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Over the last few years, machine learning is gradually becoming an essential approach for
the investigation of heterogeneous catalysis. As one of the important catalysts, binary alloys
have attracted extensive attention for the screening of bifunctional catalysts. Here we present
a holistic framework for machine learning approach to rapidly predict adsorption energies
on the surfaces of metals and binary alloys. We evaluate different machine-learning methods
to understand their applicability to the problem and combine a tree-ensemble method with
a compressed-sensing method to construct decision trees for about 60,000 adsorption data.
Compared to linear scaling relations, our approach enables to make more accurate predictions
lowering predictive root-mean-square error by a factor of two and more general to predict
adsorption energies of various adsorbates on thousands of binary alloys surfaces, thus paving
the way for the discovery of novel bimetallic catalysts.

Key words: Machine learning, Heterogenous catalysis, Adsorption energy, Bimetallic cat-
alyst

I. INTRODUCTION

Heterogeneous catalysts composed of metallic materi-
als have an enormous impact on a vast array of techno-
logically important applications [1–3]. Theoretical ap-
proaches to the rational design of metallic catalysts have
been based on the Sabatier principle and the Brønsted-
Evans-Polanyi (BEP) relation [4–6]. The former states
that the activity of catalysts displays a volcano shape
as a function of adsorption strength for the key interme-
diates of the reaction, and the latter reveals the linear
relationship between energy barriers of elementary re-
actions and adsorption energies of molecules. Hence,
the reliable calculations or predictions of adsorption
energies hold the key to understanding the catalytic
mechanism and screening catalysts with improved per-
formance.

Density functional theory (DFT) has proven to be a
promising strategy for the calculations of adsorption en-
ergies and the atomistic design of catalysts [7–9]. How-
ever, the total numbers of the combinations between
adsorbates and sites on different surfaces grow expo-
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nentially with the diversity of catalytic materials, ren-
dering the computational screening of new catalysts
with quantum-chemical calculations costly and time-
consuming. This has become one of the major chal-
lenges in catalyst discovery. Binary alloys, for instance,
span a vast set of materials and have shown attractive
promise for catalyzing many reactions and the potential
to substitute the noble metal catalysts [10–12]. How-
ever, the high-throughput predictions of adsorption en-
ergy on bimetallic surfaces are challenging due to the
intricate composition and structure. To this end, the
development of the adsorption models based on statis-
tical learning is highly required for a rapid survey of
appropriate adsorption energies for reactions of inter-
est.

Theoretical models for chemisorption on pure metal
surfaces have been developed [13, 14]. When molecules
were adsorbed on transition metals, the most important
contribution of adsorbate-metal interactions to the ad-
sorption strength comes from the coupling of d-states of
metal with adsorbates [14, 15]. In consequence, the lin-
ear relationships were established between the adsorp-
tion energies of atoms and that of their hydrogenated
species [16, 17]. Further linear dependencies were also
identified between other adsorbed species and could be
summarized as group additivity properties [17, 18]. In
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spite of the huge success of linear relationships in ac-
celerating metal catalyst discovery [11, 12], the gen-
eralization of these simplified thermochemical models
to bimetallic materials is unpractical, which will be
shown in this study. In recent years, machine learning
(ML) methods have emerged as a powerful approach
for predicting catalytic properties in heterogeneous sys-
tems [19–24]. ML algorithm learns from existing data
to find insights and map the correlation between the
varieties of properties with desired prediction targets
[25, 26]. ML methods have been performed in many
studies to establish the predictive models for adsorption
energy, most starting from predicting certain adsorbates
on pure metal surfaces or some bimetallic alloys, and ap-
plying these predictions to the entire reaction network
by extending to other intermediates through linear re-
lations [24, 26–30].

