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Elasticity, stability, and ideal strength of b-SiC in plane-wave-basedab initio calculations

Weixue Li and Tzuchiang Wang
Laboratory for Nonlinear Mechanics of Continuous Media (LNM), Institute of Mechanics, Chinese Academy of Sciences,

Beijing, 100080, China
~Received 9 March 1998; revised manuscript received 9 July 1998!

On the basis of the pseudopotential plane-wave method and the local-density-functional theory, this paper
studies energetics, stress-strain relation, stability, and ideal strength ofb-SiC under various loading modes,
where uniform uniaxial extension and tension and biaxial proportional extension are considered along direc-
tions@001# and@111#. The lattice constant, elastic constants, and moduli of equilibrium state are calculated and

the results agree well with the experimental data. As the four Si-C bonds along directions@111#, @ 1̄11#, @111̄#,

and@11̄1# are not the same under the loading along@111#, internal relaxation and the corresponding internal
displacements must be considered. We find that, at the beginning of loading, the effect of internal displacement
through the shuffle and glide plane diminishes the difference among the four Si-C bonds lengths, but will
increase the difference at the subsequent loading, which will result in a crack nucleated on the$111% shuffle
plane and a subsequently cleavage fracture. Thus the corresponding theoretical strength is 50.8 GPa, which
agrees well with the recent experiment value, 53.4 GPa. However, with the loading along@001#, internal
relaxation is not important for tetragonal symmetry. Elastic constants during the uniaxial tension along@001#
are calculated. Based on the stability analysis with stiffness coefficients, we find that the spinodal and Born
instabilities are triggered almost at the same strain, which agrees with the previous molecular-dynamics simu-
lation. During biaxial proportional extension, stress and strength vary proportionally with the biaxial loading
ratio at the same longitudinal strain.@S0163-1829~99!02406-6#
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I. INTRODUCTION

Investigation of stability and ideal strength of materials
always an attractive issue1–9 due to the following facts:~1!
Stability of materials is very important in elasticity theor
which is related with structural responses in solids, rang
from polymorphism, amorphization, and melting
fracture.10–13 ~2! The ideal strength of a perfect crystal re
resents an upper bound to the actual strength of crysta
materials.~3! The technology makes it possible to manufa
ture finer and finer filament, whose strength will approa
the theoretical limit. However, even for the best whisk
materials14,15 the realistic strength is still far below the pre
dicted theoretical values.

Recent developments of experimental technology cre
new opportunities of producing very fine nanorods~NR’s!
and nanotubes~NT’s!,16–20 and the possibility of measurin
their elasticity constants, strength, and toughness.21,22 The
typical measured diameter of NR’s is 20–30 nm, which c
be considered free of any defects and with the ideal stren
Wong et al.22 measured Young’s modulus and the bend
strength of silicon carbon~SiC! NR’s in a recent experiment
It is worth mentioning that micrometer-scale SiC whisker
widely used to strengthen composite materials. Thus, i
necessary to have a clear understanding of the stiffn
stress-strain relation, stability, and strength of these na
sized NR’s from the experimental view as well as from t
theoretical point of view.

As is well known, people are used to study the ide
strength of materials with various models and empirical
tentials. Polanyi23 and Orowan24 used a model in terms o
surface energy, interplanar space, and an approp
Young’s modulus to investigate the ideal strength. Frenk1

estimated ideal shear strengthtmax of a solid subjected to
PRB 590163-1829/99/59~6!/3993~9!/$15.00
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deformation of a simple shear mode. However, oversim
fied functions of stress-strain were adopted in those meth
and the functional forms for different materials were som
how arbitrary. On the basis of stability criteria, Milstein an
co-worker3–5 investigated the theoretical strength of bcc
and fcc Ni and Cu with the Morse potential. The ide
strength is identified with the loss or exchange of stabili
This method helps greatly the investigation of strength a
reveals a variety of interesting and surprising behaviors
materials;25–28 however, the interatomic potential they use
and obtained by fitting properties of equilibrium state is
appropriate for use in the investigation of the stability a
strength of materials, which are essentially far from being
the equilibrium state. On the other hand, the dens
functional theory~DFT!,29 with only the input of atomic po-
sition and charge number, can be used to determine m
structural and dynamic properties of materials under vari
conditions, including those that are far from being in t
equilibrium state.

