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Abstract

A main characteristic of typical relaxor ferroelectrics distinguished from normal ferroelectric is the diffuse
phase transition (DPT), i.e. the dielectric constant slowly varies nearby the temperature of the dielectric peak.
DPT behavior can be well described by a modified Curie–Weiss formula. Dependence of the critical exponent
on the tunneling frequency has been investigated with the eight-potential-well order–disorder ferroelectric
model. For low tunneling frequency, the ferroelectric phase transition is of second-order and the system
conforms to the Curie–Weiss law. The critical exponent departs significantly from the Curie–Weiss value of
unity and increases with increasing tunneling frequency at the region of the first-order phase transition, which is
a typical diffuse phase transition behavior. Our work is useful for understanding the phenomena that some
normal ferroelectrics show pressure-induced crossover from normal ferroelectric to relaxor.
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Relaxor ferroelectrics have been extensively studied for more than 40 years since
Pb(Mg Nb )O (PMN) was synthesized by Smolenskii and Agranovska [1]. Besides a strong1 / 3 2 / 3 3

frequency dispersion of the dielectric properties, and an absence of macroscopic polarization at zero
electric field, the diffuse phase transition (DPT) is another typical characteristic of the relaxor
ferroelectric distinguished from normal ferroelectric: the dielectric constant varies slowly nearby the
temperature of the dielectric peak [2]. The temperature dependence of the dielectric constant does not
comply with the Curie–Weiss law. DPT behavior can be described by a modified Curie–Weiss

21 gformula, 1/e 2 1/e 5 c (T 2 T ) whenT . T , wherec is the diffuseness parameter andg is them m m

critical exponent. For relaxor ferroelectric, 1,g # 2. For example,g is equal to 1.66 for PMN and
1.76 for Pb(Zn Nb )O (PZN) [3]. Many normal ferroelectrics can be transformed into relaxors1 / 3 2 / 3 3

by doping [4–6] or pressure [7]. The critical exponentg is sensitive to doping or pressure. For
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example, the critical exponentg increases from 1.2 to 1.86 when increasing Ca content from 0.04 to
0.16 for Ba Ca TiO [4].12x x 4

In this paper, we investigated DPT behavior with the eight-potential-well ferroelectric model, which
has been recently proposed [8–10]. For the ferroelectrics such as PMN, the polar phase has trigonal
symmetry with point group 3m [11], which suggests that for each polar ion there are eight potential
wells along k111l-equivalent directions (as shown in Fig. 1). The Hamiltonian matrix of the
order–disorder system with eight potential wells is

V
]2E ? p 0 0 0 0 0 01 2

V
] 2E ?p 0 0 0 0 0 0 52

V ]0 0 2E ?p 0 0 0 02 2
V 
]0 0 2E ? p 0 0 0 062H 5 , (1) V

]0 0 0 0 2E ? p 0 03 2 
V
]0 0 0 0 2E ? p 0 072 

V
]0 0 0 0 0 0 2E ?p4 2 

V
]0 0 0 0 0 0 2E ?p8 2

where p is the dipole moment when an ion locates in welli (i 51,? ? ? ,8). p have the samei i

Fig. 1. The eightk111l-equivalent directions.
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magnitudep and their directions are along eightk111l-directions (see Fig. 1).V is the tunneling0

frequency. Only the tunneling between wells with opposite directions is considered here. Under the
mean field approximation, the polar interactions upon a certain ion may be represented by an
equivalent field, i.e.

J
]E5 kpl1E 1E , (2)2 ext ranp0

where kpl is the thermal average of the dipole moment andJ is the coupling energy, which comes
from the dipole interaction.E is the applied external electric field.E is the internal random fieldext ran

in the system, which originates from charged compositional fluctuations and the point charge defect,
etc. E is assumed to have the equal probability in any direction and a Guassian distribution inran

magnitude
2uE u1 ran

]]] ]]r(uE u)5 exp 2 , (3)] F Gran 22fs 2sœ e e

wheres is the distributive width. From Eqs. (1)–(3), the thermal average value of dipole momentse

kpl and the static dielectric constant can be calculated at any temperature. The phase transition
temperature, the overheated temperatureT or overcooled temperatureT , can be further determined1 2