In this study, we instead directly exploit the adsorp-
tion energies for various adsorbed species of interest,
e.g. C, H, O, N, S, CHx

∗, OHx
∗, NH∗, SH∗, etc., at

their most stable sites on surfaces of a wide range of
binary alloys using ML methods, without any assump-
tions of linearity. Due to different advantages and char-
acteristics of ML algorithms, the choice of the appropri-
ate method depends on its applicability to the problem
domains and is crucial for the learning results. The
performance of different ML methods is evaluated by
atomic adsorption energies. We show that random for-
est regression achieves the best predictive performance
and it was further combined with compressed-sensing
method (sure independence screening and sparsifying
operator) to learn the whole dataset that is composed of
approximately 60000 adsorption energies for 48 species
adsorbed on the surfaces of over two thousand met-
als and binary alloys. This approach can be used to
rapidly predict adsorption energies with high accuracy.
The test root-mean-square error (RMSE) for the entire
dataset is 0.29 eV, which is far less than scaling relations
and comparable with previous ML models, though more
types of adsorbates and materials are involved in this
work. Thus, our exhaustive high-throughput approach
allows the fast predictions for adsorption energies of in-
termediates in the reaction network, which goes beyond
the traditional strategies, and facilitates the discovery
of novel heterogeneous catalytic materials.

II. METHODS

A. Dataset for machine learning

As for the dataset, we adopted a recently published
database of the chemical adsorption, publicly available
in Catalysis-Hub.org [31, 32]. This large-scale dataset
contains more than 90000 systematic DFT calculations
for adsorption energy of 48 adsorbates, which are com-
posed of C, H, O, N and S elements, on 2035 surfaces
(666 A3B stoichiometries, 666 AB3 stoichiometries, 666
AB stoichiometries and 37 metals) enumerated from 37

FIG. 1 The correlation map of Pearson pairwise product
moment among thirteen features. If the absolute value of
Pearson correlation is larger than 0.5, the correlation be-
tween the two features is obviously strong. On the contrary,
the correlation is weak or even negligible.

metals and transition metals [31]. The DFT calcula-
tions were performed considering all possible adsorption
sites on (111) termination of surfaces. There are multi-
ple adsorption energy values on the same surface, thus
the factors of the complex surface structure were intro-
duced. To address this problem, we used a python script
to select the most stable adsorption sites (the most neg-
ative adsorption energies) in the stage of data prepro-
cessing, remaining 59876 pieces of adsorption data for
ML investigation. For each adsorbate, we randomly se-
lected 80% of the data as the working set for model
training and the validation process, and the rest 20%
data were split into the test set to examine whether
models generated from the working set can successfully
predict these values. The initial features used in ML
processing consist of the properties of metals and al-
loys, including Pauling electronegativity χp, ionization
energy IE, metallic radius r, work function W , sublima-
tion energy H, electron density at the boundary of the
Wigner-Seitz cell nws, atomic volume V , atomic num-
bers Z, valence electrons numbers N , surface energy γ,
lattice parameters a, ratio of two metals in binary al-
loys R and numerical labels of the most stable adsorp-
tion sites S. The initial features were selected based on
domain knowledge or the suggestion in previous studies
[19, 21, 24, 27–31, 33]. The values of these features are
readily available from databases to enable rapid screen-
ing [34–36]. The correlations among the features were
calculated by the Pearson product moment, and are
given in FIG. 1. The weaker the correlation among the
features, the more information features can be provided
in ML. Noticeably, most features are not correlated with
each other, while atomic volume was strongly correlated
with metallic radius and electron density at the bound-
ary of the Wigner-Seitz cell, as well as the correlated
pair of valence electrons numbers and atomic numbers.
We wiped off the features with the absolute value of
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Pearson correlation lager than 0.5 when training the ML
algorithms, except in the method of sure independence
screening and sparsifying operator (SISSO), where the
dimensionality of high-dimensional feature space was
reduced through sure independence screening (SIS) ap-
proach and those initial features would be combined to
high dimensional features.

