257.
He, Q.S., Z.X. Wang, C. Liu*, and H.A. Wu, Identifying nonuniform distributions of rock properties and hydraulic
fracture trajectories through deep learning in unconventional reservoirs. Energy,
2024. 291: p. 130329. (https://doi.org/10.1016/j.energy.2024.130329) 256.
Fan, J.N. J.C. Fan, X.Y. Hong, H.Y. Xu, H.A. Wu*, and F.C. Wang*, Exploring wettability variations on
minerals surfaces: Insights from spreading coefficient and interaction energy
analysis. Geoenergy Science and Engineering, 2024. 234: p. 212672. (https://doi.org/10.1016/j.geoen.2024.212672) 255.
Xiao, J. H., Z.B. Zhang, J.H. Li, S.M. Chen*, H.L. Gao, Y.X. Liao, L. Chen,
Z.S. Wang, Y.F. Lu, Y.Z. Hou, H.A. Wu, D.H. Zou*, and S.H. Yu*, Bioinspired polysaccharide-based
nanocomposite membranes with robust wet mechanical properties for guided bone
regeneration. National Science Review, 2024. 11(13): p. nwad333. (https://doi.org/10.1093/nsr/nwad333) 254.
Zhu,Y.B.#, Z.Y. Fang#, Z.T. Zhang, and H.A. Wu*, Discontinuous phase diagram of amorphous carbons. National
Science Review, 2024. 12: p.
nwae051. (https://doi.org/10.1093/nsr/nwae051) 253.
Zhou, N.,Y.b. Zhu*, and H.A. Wu*, Effect
of the sonic shock wave on void evolution in materials under irradiation. Mechanics
of Materials, 2024. 189: p.
104907. (https://doi.org/10.1016/j.mechmat.2023.104907) 252.
Wang, Q., H. Yu*, W.L. Xu, H.W. Huang, F.D. Li, and H.A. Wu, How does the heterogeneous interface
influence hydraulic fracturing? International Journal of Engineering
Science, 2024. 195: p. 104000. (https://doi.org/10.1016/j.ijengsci.2023.104000) 251.
Li,B., H. Yu*, D.Q. Ji, F.C. Wang, Z.D. Lei*, and H.A. Wu, Pore-scale imbibition patterns in layered
porous media with fractures. Physics of Fluids, 2024. 36(1): p. 012120. (https://doi.org/10.1063/5.0182210) 250.
Zhang, Z.T.#, Z.Y. Fang#, H.A. Wu, and Y.B. Zhu*, Temperature-dependent paracrystalline nucleation in atomically
disordered diamonds. Nano Letters, 2023. 24(1): p. 312-318. (https://doi.org/10.1021/acs.nanolett.3c04037) 249.
Zhang, H.L., H. Yu*, Q. Wang, W.L. Xu, M.C. Huang, F.D. Li, and H.A. Wu*, How to achieve the fast computation for
voxel-based irregular structures by few finite elements? Extreme
Mechanics Letters, 2023. 65: p.
102103. (https://doi.org/10.1016/j.eml.2023.102103) 248.
Li, J.C., K.L. Zhang, J.C. Fan, H.A. Wu*, and F.C. Wang*, Boundary slip moderated by interfacial
hydrogen bond dynamics. Microfluidics and Nanofluidics, 2023. 27(12): p. 86. (https://doi.org/10.1007/s10404-023-02695-8) 247.
Li, B., H. Yu*, W.l. Xu, H.W. Huang, M.C. Huang, S.W. Meng*, H. Liu, and H.A.
Wu, A multi-physics coupled multi-scale
transport model for CO2 sequestration and enhanced recovery in shale
formation with fractal fracture networks. Energy, 2023. 284: p. 129285. (https://doi.org/10.1016/j.energy.2023.129285) 246.
Liu, X.Y., Y.F. Xu, J.C. Shi, Y.B. Zhu, S. Zhang* and H.A. Wu*, Anti-fatigue nanomechanics in the
pre-cracked graphene-copper artificial nacre under cyclic tension. Carbon,
2023. 215: p. 118505. (https://doi.org/10.1016/j.carbon.2023.118505) 245.
Huang, M.C., H. Yu*, H.Y. Xu, H.L. Zhang, X.Y. Hong and H.A. Wu, Fast and accurate calculation on CO2/CH4
competitive adsorption in shale nanopores: From molecular kinetic theory to
machine learning model. Chemical Engineering Journal, 2023. 474(15): p. 145562. (https://doi.org/10.1016/j.cej.2023.145562) 244.
Huang, X., J.C. Fan, H.A. Wu* and F.C. Wang*, Local molecular asymmetry mediated self-adaptive pinning force on the
contact line. Colloids and Surfaces A: Physicochemical and Engineering
Aspects, 2023. 674(5): p. 131987.
(https://doi.org/10.1016/j.colsurfa.2023.131987) 243.
Liu, C.* and H.A. Wu, A variational
formulation of physics-informed neural network for the applications of
homogeneous and heterogeneous material properties identification. International
Journal of Applied Mechanics, 2023. 15(8):
p. 2350065. (https://dx.doi.org/10.1142/S1758825123500655) 242.
Cui, F.L., J. Xu*, J. Xia, H. Liu, H.A. Wu and F.C. Wang*, Micromechanical mechanism of
oil/brine/rock interfacial interactions based on first-principles
calculations. Journal of Molecular Liquids, 2023. 386(15): p. 122502. (https://doi.org/10.1016/j.molliq.2023.122502) 241.
Liu, C.* and H.A. Wu, cv-PINN:
Efficient learning of variational physics-informed neural network with domain
decomposition. Extreme Mechanics Letters, 2023. 63: p. 102051. (https://doi.org/10.1016/j.eml.2023.102051) 240.
Wu, B., X.X. Wang, Y.B. Zhu, H.W. Wu, A.M. He, H.A. Wu* and P. Wang*, Atomic insight into the oxidation
mechanism of a core-shell aluminum nanoparticle: Atomic diffusion or
micro-explosion? Journal of Physical Chemistry C, 2023. 127(34): p. 16781-16791. (https://doi.org/10.1021/acs.jpcc.3c02577) 239.
Yu, H.*, W.L. Xu, B. Li, H.W. Huang, M. Micheal, Q. Wang, M.C. Huang, S.W.
Meng*, H. Liu and H.A. Wu, Hydraulic
fracturing and enhanced recovery in shale reservoirs: Theoretical analysis to
engineering applications. Energy Fuels, 2023. 37(14): p. 9956-9997. (https://doi.org/10.1021/acs.energyfuels.3c01029) 238.
Meng, X.S.#, L.C. Zhou#, L. Liu#, Y.B. Zhu, Y.F. Meng, D.C. Zheng, B. Yang,
Q.Z. Rao, L.B. Mao*, H.A. Wu* and S.H. Yu*, Deformable hard tissue with high fatigue resistance in the hinge of
bivalve Cristaria plicat. Science, 2023. 380(6651): p. 1252-1257. (https://doi.org/10.1126/science.ade2038) 237.
Kong, Z.#, Y.Z. Hou#, J.F. Gu, F.C. Li, Y.B. Zhu, X.Y. Ji, H.A. Wu and J.J.
Liang*, Biomimetic ultratough, strong,
and ductile artificial polymer fiber based on immovable and slidable
cross-links. Nano Letters, 2023. 23(13):
p. 6216-6225. (https://doi.org/10.1021/acs.nanolett.3c01786) 236.
Li, F.D, X.D. Chen, P. Xu, Z.C. Fan, Q. Wang, C.S. Lyu, Q. Zhang, H. Yu* and
H.A. Wu, Optimal design of thin-layered
composites for type IV vessels: Finite element analysis enhanced by ANN. Thin-Walled
Structures, 2023. 187: p. 110752.
(https://doi.org/10.1016/j.tws.2023.110752) 235.
Gu, J.F.#, F.C. Li#, Y.B. Zhu#, D.H. Li, X. Liu, B. Wu, H.A. Wu*, X.Q. Fan,
X.Y. Ji, Y.S. Chen and J.J. Liang*, Extremely
robust and multifunctional nanocomposite fibers for strain-unperturbed
textile electronics. Advanced Materials, 2023. 35(15): p. 2209527. (https://doi.org/10.1002/adma.202209527) 234.
Marembo M, H. Yu*, S.W. Meng, W.L. Xu, H.W. Huang, M.C. Huang, H.L. Zhang, H.
Liu, H.A. Wu, Gas production from shale
reservoirs with bifurcating fractures: A modified quadruple-domain model
coupling microseismic events. Energy, 2023. 278: p. 127780. (https://doi.org/10.1016/j.energy.2023.127780) 233.
Wang, R.X.#, J.H. Qian#, X.F. Chen, Z.X. Low*, Y. Chen, H.Y. Ma, H.A. Wu,
C.M. Doherty, D. Acharya, Z.L. Xie, M.R. Hill, W. Shen, F.C. Wang* and H.T.
Wang*, Pyro-layered heterostructured
nanosheet membrane for hydrogen separation. Nature Communications, 2023. 14(1): p. 2161. (https://doi.org/10.1038/s41467-023-37932-9) 232.
Hu, Z.N.#, F.F. Li#, H.T. Wu#, J.H. Liao#, Wang, G. Chen, Z.F, Shi, Y.Q. Zhu,
S.Y. Bu, Y.X. Zhao, M.P. Shang, Q. Lu, K.C. Jia, Q. Xie, G.R. Wang, X.D.
Zhang, Y.B. Zhu, H.A. Wu*, H.L. Peng*, L. Lin*, Z.F. Liu*, Rapid and scalable transfer of large-area
graphene wafers. Advanced Materials, 2023. p. 2300621. (https://doi.org/:10.1002/adma.2023) 231.
Huang, H.W., H. Yu*, W.L. Xu, C.S. Lyu, M. Micheal, H.Y. Xu, H. Liu, H.A.
Wu*, A coupled
thermo-hydro-mechanical-chemical model for production performance of oil
shale reservoirs during in-situ conversion process. Energy, 2023. 268: p. 126700. (https://doi.org/10.1016/j.energy.2023.126700) 230.
Zhou, L.C., Z.Z. He, Z.T. Zhang, Y.B. Zhu*, H.A. Wu*, Maximum utilization of nacre-mimetic composites by architecture
manipulation and interface modification towards critical damage state.
Composites Science and Technology, 2023. 233:
p. 109893. (https://doi.org/10.1016/j.compscitech.2022.109893) 229.
Wang, Q., H. Yu*, W.L. Xu, C.S. Lyu, J.N. Zhang, M. Micheal, H.A. Wu*, Spatial and temporal constraints of the
cohesive modeling: A unified criterion for fluid‐driven fracture.
International Journal for Numerical Methods in Engineering, 2023. 124: p. 2756-2782. (https://doi.org/10.1002/nme.7227) 228.
Qian, J.H., H.A. Wu*, F.C. Wang*, Molecular
geometry effect on gas transport through nanochannels: Beyond Knudsen theory.
Applied Surface Science, 2023. 611:
p. 155613. (https://doi.org/10.1016/j.apsusc.2022.155613) 227.
Yuan, G.Q.#, Y.Y. Liu#, J. Xia#, Y.C. Su, W.X. Wei, Y.B. Zhu, Y. An, H.A. Wu,
Q. Xu and H. Pang*, Two-dimensional CuO
nanosheets-induced MOF composites and derivatives for dendrite-free zinc-ion
batteries. Nano Research, 2023. 16(5):
p. 6881-6889. (https://doi.org/10.1007/s12274-023-5424-x) 226. Chen, S.M.#, S.C. Zhang#, H.L. Gao*, Q. Wang,
L.C. Zhou, H.Y. Zhao, X.Y. Li, M. Gong, X.F. Pan, C. Cui, Z.Y. Wang, Y.L.
