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ABSTRACT: The efficient electrochemical hydrogen
evolution reaction (HER) plays a key role in accelerating
sustainable H2 production from water electrolysis, but its
large-scale applications are hindered by the high cost of
the state-of-the-art Pt catalyst. In this work, submonolayer
Pt was controllably deposited on an intermetallic Pd3Pb
nanoplate (AL-Pt/Pd3Pb). The atomic efficiency and
electronic structure of the active surface Pt layer were
largely optimized, greatly enhancing the acidic HER. AL-
Pt/Pd3Pb exhibits an outstanding HER activity with an
overpotential of only 13.8 mV at 10 mA/cm2 and a high
mass activity of 7834 A/gPd+Pt at −0.05 V, both largely
surpassing those of commercial Pt/C (30 mV, 1486 A/
gPt). In addition, AL-Pt/Pd3Pb shows excellent stability
and robustness. Theoretical calculations show that the
improved activity is mainly derived from the charge
transfer from Pd3Pb to Pt, resulting in a strong
electrostatic interaction that can stabilize the transition
state and lower the barrier.

Hydrogen as a clean energy carrier in fuel cells is
industrially produced from carbon feedstocks via various

processes,1−4 which are environmentally unfriendly because of
the release of CO2. The electrochemical hydrogen evolution
reaction (HER) in water electrolysis is an alternative way to
produce H2.

5−7 The HER involving the reduction of H+ and
desorption of H2 plays a key role in the water splitting
process.8−10 The design of highly active and stable electro-
catalysts is a prerequisite for the HER process. Currently, this

process is still largely limited to the use of precious metals such
as Pt, especially for industrial requirements.11,12 This largely
increases the cost of electrolyzers and prevents their large-scale
applications.
Numerous efforts to lower the cost of these metals via tuning

the compositions and morphologies by increasing their atomic
efficiency and intrinsic activity have been reported.13−16 Since
the surface atoms always play a dominant role in the catalytic
process, deposition of a precious metal monolayer or
submonolayer on a nonprecious substrate is an ideal strategy
to extremely enhance the mass activity.17,18 However, it is
worth noting that stability problems of catalyst would
apparently emerge when the as-grown layer is reduced to the
atomic scale.19,20 To solve this problem, choosing a chemically
stable substrate that can resist acid etching and finding an
effective surface engineering tool to greatly enhance the
interaction between substrate and as-grown atomic overlayer
are crucial to the catalyst design.21,22

In this work, an intermetallic Pd3Pb nanoplate was selected
as the substrate because of its excellent chemical resistance to
acidic corrosion, which results from its stable and strictly
ordered atomic arrangement.23,24 First, the Pd3Pb nanoplates
were successfully prepared, and the X-ray diffraction (XRD)
pattern (Figure S1) indicated that the intermetallic phase was
obtained. Low-magnification high-angle annular dark-field
scanning transmission electron microscopy (HAADF-STEM)
(Figures 1A) and TEM (Figure S2) images showed that the
Pd3Pb nanoplates presented a square morphology enclosed by
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{100} facets, which was further confirmed by the electron
diffraction pattern (Figure S3) and fast Fourier transform
(FFT) pattern (Figure 1B1). According to the atomic force
microscopy (AFM) image (Figure S4), the thickness of the
Pd3Pb nanoplates was estimated to be 7 nm and the height to
width ratio was about 0.17. The atomic resolution HAADF-
STEM image (Figure 1B) shows a characteristic lattice spacing
of 0.207 nm, which was assigned to the {200} facets of Pd3Pb.
EDS mapping (Figure 1C) revealed that Pd and Pb were
distributed uniformly, further demonstrating the intermetallic
structure.
Subsequently, submonolayer Pt was controllably deposited

