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The particle migration and coalescence (PMC) kinetics of a supported metal are the main deactivation mechanisms restricting the
successful industrialization of nanoparticles, but the theoretical insights regarding these kinetics are lacking. One key issue is the
lack of a physical model to predict the effects of metal-support interaction (MSI) on PMC kinetics. In this paper, we report a
theoretical study of PMC kinetics and their dependence on MSI. A new particle diffusion model is proposed based on the surface
premelting hypothesis that considers the contact angle of a hemispherical particle on the support. Enhanced MSI suppresses
PMC by increasing the radius of curvature and the interfacial adhesion energy, even though the accompanying reduction in the
geometry factor partially promotes PMC kinetics. The increased surface energy increases the chemical potential of the atoms in
the particle, which is conducive to PMC; an increased surface energy also results in enhanced MSI, which suppresses PMC. The
competition between these two contradictory effects leads to a critical contact angle where the surface energy has no influence on
the diffusion and resulting PMC kinetics. The proposed diffusion theory mode lincluding the effects of the support and the
corresponding kinetic simulations, shed light onto the support-dependence of PMC kinetics and provide a foundation for further
optimization and design of supported particles with better stability.
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1 Introduction

The migration and coalescence process for particles across a
support surface is of great importance to a variety of fields,
including the thermal management of microelectronic de-
vices and many self-assembly and filtration processes,
especially nanocatalyst sintering [1–7]. Theoretical work has
been performed to try to understand the support-dependence
of supported particle sintering kinetics. Two distinct metal-
support interactions, namely, the metal particle-support in-
teraction and the metal atom-support interaction, are differ-
entiated. Though the strong metal particle-support interac-

tion stabilizes the supported particles, the strong metal atom-
support interaction lowers the total activation energy and
dramatically decreases the Ostwald ripening onset tempera-
ture and half-life [8]. The support showed significant mod-
ulation effects on improving the dispersion [9],
electrocatalysis activity [10] and interaction strength [11] of
single metal atoms. Density functional theory (DFT) calcu-
lations provided direct insights into the strong metal-support
interaction (SMSI) [12,13], explaining the increased sinter-
ing resistance of nanoparticles supported on a two-compo-
sition oxide [12]. Molecular dynamics and reactive force
field simulations can model metal-support interactions (MSI)
with increasing accuracy and thus yield detailed insights into
the dynamic behavior of metal particles supported on dif-
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ferent substrates [14]. On an ideal flat surface, the diffusion
of a nanodroplet remarkably depends on the contact angle
according to molecular dynamics simulation [15]. Increasing
the MSI is believed to be helpful in suppressing the diffusion
of supported particles, improving the sintering resistance
[2,16–21]. However, systematic theoretical study of metal-
support interaction-dependent particle migration and coa-
lescence (PMC) kinetics has not yet been reported.
The nanoparticle diffusion determines the coalescence rate

of the nanoparticles on the support, which is essential for
improving the sintering resistance for industrial applications
[22–24]. Many particle diffusion mechanisms were in-
vestigated under the limitations of very weak or extremely
strong interactions. For weak interactions, the supported
particles diffuse in various ways, including rotating, rolling,
sliding, sticking and so-called “Lévy-flight”, where the
particle has an almost spherical shape without any apparent
contact or wetting on the support surface [25–35]. In the
strong case, the supported particles exist in two-dimensional
islands. An island migrates by means of the random dis-
placement of its center of mass caused by the fluctuations in
its shape. The fluctuations are induced by three processes:
the evaporation and condensation of atoms on the border, the
migration of atom vacancies across the island, and the dif-
fusion of atoms along the edge [15,36–40]. However, a
particle diffusion model able to consistently describe 3D de-
wetting particles and 2D wetting islands doesn’t yet exist.
The key issues arise not only from the complexity in de-
scribing the collective cooperative motion of a number of
atoms but also from the impacts of various factors, including
the particle morphology [41], surface composition [41–43],
wetting behavior [44,45], substrate surface reconstruction,
defects [46–48], reactants [49,50], impurities [51] and sup-
port heterogeneity [52–56].
The diffusion theoretical models commonly referenced are

based on the work of Gruber [57] regarding the diffusion
behavior of a spherical bubble in a bulk material. Willertz et
al. [58] realized that the rate of bubble motion may not be
limited by the motion of atoms across the bubble surface but
by the rate at which atoms leave their positions in the lattice
and become mobile on the bubble surface. Thus, it is pro-
posed that the rate of motion of a faceted bubble is de-
termined by the frequency of the nucleation of steps or
“pillboxes” on the faceted surface, instead of the time re-
quired for atoms to move from a step on one side of the
bubble to another step on the other side. The nucleation
frequency determines the rate of bubble motion, and a nu-
cleation step is required to form new atomic layers on the
surfaces of faceted bubbles.
Using a similar idea, Morgenstern et al. [59] and Khare et