Through a series of comprehensive theoretical and c
putational studies, Hill and Milstein31–33 have shown that
positive definiteness of internal energy is coordinate dep
dent and the stability domain depends on the choices
strain measures, while Born criteria30 are valid only under
the zero load. Based on this idea, Wang and co-workers11,12

analyzed the onset of instabilities in homogeneous lat
under critical loading and showed that response of the lat
is no longer a purely intrinsic property of materials and d
pends on the applied load. Starting with these theories
and Wang34 have recently analyzed the stability and branc
ing of aluminum under various loading modes according
first-principles calculations.

Heine and co-workers35,36 gave a very extensive set o
3993 ©1999 The American Physical Society
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3994 PRB 59WEIXUE LI AND TZUCHIANG WANG
first-principles pseudopotential calculations on the ploy ty
in SiC. However, they gave only the bulk modulus. Lamb
cht et al.37 made a detailed investigation on the elastic co
stants and modulus ofb-SiC with the full-potential–linear-
muffin-tin-orbital ~FP-LMTO! method. In their
investigations, the strength ofb-SiC was obtained approxi
mately by Orowan formula. The structural properties
b-SiC ~ploy type 3C! had been also investigated by the va
ous semiempirical models, e.g., semiempirical force mode38

semiempirical interatomic potential,39,40 and tight-binding
approximation.41,42 Modifying the Tersoff potential,39 Tang
and Yip43 investigated the lattice instability inb-SiC and
simulated the process of brittle fracture under hydrost
tension based on the Hill and Milstein stability theory. T
instability mode is the spinodal instability and decohes
occurs as spontaneous nucleation of cracking on the$111%
shuffle planes.

In the present paper, we study the energetics, the ela
constants, the stress-strain relation, stability, and the id
strength ofb-SiC with the density-functional theory. W
consider several loading modes, uniaxial extension,
uniaxial tension along@001# and@111# directions, and biaxial
proportional extension along@001# and @010#. The deforma-
tion is homogeneous and elastic and the strain can be la
The stress-strain relations are calculated, and the i
strength is obtained according to the stability criteria. Ow
to the unequivalence of the four Si-C bonds under the lo
ing along @111#, the internal relaxation must be consider
and the internal displacements be calculated. With the in
nal displacements, we discuss the effect of the relaxation
failure modes. The stability theory of Hill and Milstein31–33

and Wanget al.12 are used to discuss branching and t
strength ofb-SiC under the loading along@001#.

The present paper is organized as follows. The calcula
model is presented in Sec. II, where we show the formula
of stress, elastic stiffness coefficients, and stability crite
especially the three loading modes with the selection of
percell and the numerical precision illustrated at the end
this section. The benchmark, including equilibrium prop
ties and elastic constants, are given in Sec. III. The load
along @111# direction is presented in Sec. IV, and biaxi
proportional extension is investigated in Sec. V. In Sec.
we discuss uniaxial extension and tension along@001# direc-
tion. Summary and conclusion are given in Sec. VII.

II. FORMULATION

Consider an unstressed and unstrained configuration
noted asX0 . It undergoes homogeneous deformation unde
uniform applied force, and changes fromX0 to X5JX0 ,
whereJ is the deformation gradient or the Jacobian matr
The associated Lagrangian strain tensorE is

E5 1
2 ~JTJ2I !, ~1!

whereT is transpose. The physical strain is

e5J2I . ~2!

For the present deformation, the internal energyU is a
rotational invariant and therefore only a function ofE. The
second Piloa-Kirchhoff stress tensorT ~Ref. 44! is defined as
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Ti j 5
1

V0

]U

]Ei j
. ~3!

It is related to Cauchy stress, i.e., the true stressskl by the
following equation:

Ti j 5detuJuJik
21Jjl

21skl , ~4!

wheredetzJz is the ratioV/V0 . With the Cauchy stress, th
applied force can be obtained by multiplying the curre
transverse area.

At strained stateX, the elastic constants are determin
through the following equation:

Ci jkl ~X!5
1

V~X!S ]2U

]Ei j
8 ]Ekl

8 U
E850

D , ~5!

where E8 is Lagrangian strain around the stateX. These
elastic constants are rotational invariant and symmetric w
interchange of indicesi↔ j , k↔ l , and (i j )↔(kl), which
are often expressed in the condensed Voigt notation.

To analyze the stability, the elastic stiffness coefficienB
~Ref. 12! is introduced as follows:

Bi jkl 5Ci jkl 1
1
2 ~d iks j l 1d jks i l 1d i l s jk1d j l s ik22dkls i j !.

~6!

From this definition, we can see thatB does not posses
( i j )↔(kl) symmetry generally. The system may be unsta
when

detzBz50 ~7!

for the first time.
The following loading modes are considered:~i! uniaxial

extension,

ei j 5ed i3d j 3 , i , j 51,2,3; ~8!