on Pd3Pb to obtain atomic-layer Pt/Pd3Pb (AL-Pt/Pd3Pb)
(Figure 1D). It is reasonable that there were no new peaks
assigned to Pt observed in the XRD pattern of AL-Pt/Pd3Pb
(Figure S1) compared with Pd3Pb because the small
proportion of Pt was below the detection limit of XRD.
Despite the successful deposition of a submonolayer of Pt
(Figure S5), the lattice spacing of 0.205 nm (Figure 1E) was
still assigned to Pd3Pb {200} facets because the substrate
contributed the vast majority of the contrast degree. Since the
brightness of an atom column in a HAADF-STEM image is
dependent on the atomic number,25,26 the brightness level of
atoms should be Pb (82) > Pt (78) > Pd (46). As shown in
Figures 1B and S6, the outermost surface of Pd3Pb was
terminated by Pd1Pb1 with a PdPbPdPb alignment, and a
periodic light and dark contrast arrangement was observed.
After the deposition of Pt, an obvious lighter layer covering the
surface of Pd3Pb was observed, and the periodic light and dark
arrangement disappeared (Figure 1E). Hence, it is reasonable
to conclude that the outermost layer of AL-Pt/Pd3Pb was the
atomic Pt layer. To further confirm the distribution, line
intensity profiles along the yellow dashed arrow direction in
Figure 1E were measured. As shown, the brightness of the
outermost Pt atoms was clearly between those of Pb and Pd

(Figure 1E1,E2). EDS mapping (Figure 1F) clearly displayed
the Pd3Pb core and the thin Pt shell, also confirming the
outermost distribution of the Pt layer.
Since X-ray photoelectron spectroscopy (XPS) is an effective

tool to reveal the electronic structure at the surface of
catalysts,27 XPS measurements were performed (Figure S7).
Notably, the main peaks of Pb 4f in AL-Pt/Pd3Pb shifted to
higher binding energy compared with Pb in Pd3Pb, along with
a 0.2 eV left shift (Figure 2A). A similar peak shift to higher

binding energy (0.15 eV left shift) was also observed for Pd 3d
of AL-Pt/Pd3Pb in comparison with Pd in Pd3Pb (Figure 2B).
As a contrast, the Pt 4f XPS spectrum of AL-Pt/Pd3Pb (Figure
2C) shifted to lower binding energy (0.3 eV right shift) in
comparison with Pt nanoparticles prepared using similar
conditions as for Pd3Pb (Figure S8). These results underlined
the electron transfer from the Pd3Pb substrate to the Pt layer.
Next, to further explore the local structure of AL-Pt/Pd3Pb,

the X-ray absorption fine structure (XAFS) was measured. The
Fourier transform (FT) of the extended XAFS (EXAFS) of the
Pd K-edge was almost coincident for AL-Pt/Pd3Pb and Pd3Pb
(Figure 2D), indicating the similar coordination environments
of Pd, and the strong peak at 2.65 Å was attributed to Pd−Pb
coordination. The similarity of the Pb coordination environ-
ments in Pd3Pb and AL-Pt/Pd3Pb was also evidenced by the
almost identical curves for the Pb L2-edge (Figure S9). In the
EXAFS spectrum of AL-Pt/Pd3Pb, the Pt L3-edge exhibited a
peak at 2.17 Å belonging to the scattering of Pt−Pd and a peak
at 2.64 Å corresponding to Pt−Pt/Pb coordination (Figure
2E). On the basis of the least-squares EXAFS fitting (Figures
S10 and S11), the Pt coordination number was just 8.1 (Tables
S1 and S2), which is far less than the saturated coordination

Figure 1. (A) HAADF-STEM image, (B) atomic-resolution HAADF-
STEM image and FFT pattern, and (C) EDS mapping of Pd3Pb. (D)
HAADF-STEM and (E) atomic-resolution HAADF-STEM images of
AL-Pt/Pd3Pb. (E1, E2) Line intensity profiles taken along the yellow
dashed arrow direction in (E). (F) EDS mapping of AL-Pt/Pd3Pb.