B. Machine learning methods

Four types of machine-learning regression algorithms
including six methods were applied on the dataset to
select the proper method for adsorption energy. (i)
Compressed-sensing methods used here included least
absolute shrinkage and selection operator (LASSO) [37]
and SISSO [38, 39] for identifying the explicit descrip-
tor of the adsorption strength. Compressed-sensing is
a signal processing approach for effectively reproducing
a high-quality signal by finding solutions to underde-
termined systems. The LASSO approach is a linear
model based on l1-norm regularized minimization, effi-
ciently decreasing the feature numbers upon which the
given solution is dependent. Combining the dimension-
ality reduction approach SIS with sparsifying operator
method, e.g. LASSO and l0-norm, the method SISSO
can tackle ultra-high-dimensional as well as strongly
correlated feature spaces and give descriptors that yield
the best prediction for the target property. SISSO could
also be used in feature construction and selection. (ii)
Kernel ridge regression (KRR) [40] and support vector
regression (SVR) [41] were selected as kernel regressors.
The form of the KRR model is identical to the SVR, but
they use different loss function. (iii) In tree-ensemble
methods, random forest regression (RFR) [42] was also
selected. RFR constructs a multitude of decision trees
in training process and outputs the mean prediction of
the individual trees. By applying the bagging algorithm
and random selection of features, RFR corrects for the
habit of overfitting of decision trees. (iv) As one of the
most popular approach in ML, neural network (NN)
[43] algorithm was also applied. The network contains
input, hidden, and output layers. In each layer, a set
of neurons are used as processing units and connected
by a series of weight parameters, which will be opti-
mized in terms of back-propagation algorithm in the
training procedure. ML methods were implemented us-
ing Scikit-learn package [44] except for SISSO method,
which is not integrated into the platform of Scikit-learn.

To avoid overfitting and improve the robustness, we
used the approach of exhaustive grid search combined
with the repeated (ten times) ten-fold cross validation
on the training set to systematically optimize the
hyperparameters in each ML approach. We adjusted
the structures of these methods by searching the best
set of hyperparameters. The optimal model with
hyperparameters that yields the lowest validation error
was further used to predict the adsorption energy

values in the test set. The hyperparameters in dif-
ferent methods optimized by cross validation include:
LASSO (“alpha”, “max−iter”, “tol”, “fit−intercept”),
SISSO (“desc−dim”, “maxcomplexity”, “subs−sis”,
“dimclass”, “opset”), KRR (“alpha”, “kernel”,
“gamma”), SVR (“C”, “kernel”, “gamma”, “ep-
silon”, “tol”, “max−iter”), RFR (“n−estimators”,
“oob−score”, “max−features”, “max−depth”,
“min−weight−fraction−leaf” , “max−leaf−nodes”),
NN (“hidden−layer−size”, “activation”, “alpha”,
“batch−size”, “learning−rate”, “learning−rate−init”,
“max−iter”, “early−stopping”).

III. RESULTS AND DISCUSSION

A. Linear scaling relations

Inspired by the success of linear scaling relations
for predicting the adsorption energies of hydrogenated
species on transition metals [16, 17], we begin our dis-
cussion by considering the performance of linear scaling
relations on this dataset. We use the chemisorption en-
ergies of the central bonded atoms on a particular site
to predict site-specific chemisorption energies of corre-
sponding hydrogenated species, and the RMSEs of the
prediction are summarized in Table I, which will subse-
quently be used as the benchmark for ML investigation.

The linear scaling relations on pure metals achieve
acceptable errors from 0.20 eV to 0.33 eV, while it per-
forms poorly with RMSEs ranging from 0.40 eV to 0.84
eV when applied to the binary alloys, whose composi-
tion varies over a larger materials space. This suggests
that the scaling relation derived from pure metals fails
to predict adsorption strength on bimetallic materials
for rational catalyst optimization. We note that the av-
erage errors in Table I increase with the valence state of
the central atoms, for instance, the average RMSEs for
CH∗, CH2

∗, and CH3
∗ are 0.43 eV, 0.58 eV, 0.78 eV re-

spectively. The reason for such poor correlation in high
valence hydrogenated adsorbates versus corresponding
atoms could be attributed to the variation of the most
stable sites for adsorbates with different electron densi-
ties. The hollow site is usually the most stable site for
the adsorption of C atom. On the contrary, CH3