~ii ! uniaxial tension,

s i j 5sd i3d j 3 , i , j 51,2,3. ~9!

For a given longitudinal strain, let the transverse lattice c
tract or dilate to make the total-energy approach minimu
which corresponds zero stress~traction! on lateral faces. For
crystal symmetry, the transverse contraction is the sam
two perpendicular transverse directions, so

e115e2252le33. ~10!

~iii ! biaxial proportional extension is a third mode, where

e225ae33Þ0, ei j 50, others. ~11!

The total-energy calculations are carried out with anab
initio pseudopotential plane-wave program packa
FHI96MD.45 By means of the mechanism of Hamann46 and
Troullier and Martins,47 the soft first-principles
pseudopotential48,49 is generated, where the local-density a
proximation ~LDA ! with the exchange and correlation e
ergy functional developed by Perdew and Zunger50 is used.
Two supercells are designed in our calculations: one is
eight-atom supercell for the equilibrium properties, the loa
ing along@001#, and biaxial extension along@010# and@001#.
The other one is the six-atom supercell for the loading alo
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TABLE I. Equilibrium and elastic modulus ofb-SiC. PP-PW, present pseudopotential plane-wave
culations; FP-LMTO, Lambrechtet al. ~Ref. 37!; CKH, Churcher, Kunc, and Heine~Ref. 35!; Tolpygo ~Ref.
38!; Tersoff~Ref. 39!; Expt., experimental values as indicated by footnotes. The length unit is the bohr r
and the modulus is GPa; the anisotropyA52C44/(C112C12).

PP-PW FP-LMTO CKH Tolpygo Tersoff Expt.

a0 8.166 8.154 8.145 8.164 8.238a

B0 225 223 224 211 220 225b

C11 405 420 352.3 420 390c

C12 135 126 140 120 142c

C44 254~270! 287 232 260 256c

A 1.88 1.95 2.20 1.73 2.00c

E111 558 603 511 560 581(610%! d 610e

E100 338 362 272 367
ER 441 476 378 462
EV 474 516 424 488
Ea 458 496 401 475 448b

GR 188 208 157 201
GV 206 231 182 216
Ga 197 219 169 208.5 192b

na 0.173 0.146 0.201 0.150 0.168b

aReference 53.
bCarnahan~Ref. 54!.
cObtained from sound velocities~Ref. 55!.
dExperimental values from whisker~Ref. 15!.
eExperimental values from nanorods~Ref. 22!.
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@111#; in this case, the stacking consequence is Si-C-S
Si-C. There exist two types of$111% plane, between Si and C
atoms, corresponding to the well-known glide and shu
planes. The glide plane cuts three Si-C bonds out of four,
the shuffle plane cuts the remaining Si-C bond. For num
cal differential feature of stress and elastic constants,
precision must be considered carefully. The size of car
atom is so small that a high cut-off energy is required. O
test shows thatEcut580 Ry has also given excellent result
The k-space mesh is 63636 for the eight-atom superce
and 83834 for the six-atom supercell in order to keep t
same precision.

III. EQUILIBRIUM PROPERTIES

As the benchmark, we have calculated the lattice const
elastic constants, and moduli ofb-SiC of equilibrium. For
symmetry ofb-SiC ~zinc-blende structure!, there exist three
independent elastic constants, i.e.,C11,C12,C44. The total
energy ofb-SiC is calculated under the applied hydrostat
uniaxial deformation, and trigonal strain. Owing to the latti
feature of zinc-blende structure, which includes two fcc l
tices with a relative displacement along@111#, the symmetry
of center inversion is lost. Four Si-C bonds along directio
@111#, @11̄1#, @111̄#, and@ 1̄11# are not equivalent under th
case of trigonal strain. The internal atomic position must
fully relaxed, and the internal displacement,51 which refers to
the relative displacement of two sublattices beside the
placement from the macroscopic strain, will take place. O
results are presented in Table I. From this table, we find
results agree well with the experimental data and the pr
ous first-principles and semiempirical calculations. The va
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of C44 without relaxation, 270 GPa, is already in good agre
ment with the experimental data and better than other th
retical calculations. The relaxed value, 254 GPa, is alm
the same as the experiment value. Value of the anisotropA
is also satisfactory.