Zhang, H.A. Wu, S.H. Yu*, Mechanically robust bamboo node and its
hierarchically fibrous structural design. National Science Review, 2023. 10(2):
p. nwac195. (https://doi.org/10.1093/nsr/nwac195) 225. Pan, X.F.#, Z. Bao#, W.L. Xu#, H.L. Gao*, B.Wu,
Y.B. Zhu, G.H. Yu, J. Chen, S.C. Zhang, L. Li, H.A. Wu, X. Li*, S.H. Yu*, Recyclable
Nacre-Like Aramid-Mica Nanopapers with Enhanced Mechanical and Electrical
Insulating Properties. Advanced Functional Materials, 2023. 33(9):
p. 2210901. (https://doi.org/10.1002/adfm.202210901) 224. Huang, Z.C.#, Z.Z. He#, Y.B. Zhu*, H.A. Wu*, A
general theory for the bending of multilayer van der Waals materials.
Journal of the Mechanics and Physics of Solids, 2023. 171: p. 105144.
(https://doi.org/10.1016/j.jmps.2022.105144) 223. Xu, W.L., H. Yu*, M. Micheal, H.W. Huang, H. Liu,
H.A. Wu*. An integrated model for fracture propagation and production
performance of thermal enhanced shale gas recovery. Energy, 2023. 263:
p. 125682. (https://doi.org/10.1016/j.energy.2022.125682). 222. Sia, G.D.#, X.Y. Hong#, H. Yu*, H.A. Wu, Y.M.
Hung*, Preservable superhydrophilicity of thermally cured
graphene-nanoplatelets/epoxy nanocomposite coatings. Composites Part B:
Engineering, 2023. 252: p. 110500. (https://doi.org/10.1016/j.compositesb.2023.110500) 221. Liu, C.*, A.G. Zhao, H.A. Wu, Competition
growth of biwing hydraulic fractures in naturally fractured reservoirs.
Gas Science and Engineering, 2023. 109: p. 204873. (https://doi.org/10.1016/j.jgsce.2023.204873) 220. He, Z.Z.*, H.A. Wu, J. Xia, Y.Z. Hou, Y.B. Zhu*, How
weak hydration interfaces simultaneously strengthen and toughen nanocellulose
materials. Extreme Mechanics Letters, 2023. 58: p. 101947. (https://doi.org/10.1016/j.eml.2022.101947) 219. Zhang, Z.B.#, Z.Z. He#, X.F. Pan#, H.L.
Gao*, S.M. Chen, Y.B. Zhu, S. Cao, C. Zhao, S. Wu, X. Gong, H.A. Wu*, S.H.
Yu*. Bioinspired Impact-Resistant and Self-Monitoring Nanofibrous
Composites. Small, 2023. 19(2): p. 2205219. (https://doi.org/10.1002/smll.202205219) 218. Hou, Y.Z., J. Xia*, Z.Z. He, Y.B. Zhu, H.A.
Wu*, Molecular levers enable anomalously enhanced strength and toughness
of cellulose nanocrystal at cryogenic temperature. Nano Research, 2023. 16: p. 8036–8041. (https://doi.org/10.1007/s12274-022-5293-3) 217. Hong, X.Y., H.Y. Xu, H. Yu, J. Xu*, H. Liu,
F.C. Wang, H.A. Wu*, Molecular Understanding on Migration and Recovery of
Shale Gas/Oil Mixture through a Pore Throat. Energy & Fuels, 2023. 37 (1): p. 310-318. (http://doi.org/10.1021/acs.energyfuels.2c03315) 216. Cheng, H., J. Xia, M. Wang, C. Wang, R.J.
Gui, X.M. Cao, T.P. Zhou, X.S. Zheng, W.S. Chu, H.A. Wu, Y. Xie, and C.Z.
Wu*. Surface Anion Promotes Pt Electrocatalysts with High CO Tolerance in
Fuel-Cell Performance. Journal of the American Chemical Society, 2022. 144(48): p.22018-22025. (http://doi.org/10.1021/jacs.2c09147) 215. Ng, V. O.#, X.Y. Hong#, H. Yu*, H.A. Wu, Y.M.
Hung*. Anomalously enhanced thermal performance of micro heat pipes coated
with heterogeneous superwettable graphene nanostructures. Applied Energy,
2022. 326: p.119994. (https://doi.org/10.1016/j.apenergy.2022.119994) 214. Huang, M.C.#, H.Y. Xu#, H. Yu*, H.L. Zhang,
M. Micheal, X.H. Yuan, H.A. Wu*. Fast prediction of methane adsorption in
shale nanopores using kinetic theory and machine learning algorithm.
Chemical Engineering Journal, 2022. 446: p.137221. (https://doi.org/10.1016/j.cej.2022.137221) 213. Zhang, H.L., H. Yu*, S.W. Meng, M.C. Huang,
M. Micheal, J. Su, H. Liu, H.A. Wu*, Fast and accurate reconstruction of
large-scale 3D porous media using deep learning. Journal of Petroleum
Science and Engineering, 2022, 217: p.110937. (https://doi.org/10.1016/j.petrol.2022.110937) 212. Xu, W.L., H. Yu*, J. N. Zhang, C.S. Lyu,
Q.Wang, M. Micheal, H.A. Wu*, Phase-field method of crack branching during
SC-CO2 fracturing: A new energy release rate criterion coupling pore pressure
gradient. Computer Methods in Applied Mechanics and Engineering, 2022, 399: p.115366. (https://doi.org/10.1016/j.cma.2022.115366) 211. Cui, F.L., X. Jin*, H. Liu, H.A. Wu*. F.C.
Wang, Molecular modeling on Gulong shale oil and wettability of reservoir
matrix. Capillarity, 2022, 5(4): p.65-74. (https://doi.org/10.46690/capi.2022.04.01) 210.
Zhang, J.N., H. Yu*, W.L. Xu, C.S. Lv, M. Micheal, F. Shi, H.A. Wu*, A hybrid numerical approach for hydraulic
fracturing in a naturally fractured formation combining the XFEM and
phase-field model. Engineering Fracture Mechanics, 2022. 271: p. 108621. (https://doi.org/10.1016/j.engfracmech.2022.108621) 209.
Hong, X.Y.,
H. Yu, H.Y. Xu, X.Q. Wang, X. J, H.A. Wu*, F.C. Wang*,
Competitive adsorption of asphaltene
and n-heptane on quartz surfaces and its effect on crude oil transport
through nanopores. Journal of
Molecular Liquids, 2022. 359: p. 119312. (https://doi.org/10.1016/j.molliq.2022.119312) 208. Wang,
F.C., J.H. Qian, J.C. Fan, J.C. Li, H.Y. Xu, H.A. Wu*, Molecular transport under extreme
confinement. Science China Physics, Mechanics & Astronomy, 2022.
65: p. 264601. (https://doi.org/10.1007/s11433-021-1853-3) 207.
Lv, C., G.J. Wang*, X.P. Zhang, B.Q. Luo, N. Luo,
H.F. Song, F.C. Wu, H.A. Wu, F.L. Tan, J.H. Zhao, C.L. Liu*, C.W. Sun. New explanation for the existence of B19′
phase in NiTi alloy from the perspective of twinning martensite. Scripta Materialia,
2022. 214: p. 114644. (https://doi.org/10.1016/j.scriptamat.2022.114644) 206.
Cao, G., J.N. Zhang, Y.B. Guo, C. Liu, M. Micheal, C.S. Lv, H. Yu*, H.A. Wu. Numerical modeling on friction and wear
behaviors of all-metal progressive cavity pump. Journal of
Petroleum Science and Engineering,
2022. 213: p. 110443. (https://doi.org/10.1016/j.petrol.2022.110443) 205.
Micheal, M., W.L. Xu, J. J, H. Yu*, J.D. Liu, W.D. Jiang*, H. Liu, H.A. Wu. A multi-scale quadruple-continuum model
for production evaluation of shale gas reservoirs considering complex gas
transfer mechanisms and geomechanics. Journal of
Petroleum Science and Engineering,
2022. 213: p. 110419. (https://doi.org/10.1016/j.petrol.2022.110419) 204.
Chen, S.M, K.J. Wu, H.L. Gao*, X.H. Sun, S.C. Zhang, X.Y. Li, Z.B. Zhang,
S.M. Wen, Y.B. Zhu, H.A. Wu, Y. Ni, S.H. Yu*. Biomimetic discontinuous Bouligand structural design enables
high-performance nanocomposites. Matter, 2022. 5(5): p. 1563-1577. (https://doi.org/10.1016/j.matt.2022.02.023) 203.
Shi, L.X#, Y.B. Zhu#, X.Q. Fan#, H.A. Wu*, P.Q. Wu, X.Y. Ji, Y.S. Chen, J.J.
Liang*. An auxetic cellular structure
as a universal design for enhanced piezoresistive sensitivity. Matter,
2022. 5(5): p. 1547-1562. (https://doi.org/10.1016/j.matt.2022.02.022) 202.
Wang, C.#, H.Y. Xu#, H. Cheng, H. Yu, S. Liu, W. J. Wang, R.L. Yuan, H.F.
Liu, T.P. Zhou, W.S. Chu, H.A. Wu, Y. Xie, C.Z. Wu, Interfacial ion regulation on 2D layered double hydroxide nanosheets
for enhanced thermal insulation. Science China Chemistry, 2022. 65: p.898–904. (https://doi.org/10.1007/s11426-021-1201-0). 201.
Zhang, J.N., H. Yu, Q. Wang, C.S. Lv, C. Liu, F. Shi, H.A. Wu*, Hydraulic fracture propagation at weak
interfaces between contrasting layers in shale using XFEM with energy-based
criterion. Journal of Natural Gas Science and Engineering, 2022. 101: p.104502. (https://doi.org/10.1016/j.jngse.2022.104502) 200.
Lu, J.#, H.Y. Xu#, H. Yu#, X.Y. Hu#, J. Xia, Y.L. Zhu, F.C. Wang, H.A. Wu*,
L. Jiang, H.T. Wang*, Ultrafast
rectifying counter-directional transport of proton and metal ions in
metal-organic framework–based nanochannels. Science Advances, 2022. 8: p.eabl5070. (https://doi.org/10.1126/sciadv.abl5070) 199.
Shi, X.L., X.Q. Fan, Y.B. Zhu, Y. Liu, P.Q. Wu, R.H. Jiang, B. Wu, H.A. Wu,
H. Zheng, J.B. Wang, X.Y. Ji, Y.S. Chen*, J.J. Liang*, Pushing detectability and sensitivity for subtle force to new limits
with shrinkable nanochannel structured aerogel. Nature Communications,
2022. 13: p.1119. (https://doi.org/10.1038/s41467-022-28760-4) 198.
Meng, Y.F.#, Y.B. Zhu#, L.C. Zhou, X.S. Meng, Y.L. Yang, R. Zhao, J. Xia, B.
Yang, Y.J. Lu, H.A. Wu, L.B. Mao*, S.H. Yu*, Artificial Nacre with High Toughness Amplification Factor: Residual
Stress-Engineering Sparks Enhanced Extrinsic Toughening Mechanisms.
Advanced Materials, 2022. 34:
p.2108267. (https://doi.org/10.1002/adma.202108267) 197.