on the basis of the thermal average value of dipole momentskpl.
Unchio et al. have shown that the critical exponentg, the important parameter denoting the

diffuseness, is insensitive to the frequency change [3]. Therefore, it is feasible to investigate the DPT
within the eight-potential-well ferroelectric model, in spite of that only the static dielectric constant
can be calculated in this case. In order to depict the plot of ln(1/´ 21/´ ) and ln(T 2 T ) by whichm m

the critical exponentg can be determined, firstly we must make sure whatT is (note: no dielectricm

peak exists for the calculated static dielectric constant). Herein, we take the overheated temperature
T asT for the following reasons: (i) Wheń is the static dielectric constant,T is just the freezing1 m m

temperatureT . The data of (v,T ) can be well fitted with the Vogel–Fulcher relationship [12]f m

Ea
]]]]v 5v exp 2 , (4)F G0 k (T 2 T )B m f

where T is the freezing temperature. ObviouslyT is equal toT when v 5 0. (ii) T could bef m f f

regarded as the overheated temperatureT to some extent, since the induced polar state should1

disappear nearbyT in the heating process.f

It is well known that in the two-direction pseudospin model [13], the phase transition is of the
second-order type if only the coupling of two spins is considered. Within the present model, however,
both the second- and first-order phase transitions can exist although only the coupling of two spins is
included. This is clearly shown from the dependence of the phase transition temperatures on the
tunneling frequency (Fig. 2). The system is sensitive to the tunneling frequency. The long-range order
can appear only whileV ,2J. The tricritical point between the second- and first-order phase
transitions is determined asV 5 0.56J and T 5 0.23J /k . When V .V , the overcooledtri tri B tri

temperatureT decreases rapidly with increasingV and vanishes atV 5 0.9J. For 0.9J ,V , 2J,2

the overcooled temperature is zero and consequently no macroscopic polarization can appear
spontaneously in a cooling process; the overheated temperatureT is a finite value, and thus the polar1
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Fig. 2. Phase transition temperatures (in units ofJ /k ) as functions of tunneling frequency when random field widthB

s 5 0.1J /p . The solid and dotted lines represent the overheated and the overcooked temperatures, respectively.e 0

state can be induced at low temperatures and will disappear atT in the heating process. This is1

qualitatively consistent with the dielectric properties of PMN, for which the zero-field depoling of an
induced state occurs at a certain temperature no matter what the induced polarization is [11].

The linear dependence of ln(1/´ 2 1/´ ) on ln(T 2T ) nearbyT is clearly shown in Fig. 3. Thism m m

shows that the dielectric constant can be well fitted with the modified Curie–Weiss formula. The slope
of the line (i.e. the critical exponentg ) increases with increasing tunneling frequencyV. The
dependence of the critical exponentg on the tunneling frequencyV is shown in Fig. 4. When
V , 0.5J, the critical exponentg.1, and the temperature dependence of the dielectric constant
complies well with the Curie–Weiss law. This is consistent with the second-order phase transition in
that tunneling frequency range.g is always larger than 1.0 for the first-order phase transition, which
has been observed in some ferroelectrics. For example, experimentally fitting valueg is equal to 1.08
for BaTiO [3]. WhenV .0.9J, no macroscopic polarization can appear spontaneously in a cooling3

process, and the calculated critical exponentg ( . 1.6) is consistent with experimental results of
typical relaxors such as PMN (g 51.64) and PZN (g 5 1.76), and exhibits a very strong dielectric
diffuseness. For 0.5J ,V , 0.9J, the critical exponentg increases quickly with enhancing tunneling
frequency V. The obvious dielectric diffuseness nearbyT and the spontaneous macroscopic1

polarization atT coexist atV ¯0.7J, which shows that a spontaneous relaxor-ferroelectric phase2

transition can occur during the temperature decreasing. The spontaneous relaxor-ferroelectric phase
transition has been observed in Pb(Sc Nb )O and Pb(Sc Ta )O [14]. The fact that the1 / 2 1 / 2 3 1 / 2 1 / 2 3

ferroelectric phase transition is of first-order in these materials also supports our results. Now we
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Fig. 3. The relation of ln(1 /́2 1/´ ) with ln(T 2 T ) at different tunneling frequency.m m

Fig. 4. The dependence of the critical exponentg on the tunneling frequency when the random field widths 50.1J /p .e 0
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know that, with increasing tunneling frequencyV, the system shows in sequence, the second-order
normal ferroelectric behavior, the first-order normal ferroelectric behavior, the coexistence of the
first-order ferroelectric behavior with relaxor behavior, and typical relaxor behavior. The tunneling
frequency V depends on the distance between the opposite directional potential well. Under
hydrostatic pressure, the distance will decrease, which leads to the increase of the tunneling frequency
V. Therefore, our results indicate a pressure-induced crossover from normal ferroelectric to relaxor,
which has been observed in some normal ferroelectrics [7,15,16].