al. [60] proposed a theoretical model describing the motion
of a two-dimensional vacancy island on Ag(111). Jak et al.
[61] introduced the dependence of the nanoparticle surface

atom density on the particle size. An extra parameter k was
formally introduced to represent the effects of the density
and the type of defects on the support surface. It is assumed
that k depends on the interaction strength of the defects with
the particles without any further specific developments [46].
Behafarid et al. [62] believed that the failure to include the
support effects in diffusion models resulted in the dis-
crepancies between the simulated and experimental results.
Mechanistic application of the Gruber diffusion model

without any improvements eventually leads to a nanoparticle
diffusion rate that is independent of the supports [46,61–63],
which is obviously not reasonable. Thus, a diffusion model
needs to be developed for a supported particle with a contact
angle α on a support that considers the contribution from the
metal-support interactions to the diffusion behavior. For a
given particle volume, the contact angle α determines the
length of the contact perimeter between the particle and the
support, which to a certain extent reflects the capability of
transferring atoms at one time; on the other hand, the contact
angle also affects the tendency of the chemical potential of
the atoms in the supported particle to vary with size when the
support changes [2]. In this paper, a new particle diffusion
model based on the surface premelting [64,65] phenomenon
and the Nernst-Einstein relation [66] is presented. The sup-
port-dependence of the migration and the resulting coales-
cence kinetics of supported particles are studied by
numerically simulating the Smoluchowski ripening process
[67,68].

2 Derivation of the diffusion coefficient

The diffusion coefficient of a supported particle that rea-
sonably includes the support-dependence is the key to si-
mulate the PMC kinetics. The particle is not entirely
spherical but is more likely hemispherical due to the sitting
on the support and the exposure of part of the particle to
vacuum. The influence of the interfacial interaction between
the particle and its support should be inherently included.
When the temperature reaches a certain level, the surface

atoms of the supported particle premelt and randomly flow
(so-called surface premelting [64,65]), so the particle as a
whole moves randomly in a Brownian fashion on the support
surface [69,70]. As shown in Figure 1, in the premelting
state, the subsurface atoms move toward the surface of the
particle and easily migrate on the surface and vice versa.
With the flow of atoms on the particle surface, any in-
finitesimal net force breaks the regular tidal fluctuation and
leads to a net displacement. The particle as a whole can even
randomly diffuse provided that the atoms flow energetically
enough on the particle surface, i.e., their diffusion length
(Dst)

1/2 is comparable to the particle diameter 2r, where Ds is
the diffusion coefficient of the surface atom, r is the radius of
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curvature of the particle, and t is the characteristic diffusion
time. At an elevated temperature, the transient accumulation
of the atoms on one side of the particle due to random
fluctuations causes its center of mass to move by one atomic
distance. These events, randomly repeated many times, drive
the Brownian motion of the particle. According to this par-
ticle diffusion mechanism, at the atomic level, any motion of
an atom contributes to the small lateral displacement of the
particle center of mass. The magnitude of this contribution
heavily depends on the orientation of the atom on the particle
surface [59,60].
The migration velocity of a hemispherical particle due to

the random fluctuation of its surface atoms can be calculated
by assuming a fictitious driving force F. The force can be
considered to be a sum of the forces f applied to the in-
dividual atoms constituting the particle. The Nernst-Einstein
relation [66] indicates that if the driving force F is exerted on
the particle, the instantaneous moving velocity of the particle
V is proportional to the diffusion coefficient of the particle D
and can be represented as

V D kTF= / . (1)