∗ is of-
ten adsorbed on the top site, because the central C atom
is a highly saturated center. Also listed is the range of
adsorption energies of adsorbate species, as a reference
for prediction performance. Due to the great variation
in surface sites, the wide range of adsorption energy val-
ues is another reason for the poor performance of linear
scaling relation on this dataset. In general, the consid-
erable deviations between predictions of linear scaling
relations and DFT-calculated adsorption energies on al-
loys indicate the need for adsorption models with higher
accuracy.
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TABLE I RMSEs for adsorption energies Eads (eV) of hydrogenated species on the top, bridge, and hollow sites of pure
metals and binary alloys, predicted using linear scaling relations with adsorption energies of corresponding central atoms.
∆Eads=Eads,max−Eads,min represents the range of adsorption energies of corresponding adsorbate, listed in the last column
as a reference for prediction errors.

Linear Average RMSE in metals RMSE in alloys ∆Eads/eV

relations RMSE Top Bridge Hollow Top Bridge Hollow

CH∗ vs. C 0.43 0.20 0.21 0.20 0.40 0.44 0.47 6.54

CH2
∗ vs. C 0.58 0.23 0.25 0.24 0.57 0.56 0.61 5.25

CH3
∗ vs. C 0.78 0.31 0.32 0.33 0.77 0.76 0.84 3.34

OH∗ vs. O 0.50 0.23 0.21 0.21 0.49 0.48 0.52 5.22

OH2
∗ vs. O 0.71 0.30 0.29 0.31 0.71 0.70 0.73 3.49

NH∗ vs. N 0.59 0.23 0.25 0.25 0.55 0.57 0.62 7.15

SH∗ vs. S 0.46 0.20 0.22 0.21 0.45 0.45 0.48 4.67

B. Evaluation of ML algorithms on atomic adsorption

To assess the performance of different ML algorithms
on adsorption energy, we employ the six ML methods
on the atomic adsorption datasets to obtain the pre-
diction models. There are 1776, 1836, 1795, 1796, and
1806 adsorption energies data for the adsorption energy
of C, H, O, N, and S atoms, respectively. We randomly
select 80% of data in each set to optimize the hyper-
parameters through cross validation and fit the model
parameters for each algorithm to obtain a training er-
ror, as shown in FIG. 2. RFR achieves the best fitting
performance, and the training that RMSEs for C, H,
O, N and S atoms are 0.17 eV, 0.07 eV, 0.16 eV, 0.15
eV, 0.12 eV respectively. In contrast, the training er-
rors of LASSO are the highest among the six methods
with RMSEs above 0.6 eV for C, O and N atoms. The
training errors of the rest four methods are generally
similar. The remaining 20% of data in each set is used
for testing the prediction accuracy and the test RMSEs
in FIG. 2 present the predictive ability of trained mod-
els. Comparing the average test error of each algorithm
for five adatoms, RFR yields the best predictions with
an average RMSE of 0.3 eV, followed by KRR (0.35
eV), NN (0.37 eV), SISSO (0.39 eV), SVR (0.44 eV),
LASSO (0.55 eV).

In FIG. 3, we plot the predicted adsorption ener-
gies from the methods that acquire the best prediction
performance according to test RMSEs in FIG. 2, ver-
sus DFT-calculated adsorption energies in each dataset.
ML methods with the lowest test errors for C, H, O, N
and S atoms are RFR, SISSO, NN, RFR, KRR, respec-
tively. The points are all constrained on the diagonal in
the figure, which illustrates the high accuracy of the ML
methods. The magnitude of RMSE for each adatom is
related to the variation range of the adsorption ener-
gies. For example, adsorption energy of H atom has the
lowest test error of 0.16 eV, partially owing to the ad-
sorption energies varying on a small scale from −1.2 eV
to 1.2 eV, while the adsorption energy ranges of other

FIG. 2 Training and test RMSEs (eV) for adsorption ener-
gies of five adatoms (C, H, O, N, S) obtained using six ML
methods.

adsorbed atoms are larger than 5 eV. Therefore, adsorp-
tion energies of C atom are the most difficult to predict
and the predictive error is the highest with test RMSE
of 0.43 eV.