Xu, H.Y., H. Yu*, J.C. Fan, J. Xia, H. Liu, H.A. Wu*, Formation mechanism and structural characteristic of pore-networks in
shale kerogen during in-situ conversion process. Energy, 2022. 242: p.122992. (https://doi.org/10.1016/j.energy.2021.122992) 196. Zhang, R.G., Y. Wang, Y.B. Zhu,
J.D. Jin, H.A. Wu, P. Gu*, Y. Zhao*, Stress
analysis of double-walled pipes undergone mechanical drawing process. The
International Journal of Advanced Manufacturing Technology, 2022. 119: p.2525–2535. (https://doi.org/10.1007/s00170-021-08283-w) 195.
Wang, J.N., B. Wu, F.C. Wu, P. Wang, A.M. He*, H.A. Wu*, Spall and recompression processes with double shock loading of
polycrystalline copper. Mechanics of Materials, 2022. 165: p.104194. (https://doi.org/10.1016/j.mechmat.2021.104194) 194.
Lim, E.#, X.Y. Hong#, M.K. Tan, H. Yu*, H.A. Wu*, Y. M. Hung*, Distinctive evaporation characteristics of
water and ethanol on graphene nanostructured surfaces. International
Journal of Heat and Mass Transfer, 2022, 183: p. 122174. (https://doi.org/10.1016/j.ijheatmasstransfer.2021.122174) 193.
Liu, S.#, H. Cheng#, J. Xia#, C. Wang, R.J. Gui, T.P. Zhou, H.F. Liu, J.
Peng, N. Zhang, W.J. Wang, W.S. Chu, H.A. Wu*, Y.Xie*, Surface microenvironment optimization- induced robust oxygen
reduction for neutral zinc-air batteries. Natural Sciences, 2021, 1(2):
p. e20210005. (https://doi.org/10.1002/ntls.20210005) 192.
Yuan, X.H., H. Yu, H.L. Zhang, L. Zheng, E.B. Dong*, H.A. Wu*, A Multi-Scale Grasp Detector Based on
Fully Matching Model. Computer Modeling in Engineering & Sciences,
2022, 133(2): p. 281-301. (https://dio.org/10.32604/cmes.2022.021383) 191.
He, Z.Z., Y.B. Zhu, H.A. Wu*, Multiscale
mechanics of noncovalent interface in graphene oxide layered nanocomposites.
Theoretical and Applied Mechanics Letters, 2022, 12(1): p. 100304. (https://doi.org/10.1016/j.taml.2021.100304) 190.
Zhang, H.L., H. Yu*, X.H. Yuan, H.Y. Xu, M. Micheal, J.N. Zhang, H.L. Shu,
G.C. Wang, H.A. Wu*, Permeability
prediction of low-resolution porous media images using autoencoder-based
convolutional neural network. Journal of Petroleum Science and
Engineering, 2022, 208: p. 109589. (https://doi.org/10.1016/j.petrol.2021.109589) 189.
He, Z.Z., Y.B. Zhu* and H.A. Wu*, A
universal mechanical framework for noncovalent interface in laminated
nanocomposites. Journal of the Mechanics and Physics of Solids, 2022. 158: p. 104560. (https://doi.org/10.1016/j.jmps.2021.104560) 188.
Pan, X.F.#, B. Wu#, H.L. Gao*, S.M. Chen, Y.B. Zhu, L.C. Zhou, H.A. Wu and
S.H. Yu*, Double-layer nacre-inspired
polyimide-mica nanocomposite films with excellent mechanical stability for
LEO environmental conditions. Advanced Materials, 2022. 34: p. 2105299. (https://doi.org/10.1002/adma.202105299) 187.
Cheng, Z.#, L.F. Bu#, Y. Zhang#, H.A. Wu, T. Zhu*, H.J. Gao* and L. Lu*, Unraveling the origin of extra
strengthening in gradient nanotwinned metals. Proceedings of the National
Academy of Sciences, 2022. 119(3):
p. e2116808119. (https://doi.org/10.1073/pnas.2116808119) 186.
Cheng, H.#, R.J. Gui#, H. Yu#, C. Wang, S. Liu, H.F. Liu, T.P. Zhou, N.
Zhang, X.S. Zheng, W.S. Chu, Y. Lin, H.A. Wu, C.Z. Wu* and Y. Xie, Subsize Pt-based intermetallic compound
enables long-term cyclic mass activity for fuel-cell oxygen reduction.
Proceedings of the National Academy of Sciences, 2021. 118(35): p. e2104026118. (https://doi.org/10.1073/pnas.2104026118) 185.
Zhao, S.#, C.H. Jiang#, J.C. Fan#, S.S. Hong, P. Mei, R.X. Yao, Y.L. Liu,
S.L. Zhang, H. Li, H.Q. Zhang, C. Sun, Z.B. Guo, P.P. Shao, Y.H Zhu, J.W.
Zhang, L.S. Guo, Y.H. Ma, J.Q. Zhang, X. Feng*, F.C. Wang*, H.A. Wu and B.
Wang*, Hydrophilicity gradient in
covalent organic frameworks for membrane distillation. Nature Materials,
2021. 20: p. 1551-1558. (https://doi.org/10.1038/s41563-021-01052-w) 184.
Zhu, Y.B., Y.C. Wang, B. Wu, Z.Z. He, J. Xia and H.A. Wu*, Micromechanical Landscape of
Three-Dimensional Disordered Graphene Networks. Nano Letters, 2021. 21(19): p. 8401-8408. (https://doi.org/10.1021/acs.nanolett.1c02985) 183.
Lv, C., G.J. Wang*, X.P. Zhang, B.Q. Luo, N. Luo, F.C. Wu, H.A. Wu, F.L. Tan,
J.H. Zhao, C.L. Liu* and C.W. Sun, Spalling
modes and mechanisms of shocked nanocrystalline NiTi at different loadings
and temperatures. Mechanics of Materials, 2021. 161: p. 104004. (https://doi.org/10.1016/j.mechmat.2021.104004) 182.
Hou, Y.Z., Z.Z. He, Y.B. Zhu* and H.A. Wu, Intrinsic kink deformation in nanocellulose. Carbohydrate
Polymers, 2021. 273: p. 118578. (https://doi.org/10.1016/j.carbpol.2021.118578) 181.
Gao, H.L.#, Z.Y. Wang#, C. Cui#, J.Z. Bao, Y.B. Zhu, J. Xia, S.M. Wen, H.A.
Wu and S.H. Yu*, A highly compressible
and stretchable carbon spring for
smart vibration and magnetism sensors. Advanced Materials, 2021. 33: p. 2102724. (https://doi.org/10.1002/adma.202102724) 180.
Wang, Q., W.J. Yin, H. Yu, Y.B. Zhu* and H.A. Wu*, Hyperbolic-like structure with negative Poisson’s ratio:deformation mechanism
and structural design. Physica Status Solidi B, 2021. 258(10): p. 2100011. (https://doi.org/10.1002/pssb.202100011) 179.
Micheal, M.#, W.L. Xu#, H.Y. Xu, J.N. Zhang, H.J. Jin, H. Yu* and H.A. Wu*, Multi-scale modelling of gas transport and
production evaluation in shale reservoir considering crisscrossing fractures.
Journal of Natural Gas Science and Engineering, 2021. 95: p. 104156. (https://doi.org/10.1016/j.jngse.2021.104156) 178.
Deng, Y., Z.J. Chen, Y.B. Zhu, H.A. Wu and P. Gu*, The device using a polydimethylsiloxane membrane and the phase
transition of water. Coatings, 2021. 11:
p. 1102. (https://doi.org/10.3390/coatings11091102) 177.
Ng, V.O.#, H. Yu#, H.A. Wu and Y.M. Hung*, Thermal performance enhancement and optimization of two-phase closed
thermosyphon with graphene-nanoplatelets coatings. Energy Conversion and
Management, 2021. 236: p. 114039.
(https://doi.org/10.1016/j.enconman.2021.114039) C.11 宋戎妆,侯远震,何泽洲,夏骏,朱银波*,吴恒安. 纳米纤维素序构材料界面力学行为和设计的研究进展[J].中国科学技术大学学报,2021,51(10):766-786. pdf 176.
Li, J.C., Y.B. Zhu, J. Xia, J.C. Fan, H.A. Wu* and F.C. Wang*, Anomalously low friction of confined
monolayer water with a quadrilateral structure. Journal of Chemical
Physics, 2021. 154(22): p. 224508.
(https://doi.org/10.1063/5.0053361) 175.
Li, Y.H.#, Y.Z. Yu#, J.H. Qian, H.A Wu* and F.C. Wang*, Anomalous ion transport through angstrom-scale pores: Effect of
hydration shell exchange on ion mobility. Applied Surface Science, 2021. 560: p. 150022. (https://doi.org/10.1016/j.apsusc.2021.150022) 174.
Qian, J.H., Y.H. Li, H.A. Wu* and F.C. Wang*, Surface morphological effects on gas transport through nanochannels
with atomically smooth walls. Carbon, 2021. 180: p. 85-91. (https://doi.org/10.1016/j.carbon.2021.04.087) 173.
Zhang, S., Y.B. Zhu, F.C. Wang, X.Y. Liu*, H.A. Wu and S.N. Luo, Theoretical analysis of high strength and
anti-buckling of three-dimensional carbon honeycombs under shear loading.
Composites Part B: Engineering, 2021. 219:
p. 108967. (https://doi.org/10.1016/j.compositesb.2021.108967) 172.
Wu, B., F.C. Wu, P. Wang, A.M. He* and H.A Wu*, Ignition and Combustion of Hydrocarbon Fuels Enhanced by Aluminum
Nanoparticle Additives: Insights from Reactive Molecular Dynamics
Simulations. The Journal of Physical Chemistry C, 2021. 125(21): p. 11359–11368. (https://doi.org/10.1021/acs.jpcc.1c01435) 171.
Zhu, Y.D., Z.J. Zheng*, Y.L. Zhang, H.A. Wu and J.L. Yu, Adhesion of elastic
wavy surfaces: Interface strengthening/weakening and mode transition
mechanisms. Journal of the Mechanics and Physics of Solids, 2021. 151: p. 104402. (https://doi.org/10.1016/j.jmps.2021.104402) 170.
Wang, Y.C., Y.B. Zhu* and H.A. Wu, Formation
and topological structure of three-dimensional disordered graphene networks.
Physical Chemistry Chemical Physics, 2021. 23(17): p. 10290-10302.
(https://doi.org/10.1039/D1CP00617G) 169.
Liu, H.F.#, J. Xia#, N. Zhang, H. Cheng, W.T. Bi, X.L. Zu, W.S. Chu, H.A. Wu,
C.Z. Wu* and Y. Xie, Solid–liquid phase
transition induced electrocatalytic switching from hydrogen evolution to
highly selective CO2 reduction. Nature Catalysis, 2021. 4: p. 202–211. (https://doi.org/10.1038/s41929-021-00576-3) 168.
Zhou, L.C., Y.B. Zhu, Z.Z. He, X. Jin* and H.A. Wu*, Multi-parameter structural optimization to reconcile mechanical
conflicts in nacre-like composites. Composite Structures, 2021. 259: p. 113225. (https://doi.org/10.1016/j.compstruct.2020.113225) C.10 洪祥宇,徐亨宇,崔风路,余昊,吴一宁,吴恒安,王奉超*. 分子模拟在非常规油气开发中的应用[J].计算力学学报,2021,38(03):313-320. pdf 167.
Chen, Z.J., G. Cheng, Y.B. Zhu, H.A. Wu, E.B. Dong, P. Gu* and Y. Zhao*, Biomimetic polydimethylsiloxane
(PDMS)/carbon fiber lamellar adhesive composite in thermal vacuum
environment. International Journal of Adhesion and Adhesives, 2021. 105: p. 102778. (https://doi.org/10.1016/j.ijadhadh.2020.102778) 166.