We assume that the particle is a spherical cap with a radius
of curvature r and a contact angle α (Figure 1). The atoms
inside the particle do not contribute to the overall migration
of the particle. The atoms in contact with the support do not
instantly move relative to the support. Only the surface
atoms move along the x-axis direction, driven by the force f,
which is the atomic component of the instantaneous force F.
The flux js due to the flow of atoms across the unit length on
the surface is the product of the surface atom density Cp and
the moving velocity V, which is shown in eq. (1) [66]. This
flux is

j C V C D f kT= = / , (2)s p p s

where Ds is the atomic diffusion coefficient on the particle
surface, k is the Boltzmann constant, T is the temperature, Cp

is the surface atom density, and f is the component of force F
acting on the individual atom. The projection component of
the force f along the azimuth direction ϕ is fϕ = fsinϕ. The
component along the elevation θ is fθ = fcosϕcosθ. The rate at
which a surface atom moves along the direction normal to
the surface is equal to the rate of the change in volume per
unit area. Mathematically, the instantaneous rate v ( , ) of
the surface atoms driven by f can be represented by the
product of the atom volume Ω and the negative divergence of
the atomic flux. The unit area is represented by a patch of the
surface between a constant azimuth ϕ of width rsinθΔϕ and a
constant elevation θ of width rΔθ. The product of the flux per
unit length and the line segment length rΔθ gives the flux
entering the patch by crossing the line at the amplitude ϕ+Δϕ

j C D f r kT= sin( + ) / . (3)+
p s

The flux leaving the patch by crossing the line at ϕ is

j C D f r kT= sin / . (4)p s

Similarly, the product of the flux per unit length and the
line segment length rsinθΔϕ gives the flux entering the patch
by crossing the line at the elevation θ

j C D f r kT= cos cos sin / . (5)+
p s

The flux leaving the patch by crossing the line at θ is

j C D f r kT= cos cos( + ) sin( + ) / . (6)p s

Since the area of the patch is r2sinθΔϕΔθ, the migration
rate of the atoms along the direction normal to the surface in
the unit surface area, i.e., the divergence of the flux, is

v t
j j j j

r
C D f kTr

( , ) = d ( , )
d

= lim
( ) + ( )

sin
= 2 cos sin / , (7)

0

+ +

2

p s

where j C D f kT= sin /p s is the projection component of
the atomic flux along the azimuth ϕ.

j C D f kT= cos cos /p s is the projection component of
the flux along the elevation θ.
The force f on a surface atom is related to the equivalent

force F on the particle by considering the work done by the
force F in moving the particle a distance l [57]. This work
(Fl) is equivalent to the work done by the force f in moving
all the atoms in the particle a distance lwith the atom number

r4 / 33
1 in the opposite direction, where the volume

factor = (2 3cos (cos ) ) / 41
3 . It follows that

f F r= 3 / 4 . (8)3
1

Figure 1 (Color online) A schematic figure representing the diffusion
model of a supported nanoparticle. The Cartesian coordinate system is set
so that x-axis runs along the direction of the fictitious force f, which is
randomly selected parallel to the support surface, and the z-axis is per-
pendicular to the support surface. α is the contact angle of the particle. The
square blue patch is the surface unit area corresponding to the elevation θ
and the azimuth ϕ in spherical coordinates. fϕ, fNϕ, fr, and fθ are the projected
components along the azimuth direction, the direction normal to the azi-
muth direction, the radial direction, and the elevation direction, respec-
tively. fϕ, fNϕ and the force f are in the same plane parallel to the xy plane,
and fNϕ, fr, and fθ are in the same plane defined by the r-direction and the z-
axis.
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By substituting eq. (8) into eq. (7), we obtain

v
C D
kTr r F( , ) =

2 3
4 cos sin . (9)p s

3
1

Regardless of the contact angle α, the azimuth ϕ and ele-
vation θ in eq. (9) vary from 0 to 2π and 0 to π, respectively.
The velocity v of the surface atoms normal to the surface is
highly dependent on the azimuth ϕ and elevation θ. This
velocity first decreases and then increases when θ increases
from 0 to π. When π/2 < ϕ < 3π/2, this value is negative,
indicating that the surface atoms move inward. Conversely,
the positive velocities for 0 < ϕ < π/2 or 3π/2 < ϕ < 2π mean
that the surface atoms move outward. When ϕ = 0 or π, the
surface atoms move the furthest inward or outward. When ϕ
= π/2 or 3π/2, the surface atoms migrate along the particle
surface the farthest. In all, the force F drives the undulations
of the particle surface accompanied by the fluctuations in the
surface atoms.
For the supported particle, due to the limitation of its

hemispherical truncation, θ ranges from 0 to α. For contact
angles where α < π/2, the maximum value of v is reached
when θ equals α. For α > π/2, the maximum always corre-
sponds to θ = π/2. As an approximation, we consider the
maximum value of v to be the migration velocity V of the
particle [57], and according to the Nernst-Einstein relation,
the diffusion coefficient D of the particle can be written as