Combining training and predictive performance, we
can find that RFR is the optimum method for predict-
ing the adsorption energy on alloys and we will apply it
to learning the whole dataset. This might suggest that
tree-ensemble methods are more suitable for this kind
of task where the composition of materials spans over a
large space and the features used as input are numerical.
Neural network could construct a more complex model
by fitting more parameters, but it usually has better
performance when treating a larger dataset and using
more complicated chemical representations for surface
structures. SISSO and LASSO methods are based on
compressed sensing and more effective in identifying de-
scriptors for the target property, which can help to ex-

DOI:10.1063/1674-0068/cjcp2004049 c⃝2020 Chinese Physical Society



Chin. J. Chem. Phys., Machine-Learning Adsorption on Binary Alloy Surfaces 5

FIG. 3 Comparison between calculated and model-predicted adsorption energies in the training and test datasets of five
adatoms of (a) C, (b) H, (c) O, (d) N, (e) S. The predictions are obtained by ML method (labeled in figures) that achieves
the lowest test error for each adatom.

TABLE II Descriptors identified by SISSO method for adsorption energy of five adatoms. The superscripts of A and B in
the property abbreviations represent the metal components of alloys.

Adatom Predictive equation

C −0.12 · IE
B

IEA
·HA · rB + 3.2

χA
p · χB

p

HA +HB
− 9.8 ·

(
aA ·NA + aB ·NB

)
+ 2.8

H 0.12 · (WA · rA +WB · rB) + 29 ·
χA
p

χB
p · (HA +HB)

− 4.4 · HA

WA · (HA +HB)
− 2.12

O 0.19 · χA
p ·

(
WA −WB

)
− 9.1 · H

A ·R
WA2

− 0.031 · H
B · IEA

R · χB
p

− 1.4

N 0.47 ·
(
WA · rA +WB · rB

)
+ 1.1 ·

χA
p · χB

p

HA +HB
− 16 · HA · γB

WA · IEA
+ 1.8

S −9.3 · H
AR

WA2
+ 10 ·

χA
p · χB

p

V A · nA
ws

+ 0.010 ·
(
HA −HB

)
· IEA

S
− 1.3

tract explicit physical insights into the problem. SISSO
might, by contrast, have better fitting ability as shown
in our study. It will also be combined with RFR to
obtain a better performance below.

Method SISSO starts with enlarging the feature space
by iteratively combining initial features into more com-
plex new combinations using mathematical operations,
so that the target property can be well expanded in

the feature space: y=
∑
i

cidi, where ci are coefficients

and di are feature combinations, i.e. identified descrip-

tors [38]. Within SISSO, two hyperparameters are op-
timized. The first is descriptor complexity (the number
of mathematical operators in a descriptor) and the sec-
ond is model dimension (the number of descriptors). In
Table II, we present the predictive equations (descriptor
complexity is 3 and model dimension is 3 as well) for
atomic adsorption energy found by SISSO. There are
some common descriptors in different predictive equa-
tions, such as WA · rA+WB · rB, χA

p · χB
p /(H

A +HB),

and HA · R/WA2, suggesting that they are important
quantities for atomic adsorption and the adsorption
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strengthes of different atoms are correlative. Based
on the SISSO equations, we find that electronic prop-
erties are determinant for adsorption energy due to
the multiple occurrences of some relative features, e.g.
electronegativity, ionization energy and work function.
This also accords with the general understanding of
chemisorption that the adsorption strength is mainly
contributed by electronic coupling between adsorbates
and catalysts. Although it is difficult to directly give
a physical interpretation of SISSO identified descrip-
tors, we can combine it with RFR method, which has
demonstrated better predictive ability, by using SISSO
to exploit relationships between adsorption energy and
initial features. Specifically, we first use SISSO to en-
large the initial feature space and select some important
feature combinations. These combined features are then
used as input in RFR training procedure together with
initial features. In this way, we can employ SISSO to ac-
complish the design of fingerprint features as discussed
below.