Based on the representation surface,52 the moduli along a
certain direction can be obtained. Young’s modulus alo
directions@111# and@001# is 554 GPa and 338 GPa, respe
tively. Lambrechtet al.37 obtained 603 GPa and 362 GP
Petrovicet al.15 measured Young’s modulus ofb-SiC whis-
ker, with an averaged value of 578 GPa with610% scatter-
ing. Applying the equation of the cantilever beam, Wonget
al.22 measured Young’s modulus of@111#-oriented SiC na-
norod, which are 610 GPa and 660 GPa, correspondin
the 23.0-nm diameter and 21.5-nm diameter SiC NR’s. T
agreement is good.

With orientation averages, the moduli of isotropic mate
als can be obtained. Two average methods, namely, R
averages56 (ER andGR) and Voigt averages57 (EV andGV),
are adopted. According to the theory of Hill,58 the physical
averages, here denoted by subscripta, are the intermediate
between the Reuss and Voigt averages. With these cons
ations, Young’s modulus and shear modulus of isotro
b-SiC are given as follows:

Ea'448 GPa62.2%,

Ga'192 GPa62.6%.

Compared with the previous first-principles37 and
semiempirical38,39 calculations, our results agree better wi
the experimental values. These results confirm the con
sion of Lambrecht: the random orientation hypothesis app
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3996 PRB 59WEIXUE LI AND TZUCHIANG WANG
well to the ceramic samples. The average Poisson rationa ,
0.17, is close to the experimental value. The small Pois
ratio of b-SiC, as compared with other materials, e.g., a
minum 0.347, demonstrates its high stiffness.

IV. LOADING ALONG DIRECTION †111‡

In this loading direction, two loading modes are inves
gated: uniaxial extension and uniaxial tension. At the la
case, the transverse lattices contract in order to approac
energy minimum. With regard to the loss of symmetry
center inversion, the four Si-C bonds along directions@111#,

@11̄1#, @111̄#, and @ 1̄11#, are not equivalent under@111#
loading. The internal relaxation and lateral contraction m
be considered. In our calculations, by using the lattice c
stant at room temperature, the internal relaxation is car
out after the transverse strains are obtained. The lengt
Si-C bond is 3.5673~bohrs! under zero loading. As the load
ing is along @111# direction, the variation of bond lengt
along the@111# direction will be more significant than that o
the other three bonds. Figure 1 shows the energy, stress

FIG. 1. ~a! The calculated strain energy under the uniaxial e
tension and uniaxial tension with or without internal relaxation.~b!
Applied force and stress under uniaxial tension with or witho
relaxation.
n
-

-
r

the
f

t
-
d
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nd

force under uniaxial extension and uniaxial tension with
without internal displacement.~Without other statement, the
strain, force, and stress, given in the figures, are the phys
strain, applied force, and Cauchy stress.! The corresponding
transverse strain and internal displacement are given in
2 and Fig. 3.

At the beginning of loading, as compared with the cor
sponding Si-C bond length without the internal relaxatio
the difference among the four Si-C bond lengths is sm
and no marked effect of relaxation and internal displacem
through both the shuffle and glide plane is shown. This p
nomenon, shown in Fig. 1, is obvious forb-SiC, a kind of
high stiffness and low Poisson ratio covalent material. T
strain energy curves of the three loading modes, i.e., unia
extension and uniaxial tension with or without internal rela
ation, are almost the same. Despite the fact that the stress
force of uniaxial tension is smaller than the uniaxial exte
sion for the relaxation, they are still similar in these loadi
modes. Based on Kleinman’s59 discussion on silicon with
@111# strain, the internal strain tends to keep the bond len
along the four unchanged unequivalent@111# directions. In
our calculations, the internal displacement of atom alo
@111# direction, which is through the shuffle plane, is neg

-

t

FIG. 2. The transverse strain of uniaxial tension along directi
@001# and @111#.

FIG. 3. The internal displacement through shuffle and gl
plane under@111# uniaxial tension. The club is for the shuffle plan
and the square is for the glide plane.
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TABLE II. The Young’s modulus and strength compared to other theoretical calculations and e
ments. Here, ts, bs, and cs mean the tensile strength, the bending strength, and the cleavage strength
is GPa.

E s ts Ea s ts
a scs

b E c sbs
c E d s ts

d

@111# 558 50.4~0.144! 603 30 46.3 610 53.4 580610% 23.74
@001# 338 101~0.37! 362

aFrom FP-LMTO and Orwan expression~Ref. 37!.
bFrom Orwan expression~Ref. 60!.
cExperimental values from nanorods~Ref. 22!.
dExperimental values from whiskers~Ref. 15!.
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tive, and that of the remaining three Si-C bonds along

@11̄1#, @111̄#, and@ 1̄11# directions, through the glide plane
is positive. This means that the effect of relaxation alwa
tends to diminish the difference of four Si-C bond length
With the increase of the longitudinal strain, the internal d
placement through the shuffle plane becomes positive f
negative, and that through the glide plane moves from p
tive to negative while approaching zero at the same p
(ez50.105). The internal displacements for the two ca
have the same magnitude but with the opposite sign.
details can be found in Fig. 3. During the whole uniax
tension, the magnitude of transverse strain increases m
tonically.