Fan, J.C., J. De Coninck, H.A. Wu* and F.C. Wang*, A generalized examination of capillary force balance at contact line:
On rough surfaces or in two-liquid systems. Journal of Colloid and
Interface Science, 2021. 585: p.
320-327. (https://doi.org/10.1016/j.jcis.2020.11.100) 165.
Xu, H.Y., H. Yu*, J.C. Fan, J. Xia, F.C. Wang and H.A. Wu, Enhanced gas recovery in kerogen pyrolytic
pore network: Molecular simulations and theoretical analysis. Energy
& Fuels, 2021. 35(3): p.
2253-2267. (https://doi.org/10.1021/acs.energyfuels.0c04137) 164.
Wang, Y.C., Y.B. Zhu* and H.A. Wu, Porous
Characteristics of Three-Dimensional Disordered Graphene Networks.
Crystals, 2021. 11(2): p. 127. (https://doi.org/10.3390/cryst11020127) 163.
Guan, Q.F.#, Z.M. Han#, Y.B. Zhu#, W.L. Xu, H.B. Yang, Z.C. Ling, B.B. Yan,
K.P. Yang, C.H. Yin, H.A. Wu and S.H. Yu*, Bio-Inspired Lotus-Fiber-Like Spiral Hydrogel Bacterial Cellulose
Fibers. Nano Letters, 2021. 21(2):
p. 952-958. (https://dx.doi.org/10.1021/acs.nanolett.0c03707) C.09 吕超,张旭平,王桂吉*,罗斌强,罗宁,吴恒安,谭福利,赵剑衡,刘仓理,孙承纬. 冲击载荷下Ni52Ti48合金的微观响应特性[J].高压物理学报,2021,35(04):128-141. pdf C.08 王嘉楠,伍鲍,何安民,吴凤超,王裴,吴恒安*.强冲击下金属材料动态损伤与破坏的分子动力学模拟研究进展[J].高压物理学报,2021,35(04):4-17. pdf 162.
Hou, Y.Z.#, Q.F. Guan#, J. Xia#, Z.C. Ling, Z.Z. He, Z.M. Han, H.B. Yang, P.
Gu, Y.B. Zhu*, S.H. Yu* and H.A. Wu*, Strengthening
and Toughening Hierarchical Nanocellulose via Humidity-Mediated Interface.
ACS Nano, 2021. 15(1): p.
1310-1320. (https://dx.doi.org/10.1021/acsnano.0c08574) 161.
Yu, H.#, H.Y. Xu#, J.C. Fan, Y.B. Zhu, F.C. Wang and H.A. Wu*, Transport of Shale Gas in
Microporous/Nanoporous Media: Molecular to Pore-Scale Simulations. Energy
& Fuels, 2021. 35(2): p.
911-943. (Cover paper) (https://dx.doi.org/10.1021/acs.energyfuels.0c03276) 160.
Ullah, A.*, H.A. Wu, A. Rehman, Y.B. Zhu, T.T Liu and K. Zhang, Influence of
laser parameters and Ti content on the surface morphology of L-PBF fabricated
Titania. Rapid Prototyping Journal, 2021. 27(1): p. 71-80. (https://doi.org/10.1108/RPJ-03-2020-0050) 159.
Chen, X.F., Y.B. Zhu, H. Yu, J.Z. Liu, C.D. Easton, Z.Y. Wang, Y.X. Hu, Z.L.
Xie, H.A. Wu, X.W. Zhang, D. Li and H.T. Wang*, Ultrafast water evaporation through graphene membranes with
subnanometer pores for desalination. Journal of Membrane Science, 2021. 621: p. 118934. (https://doi.org/10.1016/j.memsci.2020.118934) 158.
Zhou, T.P.#, H. Shan#, H. Yu#, C.A. Zhong#, J. K. Ge, N. Zhang, W.S. Chu,
W.S. Yan, Q. Xu, H.A. Wu, C.Z. Wu* and Y. Xie, Nanopore confinement of electrocatalysts optimizing triple transport
for an ultrahigh-power-density Zinc–air fuel cell with robust stability.
Advanced Materials, 2020. 32: p.
2003251. (https://doi.org/10.1002/adma.202003251) 157.
He, Z.Z., Y.B. Zhu and H.A. Wu*, Edge
effect on interlayer shear in multilayer two-dimensional material assemblies.
International Journal of Solids and Structures, 2020. 204-205: p. 128-137. (https://doi.org/10.1016/j.ijsolstr.2020.08.021) 156.
Wang, Y.C., Y.B. Zhu*, Z.Z. He and H.A. Wu, Multiscale investigations into the fracture toughness of SiC/graphene
composites: Atomistic simulations and crack-bridging model. Ceramics
International, 2020. 46(18): p.
29101-29110. (https://doi.org/10.1016/j.ceramint.2020.08.082) 155. Xia,
J., Y.B. Zhu, X. Jin and H.A. Wu*, Unravelling
the Interactions Between Organic Molecules and Reduced Graphene Oxide in an
Aqueous Environment. Carbon, 2020. 167:
p. 345-350. (https://doi.org/10.1016/j.carbon.2020.06.034) 154.
Yu, H., H.Y. Xu, J. Xia, J.C. Fan, F.C. Wang and H.A. Wu*, Nanoconfined Transport Characteristic of
Methane in Organic Shale Nanopores: The Applicability of the Continuous
Model. Energy & Fuels, 2020. 34(8):
p. 9552-9562. (https://doi.org/10.1021/acs.energyfuels.0c01789) 153.
Wu, B., F.C. Wu, P. Wang, A.M. He* and H.A. Wu*, Shock-induced ejecta transport and breakup in reactive gas.
Physical Chemistry Chemical Physics, 2020. 22: p. 14857-14867. (https://doi.org/10.1039/D0CP01831G) 152.
Lim, F.S., S.T. Tan, Y.M Zhu, J.W. Chen, B. Wu, H. Yu, J.M. Kim, R.T.
Ginting, K.S. Lau, C.H. Chia, H.A. Wu, M. Gu and W.S. Chang*, Tunable Plasmon-Induced Charge Transport
and Photon Absorption of Bimetallic Au-Ag Nanoparticles on ZnO Photoanode for
Photoelectrochemical Enhancement under Visible Light. The Journal of
Physical Chemistry C, 2020. 124(26):
p. 14105-14117. (https://doi.org/10.1021/acs.jpcc.0c03967) 151.
Yu, H., H.Y. Xu, J.C. Fan, F.C. Wang and H.A. Wu*, Roughness Factor-Dependent Transport Characteristic of Shale Gas
through Amorphous Kerogen Nanopores. The Journal of Physical Chemistry C,
2020. 124(23): p. 12752-12765.
(Cover paper) (https://doi.org/10.1021/acs.jpcc.0c02456) 150.
Xu, H.Y., H. Yu*, J.C. Fan, Y.B. Zhu, F.C. Wang and H.A. Wu*, Two-phase transport characteristic of
shale gas and water through hydrophilic and hydrophobic nanopores. Energy
& Fuels, 2020. 34(4): p.
4407-4420. (https://doi.org/10.1021/acs.energyfuels.0c00212) 149.
Chen, M.W.#, B. Wu#, L.C. Zhou, Y.B. Zhu* and H.A. Wu, Micromechanical Properties of Pyrolytic Carbon with Interlayer
Crosslink. Carbon, 2020. 159:
p. 549-560. (https://doi.org/10.1016/j.carbon.2019.12.096) 148.
Wang, J.N., F.C. Wu, P. Wang, A.M. He* and H.A. Wu*, Double-Shock-Induced Spall and Recompression Processes in Copper.
Journal of Applied Physics, 2020. 127:
p. 135903. (https://doi.org/10.1063/1.5144567) 147.
Liu, C., J.N. Zhang, H. Yu, J. Chen, D.T. Lu and H.A. Wu*, New Insights of Natural Fractures Growth
and Stimulation Optimization Based on a Three-Dimensional Cohesive Zone
Model. Journal of Natural Gas Science and Engineering, 2020. 76: p. 103165. (https://doi.org/10.1016/j.jngse.2020.103165) 146.
Yu, H., J.C. Fan, J. Xia, H. Liu and H.A. Wu*, Multiscale gas transport behavior in heterogeneous shale matrix
consisting of organic and inorganic nanopores. Journal of Natural Gas
Science and Engineering, 2020. 75:
p. 103139. (https://doi.org/10.1016/j.jngse.2019.103139) 145. Wu,
Y.Q., P. Tahmasebi*, H. Yu, C.Y. Lin*, H.A. Wu and C.M. Dong, Pore-Scale 3D Dynamic Modeling and
Characterization of Shale Samples: Considering the Effects of Thermal
Maturation. Journal of Geophysical Research: Solid Earth, 2020. 125(1): p. e2019JB018309. (https://doi.org/10.1029/2019JB018309) 144.
Fan, J.C., H.A. Wu* and F.C. Wang*, Evaporation-driven
liquid flow through nanochannels. Physics of Fluids, 2020. 32(1): p. 012001. (https://doi.org/10.1063/1.5137803) 143.
Gao, H.L.#, R. Zhao#, C. Cui, Y.B. Zhu, S.M. Chen, Z. Pan, S.M. Wen, Y.F.
Meng, C. Liu, H.A. Wu and S.H. Yu*, Bioinspired
hierarchical helical nanocomposite macrofibers based on bacterial cellulose
nanofibers. National Science Review, 2020. 7(1): p. 73-83. (https://doi.org/10.1093/nsr/nwz077) 142.
Ma, Z.Y.#, Z.L. Yu#, Z.L. Xu#, L.F. Bu, H.R. Liu, Y.B. Zhu, B. Qin, T. Ma,
H.J. Zhan, H.A. Wu, H. Ding* and S.H. Yu*, Origin of Batch Hydrothermal Fluid Behavior and Its Influence on
Nanomaterial Synthesis. Matter, 2020. 2(5): p. 1270-1282. (https://doi.org/10.1016/j.matt.2020.02.015) 141.
Guan, Q.F.#, H.B. Yang#, Z.M. Han#, L.C. Zhou, Y.B. Zhu, Z.C. Ling, H.B.
Jiang, P.F. Wang, T. Ma, H.A. Wu and S.H. Yu*, Lightweight, tough, and sustainable cellulose nanofiber-derived bulk
structural materials with low thermal expansion coefficient. Science
Advances, 2020. 6(18): p.
eaaz1114. (http://dx.doi.org/10.1126/sciadv.aaz1114) 140.
Kueh, T.C.#, H. Yu#, A.K. Soh, H.A. Wu* and Y.M. Hung*, Influence of Substrate on Ultrafast Water Transport Property of
Multilayer Graphene Coatings. Nanotechnology, 2020. 31(37): p. 375704. (https://doi.org/10.1088/1361-6528/ab9864) 139.
Li, X.Y.#, H.C. Zhang#*, H. Yu#, J. Xia, Y.B. Zhu, H.A. Wu*, J. Hou, J. Lu,
R.W. Ou, C.D. Easton, C. Selomulya, M.R. Hill, L. Jiang and H.T. Wang*, Unidirectional and Selective Proton
Transport in Artificial Heterostructured Nanochannels with Nano-to-Subnano
Confined Water Clusters. Advanced Materials, 2020. 32(24): p. 2001777. (https://doi.org/10.1002/adma.202001777) 138.
Gan, J.S.#, H. Yu#, M.K. Tan, A.K. Soh, H.A. Wu* and Y.M. Hung*, Performance Enhancement of Graphene-Coated
Micro Heat Pipes for Light-Emitting Diode Cooling. International Journal
of Heat and Mass Transfer, 2020. 154:
p. 119687. (https://doi.org/10.1016/j.ijheatmasstransfer.2020.119687) 137.