D
C D

r C( ) =
3
2 , (10)p s

2

4
1

where C C= sin , < / 2; = 1, / 2.
The above derivation only addresses the effects of the

particle shape or the degree of wetting. The migration of the
particle by means of the flow of the surface atoms also in-
volves the formation and cleavage of the chemical bonds of
the perimeter atoms at the three-phase junction of the parti-
cle, support and vacuum. The interfacial adhesion energy Eint
can be introduced to represent the energy barrier involved in
the form of Arrhenius [61], then the diffusion coefficient can
be represented as

D
C D

r C E
kT( ) =

3
2 exp , (11)p s

2

4
1

int

where the diffusion coefficient Ds of the surface atoms over
the particle surface is

D S
k

H
kT

S E
kT

= 4 exp exp

= exp , (12)

s

2
p

atom p
d
m

where νp is the attempt frequency for particle surface atom
hops, ΔS is the standard entropy change in the migration
process and is assumed to be zero, ΔH is the standard en-
thalpy change and is equal to the diffusion barrier Ed

m, and λ

is the hop length and is represented by S2 atom . S r=atom atom
2

and is the surface area occupied by a single atom. ratom is the
radius of a single atom. The particle surface atom density
is

C S E E
kT

E
kTr= exp + 2 , (13)p atom

1 sub ad
m

sur

where Esub is the sublimation heat of the bulk metal, Ead
m is the

adsorption energy of the metal atoms on the particle surface,
and Esur is the surface energy of the particle, which can be
approximated by the bulk metal surface energy.
The diffusion of the particle on the support is a thermal

activation process. The diffusion model proposed contains
contributions from four physical aspects. The first aspect is
the formation energy of a surface atom relative to its bulk
phase counterpart (E Esub ad

m). The second aspect is the dif-
fusion barrier for a surface atom on the particle surface (Ed

m).
The third aspect is the change in the activation energy due to
the particle size, more precisely, the chemical potential of the
atoms in the particle ( E r2 /sur ). The last aspect is that the
migration of the perimeter atoms relative to the support re-
quires the corresponding activation energy barrier to be
surpassed. This barrier is related to the formation and clea-
vage of the chemical bonds between the particle and the
support.
Mathematically, the support-related factors determining

the diffusion rate of the particle mainly include three aspects:
the first aspect is the radius of curvature r of the particle, the
second aspect is the geometry factors (Cα and α1) from the
shape of the particle, and the third aspect is the interfacial
adhesion energy (Eint) between the particle and the support.
The contact angle α of a given particle mainly depends on the
interfacial energy Eint based on the Young-Dupré relation
E S E= (1 + cos )int atom sur . For a supported hemispherical

particle with a fixed volume V r= 4 / 3p
3

1 , the radius of
curvature r depends on the contact angle α. In the ideal case,
for a given particle, both α and r depend on Eint. Obviously,
the interfacial energy Eint ultimately determines the migra-
tion rate of the particle.
If Kα is used to represent all the support-related effects

during the particle diffusion, we obtain:

D
C
r

E E
kT

E
kTr

D C S E
kT

K D

( ) =
3
2 exp + + 2

= / exp (1 + cos )

= , (14)

p
2

4
1

tot int sur

0 1
atom sur

0

where D0 is the previous diffusion coefficient without the
support effects reported in ref. [62]. E =tot E E E+sub ad

m
d
m

describes the energy needed for the formation and migration
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of metal atoms on the particle surface. Kα mainly depends on
the contact angle α of the particle, namely, the Esur.

3 Smoluchowski kinetic model

A mean field model that overcomes the statistical errors
associated with the random collision method in a probabil-
istic way was adopted to simulate the particle migration and
coalescence (PMC) kinetics [67,68]. In this approach, the
particles are assumed to be distributed randomly on the
support surface, and the probability of interparticle collision
is proportional to the particle number density and mobility.
The time-dependent particle number density of volume v,
f(v, t), is assumed to obey the following rate equation:

f v t
t D v f v t f v v t v

D v D v f v t f v t v

( , ) = ( ) ( , ) ( , )d

[ ( ) + ( )] ( , ) ( , )d ', (15)

v

0

0

where D(v) is the diffusion coefficient of a particle with
volume v. The right-hand side of this equation consists of a
term for gain and a term for loss. The term for gain represents
the increments in the particle number density with volume v
due to the coalescence of the particles with a volume v and
v v . This term is the sum of the probabilities of all the
collision and coalescence events occurring between any two
particles with a total volume v. The term for loss represents
the reduction in the particle number density originating from
the coalescence of the particles with a volume v with any
other particles, including themselves. The net increment is
equal to the gain minus the loss.
The kinetic simulation algorithm used to evolve the par-

ticle migration and coalescence kinetics was encoded via the
method described in the ref. [62]. N particles are generated
following a Gaussian size distribution with an average size
〈d〉 = 2〈r〉 and a standard deviation sd. Each generated
particle is counted and grouped into nb equally spaced bins
based on the volume v (4πr3α1/3) of the particle. The bins are
sorted in monotonically increasing order and cover the range
of all the particle volumes. The population corresponding to
each bin (vi) is indicated as Fi = f(vi). The diffusion coeffi-
cient Di = D(vi) is given using eq. (14). The time evolution
matrix can be given by

