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We developed a method to calculate the anharmonic free energy without requiring any adjustable parameter.
The requisite computations are first-principles quasiharmonic calculations plus an additional Canonical �NVT�
ensemble first-principles molecular-dynamics simulation and, therefore, are affordable. The thermodynamic
properties of diamond and MgO at high temperature improve substantially after including the anharmonic free
energy.
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With the development of density-functional theory �DFT�
calculation, it is routine now to calculate the phonon density
of state of the materials.1 The free energy and hence thermo-
dynamic properties can be calculated by using quasihar-
monic approximation �QHA�, where the phonon frequency
only depends on the volume. Obviously, QHA ignores the
intrinsic phonon-phonon interaction, namely, anharmonicity,
which will lead to the pure temperature dependence of the
phonon frequency. Since the anharmonicity becomes promi-
nent at high temperature, DFT calculation combining QHA
will not be enough good to predict the high-temperature ther-
modynamic properties although it works well at relative low
temperature. For example, DFT calculation combining QHA
can predict a thermal expansion, one of the properties most
related to anharmonicity, much larger or smaller than the
experimental data at high temperature.2,3

Although anharmonicity has been widely studied, the cal-
culation of the anharmonic free energy is still not trivial.
Direct calculation by first-principles molecular-dynamics
�FPMD� simulation is very expensive even with recent
development.4 Most of other methods �see references in Ref.
5� inevitably need to introduce several adjustable parameters,
which are hard to determine either by experiment or by
theory. In order to combine smoothly with DFT calculation,
where no adjustable parameters are needed, a method with-
out requiring any adjustable parameter and with affordable
time will be highly preferred in calculating anharmonic free
energy.

Recently Wu and Wentzcovitch5 developed a method re-
quiring only an unknown constant C, which can be deter-
mined easily by comparing the thermodynamic properties
with the experimental data. The method produces the correct
high- and low-temperature behavior of the anharmonic free
energy. The thermodynamic properties of MgO from this
method agree excellently with the experimental data to sev-
eral thousand kelvin.5 Here we further developed a method
to calculate the constant C using the FPMD simulation. The
FPMD simulation in diamond and MgO directly confirmed
our previous assumption5 that C is volume- and temperature-
insensitive variable and can be assumed as constant. We are
able to determine C from one FPMD simulation and get the
volume and temperature dependence of the anharmonic free
energy. The thermodynamic properties of MgO and diamond
improve considerably after including the anharmonic free en-
ergy.

The temperature dependence of phonon frequency, the

consequence of the anharmonicity, is expressed in implicit
way in Wu and Wentzcovitch’s method,5

��V,T� = ��V�� , �1�

where � is the phonon frequency from the first-principles
calculations and � is the temperature-dependent phonon fre-
quency used in quasiharmonic formula of the free energy. �
is not the renormalized phonon frequency, which can be ap-
plied only in quasiharmonic entropy formula. The relation of
� with the renormalized phonon frequency was discussed in
Ref. 5. The temperature dependence of � is described by the
temperature dependence of V� at a fixed volume V,

V� = V�1 − C
�V − V0�

V0
� , �2�

where, C is a constant, V and V0 are the predicted quasihar-
monic volumes at high and zero temperature under the same
quasiharmonic pressure. V−V0 is the volume expansion
caused by temperature at the pressure P. The two features of
the anharmonicity, the anharmonicty �I� increases with tem-
perature, and �II� decreases with pressure, are embodied in
the term �V−V0� /V0. This is why the method works well
while there is only one constant C.5 The anharmonic free
energy Fanh is easily found to be

Fanh�V,T� = �FH�V�,T� − U0�V��� − �FH�V,T� − U0�V�� ,

�3�

where FH is quasiharmonic Helmholtz free energy and U0 is
internal static energy with

FH�V,T� − U0�V� =
1

2�
q,j

��q,j�V� + kBT�
q,j

�ln�1 − exp�− ��q,j�V�/kBT�	 . �4�

The anharmonic free energy can also be calculated
through the molecular-dynamics simulation by the thermody-
namic integration,
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Fanh�V,T�
�N − 1�kBT