Fan, J.C., J. De Coninck, H.A. Wu* and F.C. Wang*, Microscopic Origin of Capillary Force Balance at Contact Line.
Physical Review Letters, 2020. 124(12):
p. 125502. (https://doi.org/10.1103/PhysRevLett.124.125502) 136.
Wang, K.#, X.H. Sun#, Y. Zhang, Y.C. Wei, D.Y. Chen, H.A. Wu, Z.J. Song, R.
Long*, J.B. Wang* and J. Chen*, Microfluidic
cytometry for high-throughput characterization of single cell cytoplasmic
viscosity using crossing constriction channels. Cytometry Part A, 2019. 97(6): p. 630-637. (http://dx.doi.org/10.1002/cyto.a.23921) 135.
Wang, K.#, X.H. Sun#, Y. Zhang, T. Zhan, Y. Zheng, Y.C. Wei, P. Zhao, D.Y.
Chen, H.A. Wu, W.H. Wang, R. Long*, J.B. Wang* and J. Chen*, Characterization of cytoplasmic viscosity
of hundreds of single tumour cells based on micropipette aspiration.
Royal Society Open Science, 2019. 6:
p. 181707. (http://dx.doi.org/10.1098/rsos.181707) 134.
Xia, J., Y.B. Zhu*, Z.Z. He, F.C. Wang and H.A. Wu*, Superstrong Noncovalent Interface between Melamine and Graphene
Oxide. ACS Applied Materials & Interfaces, 2019. 11(18): p. 17068-17078. (http://dx.doi.org/10.1021/acsami.9b02971) 133.
Liu, C., Y.K. Shen, J.N. Zhang, D.T. Lu, H. Liu and H.A. Wu*, Production analysis in shale gas
reservoirs based on fracturing-enhanced permeability areas. Science
China: Physics, Mechanics & Astronomy, 2019. 62. (https://doi.org/10.1007/s11433-019-9427-x) 132.
Wu, B., F.C. Wu, Y.B. Zhu, A.M. He, P. Wang* and H.A. Wu*, Fast reaction of aluminum nanoparticles
promoted by oxide shell. Journal of Applied Physics, 2019. 126(14): p. 144305. (https://doi.org/10.1063/1.5115545) 131.
Hu, X.Y.#., X.R. Wang#, Z.P. Ge, L. Zhang, Y.R. Zhou, J.Y., Li, L.F. Bu, H.A.
Wu, P. Li*, W.P. Xu*, Bimetallic
plasmonic Au@Ag nanocuboids for rapid and sensitive detection of
phthalate plasticizers with label-free surface-enhanced Raman
spectroscopy. Analyst, 2019. 144:
p. 3861-3869. (https://doi.org/10.1039/C9AN00251K) 130.
Yu, L.X.#, C. Zhu#, X.H. Sun, J. Salter, H.A. Wu, Y. Jin, W. Zhang*, R.
Long*, Rapid Fabrication of Malleable
Fiber Reinforced Composites with Vitrimer Powder. ACS Applied Polymer
Materials, 2019. 1(9): p.
2535-2542. (http://dx.doi.org/10.1021/acsapm.9b00641) 128.
Zhou, N., F.C. Wu, Y.B. Zhu, X.Z. Li, Q. Wu* and H.A. Wu*, Defect production and segregation induced
by collision cascades in U-10Zr alloy. Journal of Nuclear Materials,
2019. 526(2): p. 151769. (https://doi.org/10.1016/j.jnucmat.2019.151769) 127.
Chen, S.M.#, H.L. Gao#, X.H. Sun#, Z.Y. Ma, T. Ma, J. Xia, Y.B. Zhu, R. Zhao,
H.B. Yao, H.A. Wu* and S.H. Yu*, Superior
Biomimetic Nacreous Bulk Nanocomposites by a Multiscale Soft-Rigid
Dual-Network Interfacial Design Strategy. Matter, 2019. 1(2): p. 412-427. (https://doi.org/10.1016/j.matt.2019.03.012) 126.
Wang, W.B.#, Y.B. Zhu#, Q.L. Wen, Y.T. Wang, J. Xia, C.C. Li, M.W. Chen, Y.W.
Liu*, H.Q. Li, H.A. Wu* and T.Y. Zhai*, Modulation
of Molecular Spatial Distribution and Chemisorption with Perforated
Nanosheets for Ethanol Electro‐oxidation. Advanced Materials, 2019. 31(28): p. 1900528. (https://doi.org/10.1002/adma.201900528) 125. Yu,
Z.L.#, B. Qin#, Z.Y. Ma, J. Huang, S.C. Li, H.Y. Zhao, H. Li, Y.B. Zhu, H.A.
Wu and S.H. Yu*, Superelastic Hard
Carbon Nanofiber Aerogels. Advanced Materials, 2019. 31(23): p. 1900651. (https://doi.org/10.1002/adma.201900651) 124.
Wu, F.C., Y.B. Zhu, X.Z. Li, P. Wang, Q. Wu* and H.A. Wu*, Peculiarities in breakup and transport
process of shock-induced ejecta with surrounding gas. Journal of Applied
Physics, 2019. 125: p. 185901. (https://doi.org/10.1063/1.5086542) 123.
Yu, Y.Z., J.C. Fan, J. Xia, Y.B. Zhu, H.A. Wu and F.C. Wang*, Dehydration impeding ionic conductance
through two-dimensional angstrom-scale slits. Nanoscale, 2019. 11: p. 8449-8457. (https://doi.org/10.1039/C9NR00317G) 122.
Chen, M.W., Y.B. Zhu*, J. Xia and H.A. Wu*, Molecular insights into the initial formation of pyrolytic carbon
upon carbon fiber surface. Carbon, 2019. 148: p. 307-316. (https://doi.org/10.1016/j.carbon.2019.04.003) 121.
Yu, H., Y.B. Zhu, X. Jin*, H. Liu and H.A. Wu*, Multiscale simulations of shale gas transport in micro/nano-porous
shale matrix considering pore structure influence. Journal of Natural Gas
Science and Engineering, 2019. 64:
p. 28-40. (https://doi.org/10.1016/j.jngse.2019.01.016) 120.
Zhou, L.C., X.H. Sun, M.W. Chen, Y.B. Zhu and H.A. Wu*, Multiscale modeling and theoretical prediction for the thermal
conductivity of porous plain-woven carbonized silica/phenolic composites.
Composite Structures, 2019. 215:
p. 278-288. (https://doi.org/10.1016/j.compstruct.2019.02.053) 119.
Yu, Y.Z., J.C. Fan, A. Esfandiar, Y.B. Zhu, H.A. Wu and F.C. Wang*, Charge Asymmetry Effect in Ion Transport
through Angstrom-Scale Channels. Journal of Physical Chemistry C, 2019. 123(2): p. 1462-1469. (https://doi.org/10.1021/acs.jpcc.8b09742) 118.
Wang, J.N., F.C. Wu, Y.B. Zhu, A.M. He, P. Wang* and H.A. Wu*, Unsupported shock wave induced dynamic
fragmentation of matrix in lead with surface grooves. Computational
Materials Science, 2019. 156: p.
404-410. (https://doi.org/10.1016/j.commatsci.2018.10.018) 117.
Sun, X.H., L.X. Yu, M. Rentschler, H.A. Wu* and R. Long*, Delamination of a rigid punch from an
elastic substrate under normal and shear forces. Journal of the Mechanics
and Physics of Solids, 2019. 122:
p. 141-160. (https://doi.org/10.1016/j.jmps.2018.09.009) C.07 王奉超,朱银波,吴恒安.纳米通道受限液体的结构和输运[J].中国科学:物理学 力学 天文学(约稿),2018,48(9):094609.
pdf 116.
Chen, S.M.#, H.L. Gao#, Y.B. Zhu#, H.B. Yao, L.B. Mao, Q.Y. Song, J. Xia, Z.
Pan, Z. He, H.A. Wu and S.H. Yu*, Biomimetic
twisted plywood structural materials. National Science Review, 2018. 5(5): p. 703-714. (https://doi.org/10.1093/nsr/nwy080) 115.
Liu, C., X. Jin*, F. Shi, D.T. Lu, H. Liu and H.A. Wu*, Numerical investigation on the critical factors in successfully
creating fracture network in heterogeneous shale reservoirs. Journal of
Natural Gas Science and Engineering, 2018. 59: p. 427-439. (https://doi.org/10.1016/j.jngse.2018.09.019) 114.
Cai, Y., H.A. Wu* and S.N. Luo*, A
loading-dependent model of critical resolved shear stress. International
Journal of Plasticity, 2018. 109:
p. 1-17. (https://doi.org/10.1016/j.ijplas.2018.03.011) 113.
Zhou, L.C., M.W. Chen, C. Liu and H.A. Wu*, A multi-scale stochastic fracture model for characterizing the
tensile behavior of 2D woven composites. Composite Structures, 2018. 204: p. 536-547. (https://doi.org/10.1016/j.compstruct.2018.07.128) 112.
Yu, Z.L.#, N. Yang#, L.C. Zhou, Z.Y. Ma, Y.B. Zhu, Y.Y. Lu, B. Qin, W.Y.
Xing, T. Ma, S.M. Chen, H.L. Gao, H.A. Wu and S.H. Yu*, Bioinspired polymeric woods. Science Advances, 2018. 4(8): p. eaat7223. (http://dx.doi.org/10.1126/sciadv.aat7223) 111.
Tong, W.L., Y.M. Hung*, H. Yu, M.K. Tan, B.T. Ng, B.T. Tan, H.A. Wu and A.K.
Soh, Ultrafast water permeation in
graphene nanostructures anomalously enhances two-phase heat transfer.
Advanced Materials Interfaces, 2018. 5(13):
p. 1800286. (https://doi.org/10.1002/admi.201800286) 110.
Fan, J.C., F.C. Wang*, J. Chen, Y.B. Zhu, D.T. Lu, H. Liu and H.A. Wu*, Molecular mechanism of viscoelastic
polymer enhanced oil recovery in nanopores. Royal Society Open Science,
2018. 5(6): p. 180076. (http://dx.doi.org/10.1098/rsos.180076) 109.
He, Z.Z., Y.B. Zhu and H.A. Wu*, Self-folding
mechanics of graphene tearing and peeling from a substrate. Frontiers of
Physics, 2018. 13(3): p. 138111. (https://doi.org/10.1007/s11467-018-0755-5) 108.
Shi, F., X.L. Wang, C. Liu, H. Liu and H.A. Wu*, An XFEM-based numerical model to calculate conductivity of propped
fracture considering proppant transport, embedment and crushing. Journal
of Petroleum Science and Engineering, 2018. 167: p. 615-626. (https://doi.org/10.1016/j.petrol.2018.04.042) 107.
Wang, G.F., H.L. Qin, X. Gao, Y. Cao, W. Wang, F.C. Wang, H.A. Wu, H.P. Cong*
and S.H. Yu*, Graphene Thin Films by Noncovalent-Interaction-Driven Assembly
of Graphene Monolayers for Flexible Supercapacitors. Chem, 2018. 4(4): p. 896-910. (https://doi.org/10.1016/j.chempr.2018.01.008) 106.
Wu, B., F.C. Wu, Y.B. Zhu, P. Wang, A.M. He* and H.A. Wu*, Molecular dynamics simulations of ejecta
production from sinusoidal tin surfaces under supported and unsupported
shocks. AIP Advances, 2018. 8(4):
p. 045002. (https://doi.org/10.1063/1.5021671) 105.