Figure 2. (A−C) XPS spectra of (A) Pb 4f, (B) Pd 3d, and (C) Pt 4f.
(D, E) FT-EXAFS of (D) the Pd K-edge and (E) the Pt L3-edge. (F)
XANES of the Pt L3-edge.
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number of 12 in Pt foil. This result reinforced the existence of
submonolayer Pt at the surface of Pd3Pb. The X-ray absorption
near-edge structure (XANES) shows that the white line
intensity of Pt for AL-Pt/Pd3Pb was below the intensity of Pt
foil and commercial Pt/C (Figure 2F). This indicates that Pt
exhibited partially negative valence, which resulted from the
electron donation from the Pd3Pb substrate to Pt. For Pb and
Pd, the XANES analysis is shown in Figures S12 and S13.
Before electrocatalysis measurements, the catalysts under-

went an annealing process at 400 °C for 12 h in an argon
atmosphere to remove their covering surfactants (Figure
S14).28 To evaluate the HER activity of AL-Pt/Pd3Pb, linear
sweep voltammetry (LSV) was performed. As shown in Figures
3A and S15, AL-Pt/Pd3Pb possessed a smaller onset potential

than Pt/C, Pd3Pb, and Pt/Pd3Pb alloy. In addition, we
synthesized Pd3Pb with different numbers of Pt layers and
compared their acidic HER performance (Figure S16 and
Table S3). Interestingly, AL-Pt/Pd3Pb showed superior HER
activity relative to Pd3Pb with two Pt layers or three to four Pt
layers. Besides the onset potential, only 13.8 mV (with iR
correction based on Figure S17) was needed to reach 10 mA/
cm2 for AL-Pt/Pd3Pb, which was much lower than for Pt/C
(30 mV) and Pd3Pb (296 mV). Next, we used the Tafel slope
to evaluate the kinetics of samples during the HER (Figure
3B). Remarkably, the Tafel slope for AL-Pt/Pd3Pb was just 18
mV/dec, which was much lower than that of Pt/C (30 mV/
dec), suggesting faster kinetics of the reaction process. For
comparison with reported precious metal HER catalysts in
acidic media (using the overpotential at 10 mA/cm2 and the
Tafel slope for comparison), AL-Pt/Pd3Pb presented almost
the smallest overpotential and Tafel slope (Figure 3C and

Table S4). Besides the activities, the stabilities of catalysts
should also be taken into full consideration. After a 10 000
cycle electrochemical accelerated durability test (ADT), Pt/C
exhibited 46% decay at 50 mA/cm2, while AL-Pt/Pd3Pb
showed negligible activity decay (Figures 3D and S18). In
addition, during a continuous 25 h chronoamperometry test at
a potential of −14 mV, AL-Pt/Pd3Pb also showed excellent
stability (Figure 3E). At −0.05 V, the mass activity of AL-Pt/
Pd3Pb could reach to 7834 A/g (normalized to Pt and Pd),
which was 5.3 times higher than that of Pt/C (1486 A/g)
(Figure 3F). When normalized only to Pt, the mass activity of
AL-Pt/Pd3Pb actually reached 22 750 A/g, which is 15-fold
higher than that of Pt/C. This was attributed to the maximized
utilization of submonolayer Pt atoms on the surface of Pd3Pb.
The atomic-resolution HAADF-STEM image of the recycled
sample (Figure S19) verified that the submonolayer Pt was still
maintained after the durability test. In addition, the excellent
stability of the Pd3Pb substrate was also confirmed by the XRD
spectra, EDS mapping, and HAADF-STEM image after the
durability test (Figure S20).
DFT calculations were performed to explore the origin of

the high HER activity of AL-Pt/Pd3Pb. Figure 4A shows a clear

charge transfer from Pd and Pb to Pt, as evidenced by the
electron accumulation (yellow areas) of Pt and the electron
depletion (cyan areas) of Pd and Pb. The charge transfer
caused an upshift of the Pt d-band center (∼0.58 eV), resulting
in stronger binding of H* on Pt/Pd3Pb than on Pt(100)
(Figure S21). We note that the electronic structure change of
Pt can also be induced by the tensile strain of Pt (∼3.6%) on
Pd3Pb due to the lattice misfit between Pt and Pd3Pb. We
found that the improved H* binding on Pt was mainly from
the ligand effect of Pd3Pb (Figure S21).
To understand how the electronic structure change of Pt