( )T F D F=  . (16)ij i j j

Tij is the collision rate of the particles with a volume vj
moving toward the particles with a volume vi. This matrix
multiplication provides all the information needed to de-
termine the evolution of the particle size distribution (PSD)
within a given time step. The change in the population of the

particles with a volume vi after dt is obtained by

f v T t T T td ( ) = d ( + )d , (17)i
k i j

jk
j

ij ji
=

where the first and second terms on the right-hand side re-
present the first and second integrals in eq. (15), respectively.
In addition to the migration and collision of particles [71–

75], the subsequent coalescence process [24,72,76–85] is
also important. Kinetic theory dealing with these two pro-
cesses has been proposed by Ruckenstein et al. [22,23]
considering that the diffusion of particles on the support is
crucial in suppressing the sintering process [69,70,72,86],
the simplified Smoluchowski kinetic model under diffusion-
control conditions is adopted here. For particles capable of
migration by means of the flow of the surface atoms, as-
suming their collision and subsequent fusion is reasonable.
When the metal-support interaction is very weak, the contact
angle of the particle is close to 180°. Thus, even if the par-
ticle lacks liquidity, the particle easily diffuses by rolling on
the support. During this diffusion process, even though the
particles collide, coalescence does not occur [74,75,87]. In
the simulation, the contact angle is assumed to be constant
for any particle size, and the defects on the support surface
are not considered. These approximations do not affect the
general conclusions of the effects of the metal-support in-
teraction on the sintering resistance.
In actual situations, the support surface is always curved

due to the crevices, pores and any other concave portions
formed during the synthesis process. For substrate con-
cavities whose dimensions/volumes are far larger than those
of the supported particles, the corresponding kinetic model
reduces to the case of a flat support very well. For substrate
concavities whose dimensions are commensurate with those
of the particles, the concavities in the substrate surface tend
to make actual diffusion coefficients of the particles smaller
than those that are given by the theoretical formula. As a
reasonable assessment for these curved substrate materials in
the nanoscale, the current work provides an upper limit for
the particle migration. For microporous substrates, the par-
ticles are dispersed in the smallest pores. The coarsening of
this class of particles is controlled by the sintering kinetics of
the support phase, accompanied by the blunting or dis-
appearance of certain substrate concavities, which is beyond
the scope of this work.

4 Support-dependent diffusion coefficient

Five parameters determine the diffusion of a supported
particle, i.e., the particle radius r, surface energy Esur, total
activation energy Etot, contact angle α and temperature T.
Figure 2(a) shows that the diffusion coefficient D changes
with α and r for the three different versions. The black da-
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shed lines represent the results from the previous model (D0

in eq. (14)) without the metal-support interaction (MSI) ef-
fects. The red lines represent the results based on eq. (14)
under fixed r; the blue lines are the results under conditions
of a fixed particle volume Vp, where r changes implicitly
with α. The black dashed lines of Figure 2(a) show thatD0 (in
eq. (14)) decreases and that the rate of decrease gradually
slows with increasing r. This behavior reflects the combined
effects of the quartic reciprocal dependence of D0 and the
reciprocal dependence of the chemical potential of the atoms
in the particle on the particle size r. However, D0 does not
change with α regardless of r. In the model without MSI
(D0), the concept of the contact angle does not exist, namely,
MSI has no influence on the diffusion behavior. A supported
particle shows the same diffusivity even when deposited on
totally different supports, which is obviously not reasonable.
For the new diffusion model, as shown by the red dashed

lines with circles and blue solid lines with triangles of Figure
2(a),D varies with decreasing α for each r. The enhanced Eint
leads to a decreased α ( [ ]E S Earccos / ( ) 1int atom sur ) and D is