C. Prediction for the entire dataset

With the aim of predicting the adsorption strengths
for various species in this massive dataset, we apply
RFR method that performs the best in evaluations
to learning the adsorption energy values in the whole
dataset. The entire dataset is classified into 48 subsets
in terms of adsorbate types and each subset is trained
individually using the same hyperparameters. Before
constructing the holistic models, we first test the ef-
fect of data partitioning on test RMSE for the entire
dataset. To understand the relative performance, FIG.
4 compares RFR test errors using a certain randomly
chosen fraction of the dataset. The height of error bars
or boxes in the figure represent the deviation of predic-
tion errors between multiple tests. The mean values of
RMSEs in ten independent tests decrease when increas-
ing the amount of training data, until the training set
size reaches around 60% of the dataset. This suggests
that the models trained by such amount of data can
accurately predict the rest. Though there is no statisti-
cally significant difference of the average RMSEs on the
training data over 60% of the dataset, the size of the
error bars, as well as the height of boxes, reaches the
minimum when the data ratio of training to test is set
8:2. If we decrease the amount of test data or decrease
the size of training set, the uncertainty of prediction
performance will increase.

To construct predictive models for the entire dataset
of adsorption energy, we begin with developing finger-
print features by employing method SISSO to enlarge
the initial feature space. Here we denominate the set
of initial features that we introduced in METHODS as
feature space 1. These initial features are combined and
selected by SISSO to generate twenty descriptors (the
outcome is the model with dimension of 1 and descrip-

FIG. 4 Box plots of test RMSE values for the effect of train-
ing/test data ratio on the entire dataset. We perform ten
independent tests for each training set size. The error bars
mark the maximum and minimum values, the upper and
lower limits of the boxes mark the 75% and 25% percentiles,
and the horizontal lines and the points in boxes mark the
mean values. The red dashed line represents the trend for
the average error of ten independent calculations on a ran-
dom fraction of the data set.

tor complexity of 1) that are more relative to adsorp-
tion energy than initial features. Selected descriptors
and initial features compose feature space 2. We then
use two feature spaces as input to train RFR models
separately. In FIG. 5, we present an overall picture for
training and test performance of RFR from both fea-
ture spaces. After appending those features identified
from SISSO, the training RMSE decreases from 0.27 eV
to 0.21 eV, and the test RMSE decreases from 0.36 eV
to 0.29 eV. The lower error of predictions from feature
space 2 demonstrates that it improves the prediction ac-
curacy by combining two methods. Note that the test
error from both feature spaces are far less than that of
the linear scaling relations as discussed. This test error
for predicting 11975 data is also comparable with the
results in previous ML studies [29, 30, 45], even though
the amount of adsorption data used in this work is much
larger and more types of adsorbents and materials are
involved. We have to clarify that this test RMSE, far
less than the considerable scale of adsorption energy for
about 40 eV, is obtained on the whole dataset with the
composition of bimetallic materials over a large chemi-
cal space, resulting in the higher predictive error than
DFT precision. However, in actual catalyst screening,
the candidate catalytic materials account for a small
proportion of metals, mostly composed of late transi-
tion metal elements. The accuracy can be systemat-
ically improved by reducing the materials space both
in the training and testing dataset. Taking the cat-
alyst screening for methanol electro-oxidation reaction
as an example, our approach can achieve test RMSEs of
0.13 eV and 0.15 eV for adsorption energies of CO∗ and
OH∗, which are key factors to the activity of this reac-
tion, on catalysts comprised of late transition metals,
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FIG. 5 Comparison between calculated adsorption energies and predicted adsorption energies using RFR algorithm. (a) and
(b) show training and predicting quality, respectively, on feature space 1 that consists of initial features. (c) and (d) show
training and predicting quality, respectively, on feature space 2 that consists of initial features and descriptors identified by
SISSO.

thus it meets accuracy requirement for catalyst screen-
ing successfully.