Zhu, W.D., Y.B. Zhu, L. Wang, Q. Zhu, W.H. Zhao, C.Q. Zhu, J. Bai, J.L. Yang,
L.F. Yuan*, H.A. Wu* and X.C. Zeng*, Water
Confined in Nanocapillaries: Two-Dimensional Bilayer Squarelike Ice and
Associated Solid–Liquid–Solid Transition. Journal of Physical Chemistry
C, 2018. 122(12): p. 6704-6712. (http://dx.doi.org/10.1021/acs.jpcc.8b00195) 104.
Yu, H., J.C. Fan, J. Chen, Y.B. Zhu and H.A. Wu*, Pressure-dependent transport characteristic of methane gas in slit
nanopores. International Journal of Heat and Mass Transfer, 2018. 123: p. 657-667. (https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.003) 103.
Ou, X.W.#, Y.Z. Yu#, R.Z. Wu, A. Tyagi, M.H. Zhuang, Y. Ding, I.H. Abidi,
H.A. Wu, F.C Wang* and Z.T. Luo*, Shuttle
Suppression by Polymer-Sealed Graphene-Coated Polypropylene Separator.
ACS Applied Materials & Interfaces, 2018. 10(6): p. 5534-5542. (http://dx.doi.org/10.1021/acsami.7b17251) 102.
Li, X.Z., J.C. Fan, H. Yu, Y.B. Zhu* and H.A. Wu*, Lattice Boltzmann method simulations about shale gas flow in
contracting nano-channels. International Journal of Heat and Mass
Transfer, 2018. 122: p. 1210-1221.
(https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.066) 101.
Wang, X.L., F. Shi, C. Liu, D.T. Lu, H. Liu and H.A. Wu*, Extended finite element simulation of
fracture network propagation in formation containing frictional and cemented
natural fractures. Journal of Natural Gas Science and Engineering, 2018. 50: p. 309-324. (https://doi.org/10.1016/j.jngse.2017.12.013) C.06 王奉超,孙长庆,吴恒安.受限水的超流特性[J].科学通报(约稿),2017,62(11):1111-1114.pdf C.05 范竞存,余昊,陈杰,李向哲,王奉超,吴恒安.非常规油气开采中的微纳米力学问题研究进展[J].中国科学技术大学学报(约稿),2017,47(02):142-154.pdf 100.
Wu, F.C., Y.B. Zhu, Q. Wu, X.Z. Li, P. Wang and H.A. Wu*, Helium bubbles aggravated defects
production in self-irradiated copper. Journal of Nuclear Materials, 2017.
496: p. 265-273. (https://doi.org/10.1016/j.jnucmat.2017.09.042) 99.
Liu, C., F. Shi, D.T. Lu, H.A. Wu*, H. Wang and H. Liu*, Numerical simulation of simultaneous multiple fractures initiation in
unconventional reservoirs through injection control of horizontal well.
Journal of Petroleum Science and Engineering, 2017. 159: p. 603-613. (https://doi.org/10.1016/j.petrol.2017.09.064) 98.
Hou, Y., Y.B. Zhu, X.Y. Liu, Z.H. Dai, L.Q. Liu, H.A. Wu* and Z. Zhang*, Elastic–plastic properties of graphene
engineered by oxygen functional groups. Journal of Physics D: Applied
Physics, 2017. 50(38): p. 385305.
(http://dx.doi.org/10.1088/1361-6463/aa7fd4) 96.
Xia, J., Y.B. Zhu*, F.C. Wang and H.A. Wu*, Effect of grain boundaries on mechanical transverse wave propagations
in graphene. Journal of Applied Physics, 2017. 121(21): p. 215105. (http://dx.doi.org/10.1063/1.4984763) 95.
Ge, J.#, L.A. Shi#, Y.C. Wang#, H.Y. Zhao, H.B. Yao, Y.B. Zhu, Y. Zhang, H.W.
Zhu, H.A. Wu and S.H. Yu*, Joule-heated
graphene-wrapped sponge enables fast clean-up of viscous crude-oil spill.
Nature Nanotechnology, 2017. 12(5):
p. 434-440. (http://dx.doi.org/10.1038/nnano.2017.33) 94.
Chen, M.W., H.F. Zhan*, Y.B. Zhu, H.A. Wu* and Y.T. Gu, Mechanical properties of penta-graphene nanotubes. Journal of
Physical Chemistry C, 2017. 121(17):
p. 9642-9647. (http://dx.doi.org/10.1021/acs.jpcc.7b02753) 93.
Yu, H., J. Chen, Y.B. Zhu*, F.C. Wang and H.A. Wu*, Multiscale transport mechanism of shale gas in micro/nano-pores.
International Journal of Heat and Mass Transfer, 2017. 111: p. 1172-1180. (https://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.04.050) 92.
Chen, J., H. Yu, J.C. Fan, F.C. Wang, D.T. Lu, H. Liu
and H.A. Wu*, Channel-width dependent
pressure-driven flow characteristics of shale gas in nanopores. AIP
Advances, 2017. 7(4): p. 045217.
(http://dx.doi.org/10.1063/1.4982729) 91.
Cox, L.M.*, X.H. Sun, C. Wang, N. Sowan, J.P. Killgore, R. Long, H.A. Wu,
C.N. Bowman and Y.F. Ding*, Light-stimulated
permanent shape reconfiguration in crosslinked polymer microparticles.
ACS Applied Materials & Interfaces, 2017. 9(16): p. 14422-14428. (http://dx.doi.org/10.1021/acsami.7b02759) 90.
Wang, L.Y., H.A. Wu and F.C. Wang*, Water
desalination using nano screw pumps with a considerable processing rate.
RSC Advances, 2017. 7: p.
20360-20368. (http://dx.doi.org/10.1039/C7RA00890B) 89.
Wang, Y.C., Y.B. Zhu*, F.C. Wang, X.Y. Liu and H.A. Wu*, Super-elasticity and deformation mechanism of three-dimensional
pillared graphene network structures. Carbon, 2017. 118: p. 588-596. (http://dx.doi.org/10.1016/j.carbon.2017.03.092) 88.
Zhu, Y.B., F.C. Wang* and H.A. Wu, Superheating
of monolayer ice in graphene nanocapillaries. Journal of Chemical
Physics, 2017. 146(13): p. 134703.
(http://dx.doi.org/10.1063/1.4979478) 87.
Liu, C., F. Shi, Y.P. Zhang, Y.G. Zhang, D.W. Deng, X.L. Wang, H. Liu and
H.A. Wu*, High injection rate
stimulation for improving the fracture complexity in tight-oil sandstone
reservoirs. Journal of Natural Gas Science and Engineering, 2017. 42: p. 133-141. (http://dx.doi.org/10.1016/j.jngse.2017.03.007) 86.
Cai, Y., H.A. Wu* and S.N. Luo*, Spall
strength of liquid copper and accuracy of the acoustic method. Journal of
Applied Physics, 2017. 121(10): p.
105901. (http://dx.doi.org/10.1063/1.4978251) 85.
Wang, L.Y., H.A. Wu and F.C. Wang*, Design
of nano screw pump for water transport and its mechanisms. Scientific
Reports, 2017. 7: p. 41717. (http://dx.doi.org/10.1038/srep41717) 84.
He, Z.Z., F.C. Wang, Y.B. Zhu, H.A. Wu* and H.S. Park*, Mechanical properties of copper octet-truss nanolattices. Journal
of the Mechanics and Physics of Solids, 2017. 101: p. 133-149.
(http://dx.doi.org/10.1016/j.jmps.2017.01.019) 83. Shi, F., X.L. Wang, C. Liu,
H. Liu and H.A. Wu*, An XFEM-based
method with reduction technique for modeling hydraulic fracture propagation
in formations containing frictional natural fractures. Engineering
Fracture Mechanics, 2017. 173: p.
64-90. (http://dx.doi.org/10.1016/j.engfracmech.2017.01.025) 82. Hakonen, A.*, F.C. Wang, P.O.
Andersson, H. Wingfors, T. Rindzevicius, M.S. Schmidt, V.R. Soma, S.C. Xu,
Y.Q Li, A. Boisen and H.A. Wu, Hand-held
femtogram detection of hazardous picric acid with hydrophobic Ag nanopillar
SERS substrates and mechanism of elasto-capillarity. ACS Sensors, 2017. 2(2): p. 198-202. (http://dx.doi.org/10.1021/acssensors.6b00749) 81. Zhong, H.K., J. Xia, F.C.
Wang, H.S. Chen, H.A. Wu and S.S. Lin*, Graphene-piezoelectric
material heterostructure for harvesting energy from water flow. Advanced
Functional Materials, 2017. 27(5):
p. 1604226. (http://dx.doi.org/10.1002/adfm.201604226) 80. Chen, J., F.C. Wang*, H. Liu
and H.A. Wu, Molecular mechanism of
adsorption/desorption hysteresis: dynamics of shale gas in nanopores.
Science China: Physics, Mechanics & Astronomy, 2017. 60(1): p. 014611. (http://dx.doi.org/10.1007/s11433-016-0335-5) 79. Wu, F.C., P. Wang, X.Y. Liu
and H.A. Wu*, Radiation damage in
gallium-stabilized δ-plutonium with helium bubbles. Journal of Nuclear
Materials, 2017. 484: p. 7-15. (http://dx.doi.org/10.1016/j.jnucmat.2016.11.018) C.04 刘晓毅,王奉超,吴恒安.石墨烯及其复合材料纳米力学研究进展[J].固体力学学报(约稿),2016,37(05):398-420.pdf C.03 吴凤超,刘晓毅,吴恒安.δ相钚镓合金的结构稳定性与力学特性[J].科学通报(约稿),2016,61(20):2207-2215.pdf C.02 赵天武,申永宽,陈杰,刘闯,刘合,吴恒安.页岩裂缝系统产量预测的敏感性研究[J].应用数学和力学(编委供稿),2016,37(07):718-728.pdf 78. Li, Y.Q., H.A. Wu and F.C.
Wang*, Effect of a Single Nanoparticle
on the Contact Line Motion. Langmuir, 2016. 32(48): p. 12676-12685. (http://dx.doi.org/10.1021/acs.langmuir.6b03595) 77. Sun, X.H., H.A. Wu* and R.
Long*, Thermomechanics of a temperature
sensitive covalent adaptable polymer with bond exchange reactions. Soft
Matter, 2016. 12(43): p.
8847-8860. (http://dx.doi.org/10.1039/C6SM01857B) 76. Radha, B.*, A. Esfandiar,
F.C. Wang*, A.P. Rooney, K. Gopinadhan, A. Keerthi, A. Mishchenko, A.
Janardanan, P. Blake, L. Fumagalli, M. Lozada-Hidalgo, S. Garaj, S.J. Haigh,
I.V. Grigorieva, H.A. Wu and A.K. Geim*, Molecular
transport through capillaries made with atomic-scale precision. Nature,
2016. 538(7624): p. 222-225. (http://dx.doi.org/10.1038/nature19363) 75. Gao, H.L.#, Y.B. Zhu#, L.B.
Mao, F.C. Wang, X.S. Luo, Y.Y. Liu, Y. Lu, Z. Pan, J. Ge, W. Shen, Y.R.
Zheng, L. Xu, L.J. Wang, W.H. Xu, H.A. Wu* and S.H. Yu*, Super-elastic and fatigue resistant carbon material with lamellar
multi-arch microstructure. Nature Communications, 2016. 7: p. 12920. (http://dx.doi.org/10.1038/ncomms12920) 74. Zhu, Y.B., F.C. Wang, J. Bai,
X.C. Zeng* and H.A. Wu*, AB-stacked
square-like bilayer ice in graphene nanocapillaries. Physical Chemistry
Chemical Physics, 2016. 18(32): p.