exponentially reduced as a result (eq. (14)). The fact that the
geometry factor α1 decreases rapidly with decreasing contact
angle α, causesD to increase at a higher than exponential rate
with decreasing α, for α smaller than approximately 90°. For
a fixed r (the red lines in Figure 2(a)), the competition be-
tween the effects of the geometry and the interfacial inter-
action causes the diffusion coefficient D to first decrease and
then increase with decreasing α. For larger α, the interfacial
interaction dominates due to the small change in α1, and D
decreases with decreasing α. For smaller α, the sharply in-
creasing contribution from the reciprocal of α1 to D drama-
tically exceeds the contribution from the interfacial
interaction, so a rapid reverse ascension occurs.
A decreasing α with a fixed r (the volume is not constant)

is equivalent to removing the part of the particle below the
contact surface with the support. However, the situation that
we are concerned with is how the D of the whole particle
changes with α, not portions of the particle (the blue lines
with triangles in Figure 2(a)). The change in r should be
naturally included in the effect of the support on a given
particle. For a given particle (the blue lines with fixed Vp),
the r ( V3 / 4p 13 ) of the particle increases with decreasing
α. The decrease of D due to increasing r (1/r4 in eq. (14))
inverts the upward trend (shown by the red lines of Figure 2
(a)) in D due to the geometry effects (1/α1) with decreasing α
for smaller α. The geometry effect (1/α1) is conducive to the
migration of the particle; an increased radius of curvature
(1/r4) and enhanced interfacial energy (e E kT/sur ) suppress the
diffusion of the particle. In all, the suppression effects out-
weigh the promotion effects.
The three lines (black, red and blue) in Figure 2(a) for each

d (1 nm, 3 nm and 5 nm for α = 180°) converge to the same
value when α approaches 180°. The convergences show that
the effect of the support becomes insignificant with weak-
ening interaction until the new model (red and blue lines)
totally degenerates back to the previous model (black lines).
Figure 2(b) shows the dependence of the diffusion coeffi-
cient D on the contact angle α for different surface energies
Esur. A decreasing α results in a decreasing D, which reflects
that strong interaction makes the diffusion of the particle
difficult. The range of the variation of D increases with in-
creasing Esur, reflecting that the range of the interfacial in-
teraction Eint is determined by Esur. This range is the
maximum value reached by modulating the support com-
position and structure. The results also show that a certain
critical αcri exists. For α < αcri,D increases; for α = αcri,D does
not change, and for α > αcri, D decreases with increasing Esur.
eq. (14) can be expressed as log(D) = km1(α) + kmEsur, where
km1(α) is the parameter dependent on α, and km = (2Ω/r − Satom
(1 + cosα))/kT. These three situations correspond to km > 0,
km = 0, km < 0, respectively. In the proposed model, Esur not
only determines the range of Eint but also the degree of re-

Figure 2 (Color online) Variation of the diffusion coefficients D of the
three versions with the contact angle α under different particle diameters d
(a) and surface energies Esur (b). In (a), the model without MSI (D0 in eq.
(14)) is represented by black dashed lines. The red dashed lines with circles
represent the new model with a fixed radius of curvature r (half of the
diameter d) when α changes, namely, the particle volume Vp changes also.
The blue solid lines with triangles correspond to a fixed Vp but a changing
r. In each group of data, from top to bottom, the diameters of curvature are
d = [1, 3, 5] nm, for α = 180°. d = 1 nm for α = 180° (for (b)), Etot = 2.7 eV,
Ω = 11.243 Å3, Esur = 0.15 eV/Å2 (for (a)), T = 1330 K, vp = 6×1013 s–1.
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duction in the chemical potential Δμ(r) = 2ΩEsur/r of the
atoms in the particle with increasing r. Increasing Δμ(r) with
respect to higher Esur results in an increase in the particle
surface atom density Cp, thereby promoting particle diffu-
sion. This effect is completely opposite to the inhibitory
effect on D from increasing Eint due to increasing Esur. Thus,
when α is equal to αcri, increasing Eint only has a negligible
impact on D; when α is greater than αcri, the promotion effect
from increasing Cp prevails, and when α is less than αcri, the
inhibitory effect from increasing Eint dominates.
Figure 3(a) shows the dependence of the diffusion coef-

ficient D on the contact angle α for different temperatures T.
D increases with increasing T regardless of α. The degree of
increase for smaller α is far greater than that for larger α. D
increases from 10–55 m2/s to 10–25 m2/s for α = 6° and
10–20 m2/s to 10–10 m2/s for α = 178° with T from 400 K to
1600 K. The ranges of the variation in D with decreasing α
significantly decrease with increasing T, from 35 to 15 orders
of magnitude for an increase of 1200 K in T. Again, we
consider the thermal activation of the diffusion behavior of
the particle, namely, that the thermal kinetic energy needs to
be high enough so that the particle can cross the diffusion
barrier. The barrier contains contributions from the total
activation energy Etot of the surface atoms, the interfacial

energy Eint and the chemical potential Δμ(r) of the atoms at
the particle. The ability to cross the energy barrier is en-
hanced with increasing T, resulting in a higher D that over-
shadows the effects from the other factors.
Except for the promotion effect from Δμ(r) on D due to