The effect of random field on the critical exponentg is shown in Fig. 5 forV 50.35J. g decreases
monotonously with increasing random field. From the inset of Fig. 5, we can see that the overheated
and overcooled temperature curves do not intersect at any random fields width, which means that the
first-order phase transition could not transform into a second-order phase transition with increasing
random field width [9]. This is also supported by the curve of the critical exponentg : there is no
region where the critical exponentg is unity.

In conclusion, the tunneling frequency significantly influences the ferroelectric behavior. For low
tunneling frequency, the ferroelectric phase transition is of second-order and the system conforms to
the Curie–Weiss law. With increasing tunneling frequency, the critical exponentg departs sig-
nificantly from the Curie–Weiss value of unity and increases monotonously, which is a typical diffuse
phase transition behavior. Our work would be useful for understanding the phenomena that some
normal ferroelectrics show pressure-induced crossover from normal ferroelectric to relaxor since the
tunneling frequency increases with increasing pressure.

Fig. 5. The critical exponentg as functions of random field width when the tunneling frequencyV 5 0.7J. Inset shows the
dependence of the overheated and the overcooked temperatures on random field width. The solid and dished lines represent
the overheated and the overcooked temperatures, respectively.



Z. Wu et al. / Microelectronic Engineering 66 (2003) 676–682682

A cknowledgements

This work was supported by State Key program of Basic Research Development (Grant No.
G200067108) and the National Natural Science Foundation of China (Grant No. 59795920).

R eferences

[1] G.A. Smolenskii, A.I. Agranovskaya, Sov. Phys. Sol. State 1 (1959) 1429.
[2] L.E. Cross, Ferroelectrics 76 (1987) 241.
[3] K. Uchino, S. Nomura, Ferroelectrics Lett. 44 (1982) 55.
[4] V.S. Tiw, D. Pandey, J. Am. Ceram. Soc. 77 (1994) 1819.
[5] T.Y. Kim, H.M. Jang, Appl. Phys. Lett. 77 (2000) 3824.
[6] J. Zhi, A. Chen, P.M. Vilarinho, Y. Zhi, J.L. Baptista, Key. Eng. Mater. 132 (1997) 1187.
[7] G.A. Samara, E.L. Venturini, V.H. Schmidt, Appl. Phys. Lett. 76 (2000) 1327.
[8] Z.R. Liu, B.L. Gu, X.W. Zhang, Appl. Phys. Lett. 77 (2000) 3447;

Z.R. Liu, W.H. Duan, B.L. Gu, X.W. Zhang, Appl. Phys. Lett. 79 (2001) 1333.
[9] Z.Q. Wu, W.H. Duan, Z.R. Liu, B.L. Gu, X.W. Zhang, Phys. Rev. B 65 (2000) 174119.

[10] Z.R. Liu, W. Duan, B.L. Gu, X.W. Zhang, Europhys. Lett. 55 (2001) 1.
[11] Z.G. Ye, H. Schmid, Ferroelectrics 145 (1993) 83.
[12] D. Viehland, M. Wutting, L.E. Cross, Ferroelectrics 120 (1991) 71.
[13] R. Blinc, B. Zeks, Soft Modes in Ferroelectrics and Antiferroelectrics, North-Holland, Amsterdam, 1974.
[14] F. Chu, N. Setter, A.K. Tagantsev, J. Appl. Phys. 74 (1993) 5129.
[15] G.A. Samara, L.A. Boatner, Phys. Rev. B 61 (2000) 3889.
[16] G.A. Samara, Phys. Rev. Lett. 77 (1996) 314.


	Effect of tunneling frequency on relaxor behavior
	Acknowledgements
	References