22039-22046. (http://dx.doi.org/10.1039/C6CP03061K) 73. Zhu, Y.B., F.C. Wang* and
H.A. Wu, Buckling failure of square
ice-nanotube arrays constrained in graphene nanocapillaries. Journal of
Chemical Physics, 2016. 145(5): p.
054704. (http://dx.doi.org/10.1063/1.4959902) 72. Liu, X.Y., F.C. Wang*, W.Q.
Wang* and H.A. Wu, Interfacial
strengthening and self-healing effect in graphene-copper nanolayered
composites under shear deformation. Carbon, 2016. 107: p. 680-688. (http://dx.doi.org/10.1016/j.carbon.2016.06.071) 71. Shi, F., X.L. Wang, C. Liu,
H. Liu and H.A. Wu*, A coupled extended
finite element approach for modeling hydraulic fracturing in consideration of
proppant. Journal of Natural Gas Science and Engineering, 2016. 33: p. 885-897. (http://dx.doi.org/10.1016/j.jngse.2016.06.031) 70. Xia, J., X.Y. Liu, W. Zhou,
F.C. Wang and H.A. Wu*, Transformation between
divacancy defects induced by an energy pulse in graphene. Nanotechnology,
2016. 27(27): p. 274004. (http://dx.doi.org/10.1088/0957-4484/27/27/274004) 69. Wang, X.L., F. Shi, H. Liu
and H.A. Wu*, Numerical simulation of
hydraulic fracturing in orthotropic formation based on the extended finite
element method. Journal of Natural Gas Science and Engineering, 2016. 33: p. 56-69. (http://dx.doi.org/10.1016/j.jngse.2016.05.001) 68. Zhu, Y.B., F.C. Wang*, J.
Bai, X.C. Zeng* and H.A. Wu, Formation
of Trilayer Ices in Graphene Nanocapillaries under High Lateral Pressure.
Journal of Physical Chemistry C, 2016. 120(15):
p. 8109-8115. (http://dx.doi.org/10.1021/acs.jpcc.6b00258) 67. Zhao, Y.L., J. Yao, L. Xu,
M.N. Mankin, Y.B. Zhu, H.A. Wu, L.Q. Mai, Q.J. Zhang and C.M. Lieber*, Shape-controlled deterministic assembly of
nanowires. Nano Letters, 2016. 16(4):
p. 2644-2650. (http://dx.doi.org/10.1021/acs.nanolett.6b00292) 66. Cai, Y., J.Y. Huang, H.A.
Wu*, M.H. Zhu, W.A. Goddard and S.N. Luo*, Tensile strength of liquids: equivalence of temporal and spatial
scales in cavitation. Journal of Physical Chemistry Letters, 2016. 7(5): p. 806-810. (http://dx.doi.org/10.1021/acs.jpclett.5b02798) 65. Wang, X.L., C. Liu, H. Wang,
H. Liu and H.A. Wu*, Comparison of consecutive
and alternate hydraulic fracturing in horizontal wells using XFEM-based
cohesive zone method. Journal of Petroleum Science and Engineering, 2016.
143: p. 14-25. (http://dx.doi.org/10.1016/j.petrol.2016.02.014) 64. Li, Y.Q., H.A. Wu and F.C.
Wang*, Stagnation
of a droplet on a conical substrate determined by the critical curvature
ratio. Journal of Physics D: Applied Physics, 2016. 49(8): p. 085304. (http://dx.doi.org/10.1088/0022-3727/49/8/085304) 63. Liu, C., X.L. Wang, D.W.
Deng, Y.P. Zhang, Y.G. Zhang, H.A. Wu* and H. Liu*, Optimal spacing of sequential and simultaneous fracturing in
horizontal well. Journal of Natural Gas Science and Engineering, 2016. 29: p. 329-336. (http://dx.doi.org/10.1016/j.jngse.2016.01.024) 62. Zhang, S.J., S.S. Lin*, X.Q.
Li, X.Y. Liu, H.A. Wu, W.L. Xu, P. Wang, Z.Q. Wu, H.K. Zhong and Z.J. Xu, Opening the band gap of graphene through
silicon doping for the improved performance of graphene/GaAs heterojunction
solar cells. Nanoscale, 2016. 8(1):
p. 226-232. (http://dx.doi.org/10.1039/C5NR06345K) 61. Wu, H.A.* and X.Y. Liu, Tuning electromechanics of dynamic ripple
pattern in graphene monolayer. Carbon, 2016. 98: p. 510-518. (http://dx.doi.org/10.1016/j.carbon.2015.11.010) 60. Wang, L.Y., H.A. Wu and F.C.
Wang*, Efficient transport of droplet
sandwiched between saw-tooth plates. Journal of Colloid and Interface
Science, 2016. 462: p. 280–287. (http://dx.doi.org/10.1016/j.jcis.2015.09.071) C.01 王奉超,吴恒安.石墨烯类二维材料的质子输运特性[J].物理(约稿),2015,44(07):453-455.pdf 59. Zhu, Y.B., F.C. Wang, J. Bai,
X.C. Zeng* and H.A. Wu*, Compression
limit of two-dimensional water constrained in graphene nanocapillaries.
ACS Nano, 2015. 9(12): p.
12197–12204. (http://dx.doi.org/10.1021/acsnano.5b06572) 58. Shen, Y.K., H. Liu, H. Wang
and H.A. Wu*, Wellbore instability
induced by alternating water injection and well washing with an
elasto-plastic erosion model. Journal of Natural Gas Science and
Engineering, 2015. 27: p.
1863-1870. (http://dx.doi.org/10.1016/j.jngse.2015.11.016) 57. Wang, F.C. and H.A. Wu*, Molecular origin of contact line
stick-slip motion during droplet evaporation. Scientific Reports, 2015. 5: p. 17521. (http://dx.doi.org/10.1038/srep17521) 56. Liu, X.Y., F.C. Wang* and
H.A. Wu, Anomalous twisting strength of
tilt grain boundaries in armchair graphene nanoribbons. Physical
Chemistry Chemical Physics, 2015. 17(47):
p. 31911-31916. (http://dx.doi.org/10.1039/c5cp04343c) 55. Lin, S.S.*, S.J. Zhang, X.Q.
Li, W.L. Xu, X.D. Pi, X.Y. Liu, F.C. Wang, H.A. Wu* and H.S. Chen, Quasi-two-dimensional SiC and SiC2:
interaction of silicon and carbon at atomic thin lattice plane. Journal
of Physical Chemistry C, 2015. 119(34):
p. 19772-19779. (http://dx.doi.org/10.1021/acs.jpcc.5b04113) 54. Cai, Y., L. Wang, H.A. Wu*,
M.H. Zhu*, C.L. Liu and S.N. Luo*, Homogeneous
crystal nucleation in liquid copper under quasi-isentropic compression.
Physical Review B, 2015. 92(1): p.
014108. (http://dx.doi.org/10.1103/PhysRevB.92.014108) 53. Wang, H., H. Liu*, H.A. Wu
and X.X. Wang, A 3D numerical model for
studying the effect of interface shear failure on hydraulic fracture height
containment. Journal of Petroleum Science and Engineering, 2015. 133: p. 280-284. (http://dx.doi.org/10.1016/j.petrol.2015.06.016) 52. Wu, H.A.*, J. Chen and H.
Liu, Molecular dynamics simulations
about adsorption and displacement of methane in carbon nanochannels.
Journal of Physical Chemistry C, 2015. 119(24): p. 13652-13657. (http://dx.doi.org/10.1021/acs.jpcc.5b02436) 51. Liu, C., H. Liu, Y.P. Zhang,
D.W. Deng and H.A. Wu*, Optimal spacing
of staged fracturing in horizontal shale-gas well. Journal of Petroleum
Science and Engineering, 2015. 132:
p. 86-93. (http://dx.doi.org/10.1016/j.petrol.2015.05.011) 50. Algara-Siller, G., O.
Lehtinen, F.C. Wang, R.R. Nair, U. Kaiser*, H.A. Wu*, A.K. Geim and I.V.
Grigorieva*, Square ice in graphene
nanocapillaries. Nature, 2015. 519(7544):
p. 443-445. (http://dx.doi.org/10.1038/nature14295) 49. Wei, Q.L., S.S. Tan, X.Y.
Liu, M.Y. Yan, F.C. Wang, Q.D. Li, Q.Y. An, R.M. Sun, K.N. Zhao, H.A. Wu and
L.Q. Mai*, Novel polygonal vanadium
oxide nanoscrolls as stable cathode for lithium storage. Advanced
Functional Materials, 2015. 25(12):
p. 1773-1779. (http://dx.doi.org/10.1002/adfm.201404311) 48. E, J.C., L. Wang, Y. Cai,
H.A. Wu* and S.N. Luo*, Crystallization
in supercooled liquid Cu: Homogeneous nucleation and growth. Journal of
Chemical Physics, 2015. 142(6): p.
064704. (http://dx.doi.org/10.1063/1.4907627) 47. Shen, Y.K., H. Liu, H. Wang,
J. Chen and H.A. Wu*, Initiation and
propagation of wormhole in unconsolidated rock matrix induced by long-term
water injection. Journal of Petroleum Science and Engineering, 2015. 127: p. 93-100. (http://dx.doi.org/10.1016/j.petrol.2015.01.032) 46. Liu,
X.Y., F.C. Wang and H.A. Wu*, Anisotropic
growth of buckling-driven wrinkles in graphene monolayer. Nanotechnology,
2015. 26(6): p. 065701. (Cover
paper) (http://dx.doi.org/10.1088/0957-4484/26/6/065701) 45. Li, Y.Q., F.C. Wang*, H. Liu
and H.A. Wu*, Nanoparticle-tuned
spreading behavior of nanofluid droplets on the solid substrate.
Microfluidics and Nanofluidics, 2015. 18(1):
p. 111-120. (http://dx.doi.org/10.1007/s10404-014-1422-y) 44. Chen, J., F.S. Wang, G.C.
Shi, G. Cao, Y. He, W.T. Ge, H. Liu* and H.A. Wu*, Finite element analysis for adhesive failure of progressive cavity
pump with stator of even thickness. Journal of Petroleum Science and
Engineering, 2015. 125: p.
146-153. (http://dx.doi.org/10.1016/j.petrol.2014.11.011) 43. Hu, S., M. Lozada-Hidalgo*,
F.C. Wang, A. Mishchenko, F. Schedin, R.R. Nail, E.W. Hill, D.W. Boukhvalov,
M.I. Katsnelson, R.A.W. Dryfe, I.V. Grigorieva, H.A. Wu* and A.K. Geim, Proton transport through one-atom-thick
crystals. Nature, 2014. 516(7530):
p. 227-230. (http://dx.doi.org/10.1038/nature14015) 42. Wang, L.Y., F.C. Wang*, F.Q.
Yang and H.A. Wu*, Molecular kinetic
theory of boundary slip on textured surfaces by molecular dynamics
simulations. Science China: Physics, Mechanics and Astronomy, 2014. 57 (11): p. 2152-2160. (http://dx.doi.org/10.1007/s11433-014-5586-y) 41. Zhao, Y.L.#, J.G. Feng#, X.
Liu#, F.C. Wang, L.F. Wang, C.W. Shi, L. Huang, X. Feng, X.Y. Chen, L. Xu,
M.Y. Yan, Q.J. Zhang, X.D. Bai, H.A. Wu* and L.Q. Mai*, Self-adaptive strain-relaxation optimization for high-energy lithium
storage material through crumpling of graphene. Nature Communications,
2014. 5: p. 4565. (http://dx.doi.org/10.1038/ncomms5565) 40. Liu, X.Y., F.C. Wang, H.A. Wu* and W.Q. Wang, Strengthening metal nanolaminates under
shock compression through dual effect of strong and weak graphene interface.