affects the HER activity, the Gibbs free energy change of H*
(ΔGH*) was calculated (Figure 4B). We found that ΔGH* was
highly dependent on the coverage of H*, making the use solely
of thermodynamics to evaluate the HER activity challenging.
Thus, the kinetics of the elementary steps involved in the
acidic HER was studied. Figure 4B suggests that the HER will
start at a H* coverage of ∼1.25−1.50 monolayer (ML) on
both Pt(100) and Pt/Pd3Pb. Thus, the surface covered by 1.50
ML of H* was used as an example to calculate the barriers. We

Figure 3. (A) Polarization curves. (B) Tafel slopes. (C) Comparison
with different representative catalysts. (D) Durability test. (E)
Chronoamperometry curve for AL-Pt/Pd3Pb. (F) Specific activity
and mass activity.

Figure 4. (A) Charge density difference (0.003 e/Å3) of Pt and Pd3Pb
in Pt/Pd3Pb(100). (B) Calculated differential free energy change of
H*. (C) Optimized transition states for the Volmer and Heyrovsky
reactions on Pt/Pd3Pb. (D) Calculated barriers.
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found that the Volmer reaction via proton transfer from H3O
+

to the surface was a barrierless process on Pt(100) and was
only required to pass a low barrier of 0.14 eV on Pt/Pd3Pb
(Figures 4C and S22). At the transition state of the Heyrovsky
reaction, H*/Pt was pulled out ∼0.05 Å on Pt/Pd3Pb, which is
much smaller than the value of ∼0.60 Å on Pt(100), since H*/
Pt on Pt/Pd3Pb was stabilized by the electrostatic interaction
between the negatively charged Pt and positively charged Pd
and Pb. This resulted in a lower barrier of 0.26 eV on Pt/
Pd3Pb compared with 0.62 eV on Pt(100). The barriers for the
Heyrovsky reaction were much lower than that for Tafel
reaction on these two surfaces (Figure 4D), suggesting that the
HER was prone to proceed via the Volmer−Heyrovsky
mechanism, consistent with the reported experimental
results.29 On the other hand, it was reported that the acidic
HER on a Pt catalyst was less structure-sensitive,30,31 and
therefore, the lower barrier of the rate-limiting Heyrovsky
reaction on Pt/Pd3Pb compared with Pt(100) indicated that
Pt/Pd3Pb exhibited a higher HER activity than Pt, in line with
our experiments (Figure 3A).
In summary, submonolayer Pt was successfully deposited on

intermetallic Pd3Pb nanoplates. The intermetallic substrate can
stabilize the atomic structure of the active Pt layer and
guarantee its long-term operation in the acidic HER process.
The modulation of the electronic structure by the electron
transfer from Pd3Pb to Pt also results in superior HER activity
of AL-Pt/Pd3Pb. Our findings highlight the ability of surface
engineering at the atomic scale to enable extreme utilization of
precious metals for energy conversion.
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Kostka, A.; Schüth, F.; Mayrhofer, K. J. Degradation mechanisms of
Pt/C fuel cell catalysts under simulated start−stop conditions. ACS
Catal. 2012, 2, 832.
(20) Yang, X. F.; Wang, A.; Qiao, B.; Li, J.; Liu, J.; Zhang, T. Single-
atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem.
Res. 2013, 46, 1740.
(21) Pallassana, V.; Neurock, M.; Hansen, L. B.; Hammer, B.;
Nørskov, J. K. Theoretical analysis of hydrogen chemisorption on
Pd(111), Re(0001) and PdML/Re(0001), ReML/Pd(111) pseudomor-
phic overlayers. Phys. Rev. B: Condens. Matter Mater. Phys. 1999, 60,
6146.
(22) Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I. B.;
Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in
electrocatalysis: Insights into materials design. Science 2017, 355,
eaad4998.
(23) Casado-Rivera, E.; Volpe, D. J.; Alden, L.; Lind, C.; Downie,
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