= − 

0

T dT�

T�
� ��U�T�,V�� − U0�V�� − ��Uqh�T�,V�� − U0�V��

�N − 1�kBT�
� , �5�

where U0�V� is the minimal potential energy, U�T� ,V� is the
potential energy at temperature T�, and Uqh�T� ,V� is the po-
tential energy in QHA at temperature T�. The brackets refer
to ensemble average. Taking derivative with respect to tem-
perature and using high-temperature relation for the har-
monic oscillator, �Uqh�T ,V��−U0�V�=1.5�N−1�kBT, we
have

�
Fanh�V,T�
�N − 1�kBT

�T
= −

A

T
�6�

with

A = � ��U�T,V�� − U0�V��
�N − 1�kBT

−
3

2
� �7�

at the high temperature. A can be calculated from one NVT
ensemble FPMD simulation and further used to determine C
through Eqs. �3�–�6�. We are also able to check our assump-
tion that C is volume and temperature independence by con-
ducting FPMD simulations at various temperatures and vol-
umes. Two cases that we test show that C is volume and
temperature insensitive. This means that one can get the vol-
ume and temperature dependence of the anharmonic free en-
ergy with only one NVT ensemble FPMD simulation.

Computations were performed using QUANTUM ESPRESSO,
a package based on DFT, plane wave, and pseudopotential.6

The quasiharmonic calculations of periclase, which the cur-
rent calculations are based on, have been published earlier.2,7

The local-density approximation was used in the calcula-
tions. The pseudopotential for magnesium was generated by
the method of von Barth and Car while that for oxygen was
generated by the method of Troullier and Martins.8 The
pseudopotential for carbon was generated by the method of
Vanderbilt ultrasoft pseudopotential.9 The plane-wave cutoff
energy is 70 Ry and 40 Ry for pericalse and diamond, re-
spectively. Brillouin-zone summations over electronic states

were performed over 4�4�4 �10 points� k mesh with �1/
2,1/2,1/2� shift from origin. Dynamical matrices were com-
puted on 4�4�4 q mesh using density-functional perturba-
tion theory1 and then interpolated in a regular 12�12�12 q
mesh to obtain the vibrational density of state for periclase
and diamond, respectively.

FPMD were performed in the cubic cell with 64 atoms for
both periclase and diamond with the same pseudopotential,
exchange-correlation functional, and cutoff energy as QHA
calculations. The temperature is controlled by Andersen
method.10 For each simulation, the first 1.5 ps simulation is
used to evolve the system into the equilibration and another
3 ps simulation is found to be enough long to get the en-
semble average. For example, A is almost unchanged �from
0.0353 to 0.0356� when we double the simulation time for
diamond at volume 9.26 Å3 /cell with time step 1 fs

A �see Eq. �7�� is very sensitive to the ensemble average.
1 meV/atom difference in potential energy, which is usually
acceptable for yielding the good dynamic, leads to the dif-
ference in A about 0.008. Therefore A can be dramatically
affected by time step dt. Convergence check for dt was
shown in Fig. 1. For diamond, 1 fs is enough to get the
convergence result for volume at 11.04 Å3 /cell. However a
smaller time step than 1 fs might be needed for smaller vol-

FIG. 1. �Color online� The dependence of A �see Eq. �7�� on
time step dt at various volumes for diamond at 2000 K.

(a)

(b)

FIG. 2. �Color online� The dependence of A �see Eq. �7�� on
volume at various temperatures for �a� diamond and �b� MgO. Re-
sults from FPMD simulation are shown in open squares with the
errors.
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ume. For example, a time step 0.25 fs is required to get
convergence result for volume at 9.26 Å3 /cell. Therefore,
we should always check dt because a large dt can lead to a
significant overestimation of A.