Applied Physics Letters, 2014. 104(23):
p. 231901. (http://dx.doi.org/10.1063/1.4882085) 39. Cai, Y., H.A. Wu* and S.N.
Luo*, Cavitation in a metallic liquid:
Homogeneous nucleation and growth of nanovoids. Journal of Chemical
Physics, 2014. 140(21): p. 214317.
(http://dx.doi.org/10.1063/1.4880960) 38. Liu, H.*, H. Wang, H.A. Wu
and X.X. Wang, A proppant settling
model and its application to the hydraulic fracturing process. Oil
Gas-European Magazine, 2014. 40(2):
p. 109-112. 37. Li, B., F.P. Zhao, H.A. Wu*
and S.N. Luo*, Microstructure effects
on shock-induced surface jetting. Journal of Applied Physics, 2014. 115(7): p. 073504. (http://dx.doi.org/10.1063/1.4865798) 36. Joshi, R.K., P. Carbone, F.C.
Wang, V.G. Kravets, Y. Su, I.V. Grigorieva, H.A. Wu, A.K. Geim* and R.R.
Nair*, Precise and ultrafast molecular
sieving through graphene oxide membranes. Science, 2014. 343(6172): p. 752-754. (http://dx.doi.org/10.1126/science.1245711) 35. Yan, M.Y.#, F.C. Wang#, C.H.
Han*, X.Y. Ma, X. Xu, Q.Y. An, L. Xu, C.J. Niu, Y.L. Zhao, X.C. Tian, P. Hu,
H.A. Wu* and L.Q. Mai*, Nanowire
templated semihollow bicontinuous graphene scrolls: designed construction,
mechanism, and enhanced energy storage performance. Journal of the
American Chemical Society, 2013. 135(48):
p. 18176-18182. (http://dx.doi.org/10.1021/ja409027s) 34. Cai, Y.,
F.P. Zhao, Q. An, H.A. Wu*, W. Goddard III and S.N. Luo*, Shock response of single crystal and
nanocrystalline pentaerythritol tetranitrate: implications to hotspot
formation in energetic materials. Journal of Chemical Physics, 2013. 139(16): p. 164704. (http://dx.doi.org/10.1063/1.4825400) 33. Wang, F.C.* and H.A. Wu, Molecular dynamics studies on spreading of
nanofluids promoted by nanoparticle adsorption on solid surface.
Theoretical & Applied Mechanics Letters, 2013. 3: p. 054006. (http://dx.doi.org/10.1063/2.1305406) 32. Liu, X.Y.,
F.C. Wang* and H.A. Wu*, Anisotropic
propagation and upper frequency limitation of terahertz waves in graphene.
Applied Physics Letters, 2013. 103(7):
p. 071904. (http://dx.doi.org/10.1063/1.4818683) 31. Chen, J., H. Liu, F.S. Wang,
G.C. Shi, G. Cao and H.A. Wu*, Numerical
prediction on volumetric efficiency of progressive cavity pump with
fluid-solid interaction model. Journal of Petroleum Science and
Engineering, 2013. 109: p. 12-17.
(http://dx.doi.org/10.1016/j.petrol.2013.08.019) 30. Zhao, F.P.,
H.A. Wu and S.N. Luo*, Microstructure
effects on shock response of Cu nanofoams. Journal of Applied Physics,
2013. 114(7): p. 073501. (http://dx.doi.org/10.1063/1.4818487) 29. Liu, X.Y., F.C. Wang, H. S. Park and
H.A. Wu*, Defecting controllability of
bombarding graphene with different energetic atoms via reactive force field
model. Journal of Applied Physics, 2013. 114(5): p. 054313. (http://dx.doi.org/10.1063/1.4817790) 28. Wang, F.C. and H.A. Wu*, Enhanced oil droplet detachment from solid
surfaces in charged nanoparticle suspensions. Soft Matter, 2013. 9(33): p. 7974-7980. (http://dx.doi.org/10.1039/C3SM51425K) 27. Zhou, X.Z., G.C. Shi, G. Cao,
C.L. Sun, Y. He, H. Liu and H.A. Wu*, Three dimensional dynamics simulation of
progressive cavity pump with stator of even thickness. Journal of Petroleum Science and
Engineering, 2013. 106: p. 71-76.
(http://dx.doi.org/10.1016/j.petrol.2013.04.014) 26. Wang, F.C. and H.A. Wu*, Pinning and depinning mechanism of the
contact line during evaporation of nano-droplets sessile on textured
surfaces. Soft Matter, 2013. 9(24):
p. 5703-5709. (http://dx.doi.org/10.1039/C3SM50530H) 25. Zhao, F.P., Q. An, B. Li,
H.A. Wu, W.A. Goddard III, and S.N. Luo*, Shock
response of a model structured nanofoam of Cu. Journal of Applied
Physics, 2013. 113(6): p. 063516. (http://dx.doi.org/10.1063/1.4791758) 22. Shen, Y.K. and H.A. Wu*, Interlayer shear effect on multilayer graphene subjected to bending.
Applied Physics Letters, 2012. 100(10):
p. 101909. (http://dx.doi.org/10.1063/1.3693390) 21.
Nair, R.R., H.A. Wu, P.N. Jayaram, I.V. Grigorieva, and A.K. Geim*, Unimpeded permeation of water through
helium-leak-tight graphene-based membranes. Science, 2012. 335(6067): p. 442-444. (http://dx.doi.org/10.1126/science.1211694) Note:
All journal papers published after 2012 are listed above, while only twenty
selected journal papers published before 2011 are listed below. 20.
Zhou, X.Z., H. Shen, and H.A. Wu*, Bio-optimum
prestress in actin filaments with a polygonal cytoskeleton model. Archive
of Applied Mechanics, 2011. 81(11):
p. 1651-1658. (http://dx.doi.org/10.1007/s00419-011-0508-1) 19.
Zhou, X.Z., F.P. Zhao, Z.H. Sun, and H.A. Wu*, The inverse problem of red blood cells deformed by optical tweezers.
International Journal of Computational Methods, 2011. 8(3): p. 483-492. (http://dx.doi.org/10.1142/s0219876211002654) 18. Jiang, L.G., H.A. Wu*, X.Z. Zhou, and X.X. Wang,
Coarse-grained molecular dynamics
simulation of a red blood cell. Chinese Physics Letters, 2010. 27(2): p. 028704. (http://dx.doi.org/10.1088/0256-307X/27/2/028704) 17. Zhang, G.M.*, H. Liu, J.
Zhang, H.A. Wu, and X.X. Wang, Three-dimensional
finite element simulation and parametric study for horizontal well hydraulic
fracture. Journal of Petroleum Science and Engineering, 2010. 72(3-4): p. 310-317. (http://dx.doi.org/10.1016/j.petrol.2010.03.032) 16. Qi, Z.N., F.P. Zhao, X.Z. Zhou, Z.H. Sun, H.S.
Park, and H.A. Wu*, A molecular
simulation analysis of producing monatomic carbon chains by stretching
ultranarrow graphene nanoribbons. Nanotechnology, 2010. 21(26): p. 265702. (http://dx.doi.org/10.1088/0957-4484/21/26/265702) 15. Cheng, Q., H.A. Wu*, Y. Wang, and X.X. Wang, Atomistic simulations of shock waves in
cubic silicon carbide. Computational Materials Science, 2009. 45(2): p. 419-422. (http://dx.doi.org/10.1016/j.commatsci.2008.10.020) 14. Cheng, Q., H.A. Wu*, Y. Wang, and X.X. Wang, Pseudoelasticity of Cu-Zr nanowires via
stress-induced martensitic phase transformations. Applied Physics
Letters, 2009. 95(2): p. 021911. (http://dx.doi.org/10.1063/1.3183584) 13. Sun, Z.H., X.X. Wang*, and H.A. Wu, Surface relaxation effect on the
distributions of energy and bulk stresses in the vicinity of Cu surface: An
embedded-atom method study. Journal of Applied Physics, 2008. 104(3): p. 033501. (http://dx.doi.org/10.1063/1.2958330) 12. Wu, H.A.* and X.X. Wang, An atomistic-continuum inhomogeneous material model for the elastic
bending of metal nanocantilevers. Advances in Engineering Software, 2008.
39(9): p. 764-769. (http://dx.doi.org/10.1016/j.advengsoft.2007.10.005) 11. Sun, Z.H., X.X. Wang*, A.K.
Soh, H.A. Wu, and Y. Wang, Bending of
nanoscale structures: Inconsistency between atomistic simulation and strain
gradient elasticity solution. Computational Materials Science, 2007. 40(1): p. 108-113. (http://dx.doi.org/10.1016/j.commatsci.2006.11.015) 10. Wu, H.A.*, R. Long, X.X. Wang, and F.C. Wang, Elastic interaction between a string of
cells and an individual cell. Chinese Physics Letters, 2007. 24(5): p. 1407-1409. (http://dx.doi.org/10.1088/0256-307X/24/5/078) 9. Wu, H.A.*, Z.H. Sun, Q. Cheng,
and X.X. Wang, Molecular mechanics
modelling and simulation of the adsorption-induced surface stress in
micro-nano-cantilever sensors. Journal of Physics Conference Series,
2007. 61: p. 1266-1270. (http://dx.doi.org/10.1088/1742-6596/61/1/250) 8. Wu, H.A.*, G.R. Liu, X. Han,
and X.X. Wang, An atomistic simulation
method combining molecular dynamics with finite element technique. Chaos
Solitons & Fractals, 2006. 30(4):
p. 791-796. (http://dx.doi.org/10.1016/j.chaos.2005.08.161) 7. Sun, Z.H., X.X. Wang*, A.K.
Soh, and H.A. Wu, On stress
calculations in atomistic simulations. Modelling and Simulation in
Materials Science and Engineering, 2006. 14(3):
p. 423-431. (http://dx.doi.org/10.1088/0965-0393/14/3/006) 6. Wu, H.A.*, Molecular dynamics study of the mechanics
of metal nanowires at finite temperature. European Journal of Mechanics
A-Solids, 2006. 25(2): p. 370-377. (http://dx.doi.org/10.1016/j.euromechsol.2005.11.008) 5.
Wu, H.A.*, Molecular dynamics study on
mechanics of metal nanowire. Mechanics Research Communications, 2006. 33(1): p. 9-16. (http://dx.doi.org/10.1016/j.mechrescom.2005.05.012) 4. Wang, Y., X.X. Wang*, X.G. Ni, and H.A. Wu, Simulation of the elastic response and the
buckling modes of single-walled carbon nanotubes. Computational Materials
Science, 2005. 32(2): p. 141-146. (http://dx.doi.org/10.1016/j.commatsci.2004.08.005) 3. Wu, H.A.*, Molecular
dynamics simulation of loading rate and surface effects on the elastic
bending behavior of metal nanorod. Computational Materials Science, 2004.
31(3-4): p. 287-291. (http://dx.doi.org/10.1016/j.commatsci.2004.03.017) 2. Wu, H.A.*, G.R. Liu, and J.S.
Wang, Atomistic and continuum
simulation on extension behaviour of single crystal with nano-holes.
Modelling and Simulation in Materials Science and Engineering, 2004. 12(2): p. 225-233. (http://dx.doi.org/10.1088/0965-0393/12/2/004) 1.
Wang, Y.*, X.G. Ni, X.X. Wang, and H.A. Wu, Effect of temperature on deformation of carbon nanotube under
compression. Chinese Physics, 2003. 12(9):
p. 1007-1010. (http://dx.doi.org/10.1088/1009-1963/12/9/315) |