For many chemical reactions, the catalytic property
has hitherto been exclusively described by adsorption
energies of singular species [24]. One particularly sig-
nificant attempt is to disperse the adsorption strength
of other key intermediates previously regarded as fixed
in terms of scaling relations. For instance, in the reac-
tion of electrolysis of water to produce molecular oxygen
and hydrogen, it would be desirable to search for a cat-
alyst where the adsorption energy difference of OOH∗

and O∗ is as large as possible [46], and in the reaction
of CO2 electrocatalytic reduction, it would be desir-
able to break the linear scaling relation between CHO∗

and CO∗ [47]. Our approach provides a perspective for
screening bimetallic catalyst that enables to directly
predict adsorption energies of interest species. As an
example, we present maps of ML-predicted adsorption
energies of OH∗, an important intermediate in oxygen
reduction reaction (ORR) [48], and NH∗, which is often
studied in nitrogen reduction reaction (NRR) [49, 50].
Eads(OH∗) and Eads(NH∗) are usually regarded as crit-
ical variables to screen the optimal electrocatalyst for
ORR and NRR, which are all essential for sustainable
conversion technologies to relieve increasing energy de-
mands and impending climate change. As shown in
FIG. 6, we predict adsorption energies of both OH∗

and NH∗ at their most stable sites (703 compositions
including 37 pure metals and 666 alloys with AB stoi-
chiometry of 1:1). The numbers of DFT-calculated ad-

sorption energies for OH∗ and NH∗ are 97 and 127 in
the dataset. This direct prediction goes beyond the
linear scaling relations (Eads(OH∗)=a·Eads(O

∗)+b and
Eads(NH∗)=c·Eads(N)+d, where a, b, c, and d are coeffi-
cients), we can thereby screen proper catalysts through
predictions for various adsorbates.

Compared with computationally expensive DFT cal-
culation, our framework is able to quickly identify the
capacity of underlying catalytic materials without much
loss of accuracy. Here we present a comparison of com-
putational cost between DFT calculations and ML ap-
proach. Measurements of adsorption energy as we pre-
sented in FIG. 6 are possible with DFT, but are much
more time-consuming, approximately 105−106 cpu·h−1.
By contrast, we make these predictions through ML
methods using only 10−100 cpu·h−1. Starting from
DFT calculations and constructing the ML predictor
generates the most likely pathway with fewer calcula-
tions than what would be necessary to screen the cata-
lyst from huge materials space. Through this approach,
we can realize the high-throughput predictions that are
faster and lower-cost than traditional strategies. Fur-
ther efforts will be made to discover novel bimetallic
catalysts through this ML approach.

IV. CONCLUSION

We report a holistic framework based on machine-
learning methods to explore the catalytic property over
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FIG. 6 Predicted adsorption energies across pure metals (37 metals, located on the dotted line) and binary alloys (666
AB alloys, symmetric across the dotted line). (a) The map of Eads(OH∗), which is calculated according to chemi-
cal equation: H2O(g)→H2(g)+OH∗. (b) The map of Eads(NH∗), which is calculated according to chemical equation:
1/2H2O(g)+1/2N2(g)→NH∗. The metal elements are ordered in terms of the mean values of predicted adsorption energies.

a broad range of chemical space. By comparing different
ML methods and utilizing RFR and SISSO together, we
construct predictive models that are trained with about
60000 adsorption energies on binary alloys. Notably,
based on the framework exhibited in this work, our
approach can acquire the promising predictions with
RMSE of 0.29 eV, far less than scaling relations and
comparable with previous ML studies, over an exten-
sive adsorbates and materials space. We can therefore
quickly predict tens of thousands of adsorption energies
on the most stable sites with humongous compositional
and configurational degrees of freedom. To illustrate
prediction examples, the adsorption energies of OH∗

and NH∗, commonly used descriptors in catalysis, are
predicted for enumerated combinations of binary alloy
at the end of the study.
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