Esur, the other two energy barriers, Etot and Eint, both suppress
the diffusivity. These two barriers have completely different
sources. Etot is determined by the properties of the material
itself. Eint can be tuned by choosing a suitable support
composition and surface structure. Figure 3(b) shows the
dependence of D on α for different Etot. These two factors
have comparable influences on D. D decreases with in-
creasing Eint or decreasing α regardless of Etot. The higher the
Etot, the more difficult the formation and migration of the
surface atoms, and the lower the D of the particle.

5 Support-dependent stability

Figure 4 shows that the PSD (Figure 4(a)) and normalized

Figure 3 (Color online) Variation of the diffusion coefficient D with the
contact angle α under different temperatures T (a) and total activation
energies Etot (b). d = 1 nm for α = 180°, Etot = 2.7 eV (for (a)), Esur =
0.15 eV/Å2, Ω = 11.243 Å3, T = 1330 K (for (b)), vp = 6×1013 s–1.

Figure 4 (Color online) Evolution of particle size distribution (PSD) (a)
and normalized parameters (b) with increasing temperature T in a tem-
perature ramping process for a supported particle ensemble undergoing the
migration and coalescence process. In (a), selected PSDs at several dif-
ferent T points in the simulation are shown. In (b), the variations of the
normalized volume, surface area, dispersion and particle number with in-
creasing T are shown. Initial 〈d〉 = 2 nm, initial sd = 0.34 nm, α = 90°, Etot
= 2.15 eV, Esur = 0.1 eV/Å2, Ω = 11.243 Å3, Ti = 800 K, RT = 1 K/s, vp =
6×1013 s–1.
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parameters (Figure 4(b)) evolve with increasing T during the
temperature ramping process of a typical supported particle
ensemble. In Figure 4(a), we plot the PSDs at several special
temperatures. The results show that the peak widens with
increasing T. The PSD has a long tail in the direction of the
larger sizes and a steep slope in the direction of the smaller
sizes, which is called a lognormal distribution, a typical
feature of the particle migration and coalescence process.
Figure 4(b) shows the evolution of certain statistical quan-
tities with T. A constant total system volume indicates that
the mass is strictly conserved. The total area, namely, the
dispersion considering constant total volume, and the total
particle number decreases quickly after reaching a specific T.
The temperature at which the particle number has decreased
to 90% of the initial value is defined as the onset temperature
Ton [88].
Figure 5 shows the evolution of the statistical information

during an isothermal kinetic. Figure 5(a) indicates the for-
mation of a lognormal size distribution with a long tail to-
ward the direction of the larger sizes from an initial

Gaussian-like shape. This phenomenon is caused by the
nature of PMC; the particle growth must involve the coa-
lescence of particles into a whole. Figure 5(b) shows the
variation of statistical quantities with time. As an indicator of
mass conservation, the total volume is constant. As expected,
the particle number, surface area and derived dispersion
decrease due to the disappearance of the smaller particles.
The rate of change of the dispersion or particle number slows
in later stages. This result reflects that the rate of isothermal
PMC slows and seems to enter a stable stage. The time when
the total particle number has decreased to 50% of its initial
value is defined as the half-life time t1/2, which represents the
sintering resistance of supported particles suffering from the
PMC process.
We now use Ton and t1/2 as indicators to study the support-

dependence of the PMC kinetics of supported particles.
Figure 6 shows that Ton changes with the contact angle α,
which represents the interaction between the metal and
support under different surface energies Esur (Figure 6(a))
and total activation energies Etot (Figure 6(b)). Ton decreases
with increasing α, indicating that the thermal resistance de-
teriorates with weakening MSI. Extremely small Esur (due to
the adsorption of reactants [8]), for example, Esur =
0.01 eV/ Å2 (red line in Figure 6(a)), suppress the effects

Figure 5 (Color online) Evolution of particle size distribution PSD (a)
and normalized parameters (b) with time under a temperature aging process
for a supported particle ensemble undergoing the PMC kinetics. Subfigure
(a) shows selected PSDs at several times in this temperature aging process
simulation. Subfigure (b) shows the normalized volume, surface area,
dispersion and particle number with time. Initial 〈d〉 = 2 nm, initial sd =
0.2 nm, α = 90°, Etot = 2.15 eV, Esur = 0.1 eV/Å

2, Ω = 11.243 Å3, T = 900 K,
vp = 6×1013 s–1.