In Eq. �2� we assumed that volume and temperature de-
pendence of the anharmonicity can be well described by term
�V−V0� /V0 and C is a volume- and temperature-independent
constant. The assumption is supported by several facts:5 �1�
the systematic improvement in thermodynamic properties of
MgO and Mg2SiO4, �2� the correct low- and high-
temperature behavior of the anharmonic free energy, and �3�
the nonlinear temperature dependence of the phonon fre-
quency at low temperature and the linear temperature depen-
dence of the phonon frequency at high temperature, which
has been observed by the Raman experiments.11,12 FPMD
simulation here further confirmed directly that C is volume
and temperature insensitive. As shown in Fig. 2, the calcu-
lated A with C=−0.5 for diamond are in good consistence
with FPMD simulation results at various volumes and tem-
peratures. This is also true for MgO. C for MgO determined
by FPMD is 0.07 with uncertainty about �0.04. This value is
close to 0.1, a value derived from the experimental data and
within the uncertainty of FPMD result. The anharmonic free
energy at 18.68 Å3 /cell and 2000 K for MgO with C=0.7,
0.7 J/mol, agrees with Oganov and Dorogokupets’s
molecular-dynamics simulation result.13 All of these results
clear indicated that Eq. �2� does capture the essence of the
anharmonic free energy. Now we are able to get the C and
further the volume and temperature dependence of the anhar-
monic free energy from first-principles QHA calculations

and one NVT ensemble FPMD simulation. Namely, we de-
veloped a method to calculate the anharmonic free energy
from first-principles calculations with affordable computa-
tion time.

Thermodynamic properties of diamond and MgO are
shown in Figs. 3 and 4, respectively. QHA results are con-
sistent with the previous calculations.2,3,7 The thermody-
namic properties agree well with the experimental data at
relative low temperature. But at high temperature, QHA sig-
nificantly underestimates the thermodynamic properties of
diamond, while it overestimates the thermodynamic proper-
ties of MgO. We had known in Ref. 5 that the calculated
thermodynamic properties of MgO with C=0.1 agree excel-
lently with the experimental data up to the highest tempera-
ture measured. Using the C derived from FPMD, 0.07, we
are able to dramatically reduce the discrepancies in thermo-
dynamic properties of MgO between the calculated result
and the experimental data although we cannot remove com-
pletely the systematic deviations. For diamond, anharmonic
correction improves significantly the thermodynamic proper-

FIG. 3. �Color online� Thermodynamic properties of diamond at
0 GPa �c=0 correspond to QHA�. �a� The heat capacity at the
constant pressure and �b� the thermal expansion. Experimental data
shown in open circles and solid squares are from Refs. 14 and 15,
respectively. The results from path integral Monte Carlo simulation
�Ref. 16� are shown in open squares.

FIG. 4. �Color online� Thermodynamic properties of MgO
�c=0 correspond to QHA�. �a� The thermal Grüneisen parameter,
�b� the heat capacity at the constant pressure, and �c� the thermal
expansion. Experimental data shown in solid circles and solid
squares are from Refs. 17 and 18, respectively. Results from
molecular-dynamics simulation �Ref. 19� are shown in dotted lines.
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ties. After correction, there are no systematic deviations be-
tween the calculated and measured heat capacity up to the
highest temperature measured. Although the difference be-
tween the calculated and the measured thermal expansion is
still large at T�1200 K, the calculated thermal expansion of
diamond is in good consistence with the path integral Monte
Carlo simulation results16 up to 3000 K.

The materials can be divided into two types based on their
anharmonicity. Those like MgO have the positive C and the
positive anharmonic free energy. Their heat capacity at con-
stant volume, CV, is always below the Dulong-Petit limit. On
the contrary, those like diamond have the negative C and the
negative anharmonic free energy. Their CV can crossover the
Dulong-Petit limit at the certain temperature. Since the an-
harmonic free energy can be negative and positive, we can
expect that the anharmonic free energy may be able to sig-
nificantly affect the phase boundary especially in the case
that the anharmonic free energy is positive at one phase and
negative at another phase.

In summary, our assumption that the volume and tempera-
ture dependence of the anharmonicity can be well described
by Eq. �2� with a constant C is confirmed by FPMD simula-
tion in diamond and MgO. C can be determined with only
one NVT ensemble FPMD simulation. Therefore, the anhar-
monic free energy can be obtained from first-principles cal-
culation with the affordable computation time. The anhar-
monic free energy can be negative or positive, which may
cause a noticeable effect on the phase boundary for some
materials. Thermodynamic properties of diamond and MgO
improve significantly at high temperature after including the
anharmonic free energy.

The author thanks Renata Wentzcovitch for useful discus-
sion. Computations were performed at University of South-
ern California using the 52.4 teraflops Linux cluster at the
Research Computing Facility.
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