Figure 6 (Color online) Variation of the onset temperature Ton of a sup-
ported nanoparticle ensemble with contact angle (α) for different surface
energies (Esur) (a) and total activation energies (Etot) (b). RT = 1 K/s, vp =
6×1013 s–1.
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from the MSI.
An increase in Esur leads to an increase in Ton for α smaller

than approximately 130°. Otherwise, an increase in Esur
causes a decrease in Ton. The results show that an increase in
Esur suppresses the PMC process for strong MSI; however, an
increase in Esur promotes the PMC process for weak MSI. As
discussed above (Figure 2(b)), the chemical potential Δμ(r)
of the atoms in the particle increases and Eint decreases with
increasing α. km = (2Ω/r − Satom(1+cosα))/kT increases with
increasing α. Since km < 0 for smaller α, an increase in Esur
leads to a decrease in D (Figure 2(b)), which enhances the
suppression of the PMC process, namely, increasing Ton
(Figure 6(a)). When km > 0 for larger α, an increase in Esur
promotes the PMC process, which is reflected by an increase
in α resulting in a decrease in Ton. Figure 6(b) shows that
increasing the total activation energy Etot from 1.5 eV to
3.5 eV leads to an increase in Ton as high as 800 K for any α,
which means that an increase in Etot aids the suppression of
the PMC process of supported particles.
Figure 7(a) shows the effect of the average diameter 〈d〉

on Ton. The results show that increasing size suppresses the
PMC process. In Figure 7(b), the half-life time t1/2 is used to
measure the effects from α under different T. As a thermal
activation process, T is expected to have a significant in-
fluence on the sintering resistance. Here, t1/2 decreases from
1016 s to 101 s for α = 45° and 103 s to 10–5 s for α = 145°
when T increases from 800 K to 1600 K. t1/2 decreases with
increasing T regardless of α. The range of the variation of t1/2
with α significantly decreases with increasing T, from 15 to 8
orders of magnitude for an increase to 800 K for T. An in-
creased temperature promotes the PMC process.
Figure 8 shows the particle volume distribution (PVD) at

the same terminal conditions (Ts = 1300 K) in a temperature
ramping process simulation from different initial contact
angles α. With increasing α, the PVD shifts substantially to
the right. The results show that increasing α, namely,
weakening the metal-support interaction, promotes the PMC
process from the perspective of particle volume distribution.

6 Conclusion

Developing theoretical descriptions and understanding the
support-dependence of particle migration and coalescence
(PMC) kinetics are challenging due to the lack of model
theory for supported particle diffusion depending on metal-
support interaction. Here, a new diffusion model that con-
siders the support effects based on the surface premelting and
Nernst-Einstein relation is proposed and expressed analyti-
cally. The PMC kinetics for supported particles are simulated
based on the Smoluchowski ripening model. The results
show that enhanced metal-support interaction can increase
the radius of curvature and interfacial adhesion energy of

supported particles, which inhibits their migration and coa-
lescence, even though this interaction also decreases the
geometry factor, promoting the PMC process. An increase in
the particle surface energy can increase the interfacial in-
teraction and surface atom density by improving the che-
mical potential of the atoms in a particle. The former is

Figure 7 (Color online) (a) Variation of the onset temperature Ton of
supported particles with contact angle (α) for different initial average
diameters <d>; (b) half-life-time t1/2 varies with α under different T. RT =
1 K/s.

Figure 8 (Color online) Evolution of particle volume distribution (PVD)
from the same initial PVD and terminal conditions (Ts = 1300 K) for se-
lected α during a temperature ramping kinetic. 〈d〉 = 0.75 nm, sd = 0.15 nm
for α = 180°, Esur = 0.15 eV/Å

2, Etot = 2.7 eV, Ω = 11.243 Å3, Ti = 700 K, RT
= 1 K/s.
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conducive to the PMC process and the latter inhibits the
process. A critical contact angle exists due to the competition
between these two factors. An increased total activation
energy and a decreased temperature are helpful in improving
the migration resistance. This work provides a foundation for
understanding the support effects on the migration and
coalescence kinetics of supported particles.
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