With further increase of the longitudinal strain, the stra
energy of uniaxial extension and of uniaxial tension witho
internal displacement still have approximately the sa
value. However, both the internal displacements through
shuffle plane and the glide plane change their signs~the sym-
metry still holds!. The uniaxial tension curve with interna
relaxation softens quickly and the shape of tensile cu
changes dramatically. An energy plateau presents, and m
rial becomes unstable. On the basis of the stress curve
maximum stress of uniaxial tension with internal relaxatio
namely, the theoretical strengthsth, is obtained and equal t
50.8 GPa. The corresponding critical macroscopic strain
internal displacement is 0.144 and 0.082~bohr!, the Si-C
bond length along@111# is 4.163~bohrs!. With the modified
Tersoff potential, Tang and Yip43 analyzed the brittle frac-
ture ofb-SiC under hydrostatic tension by molecular dyna
ics. They found that the mode of instability ofb-SiC was the
spinodal instability and the corresponding critical strain a
pressure were 0.153 and 37.0 GPa. Therefore, both the
principles and empirical potential calculations gave a sim
critical bond length ofb-SiC along@111#.

Our result agrees well with the experimental value, giv
by Wonget al.,22 53.4 GPa, obtained for the@111#-oriented
SiC nanorod. This agreement also means that no o
branching and instability modes exist during the uniax
loading before it reaches the inflexion of an energy-str
curve. It is worthwhile pointing out that the experiment
strength measured is the bending strength. The tensile
bending strengths are comparable tob-SiC whisker8,15 and
are also expected to be similar to theb-SiC nanorod.22 Petro-
vic et al.15 measured the tensile strength ofb-SiC whisker
and their result is 23.74 GPa, which is far smaller than
theoretical calculation and Wong’s experiment values for
fects. Lambrechtet al.37 calculated the tensile strength b
Orowan expression with@111# surface energy, and the resu
e

s
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is 30 GPa. With the similar formula, Op Het Veld an
Veldkamp60 obtained the theoretical cleavage strength 4
GPa, which is close to ours. The detailed comparison can
found in Table II.

After ez.0.105, the internal displacement through t
shuffle plane becomes positive, and that through the g
plane becomes negative. The distance between the a
through the shuffle plane along@111# increases, and tha
through the glide plane decreases, and a crack nucleate
the $111% shuffle plane. The internal displacements throu
the shuffle and glide plane at the critical strain are, resp
tively, 0.082 and20.082. With further increase of the lon
gitudinal strain, the internal displacements of the shuffle a
glide planes also increase quickly. This positive and nega
increase of internal displacements of shuffle and glide pla
will result in a dramatic cleavage on the$111% shuffle plane
and the mixing of Si and C atoms through the glide pla
The cleavage on$111% shuffle plane can be partly attribute
to the lower surface energy than that of the$111% glide
plane.31,43,61 These results agree well with the previo
molecular-dynamics simulation.43

V. BIAXIAL PROPORTIONAL EXTENSION

To consider only the biaxial proportional extension, th
section deals with the extension along directions@010# and
@001#, and not the internal atomic and volume relaxatio
The strain ratio between@010# and @001# is 0.25, 0.5, 0.75,
and 1. The results are shown in Fig. 4. With the increase
the ratio, the energy, stress, and maximum stress will
crease at the same longitudinal strain accordingly. Howe
the critical strain is similar for different proportional loadin
modes.

VI. LOADING ALONG DIRECTION †001‡

In this section, we consider the uniaxial extension a
uniaxial tension along direction@001#. The reference state i
the state with the theoretical lattice constant. Symmetry
crystal under this loading mode is tetragonal. Unlike t
loading along@111#, the deformation of the four Si-C bond
in this loading mode is the same and the four bonds
equivalent. There will not be any internal displacements a
the internal relaxation can be neglected during the load
We have made calculations at several strains with or with
internal relaxation and found that the value of transve
strain at a specific longitudinal strain is the same. Our res
are given in Figs. 2 and 5.
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From Fig. 5~a!, we can see that both of the strain ener
for uniaxial extension and tension increase with the incre
of the longitudinal strain. The strain energy of uniaxial e
tension is always larger than that of the uniaxial tension, a
expected. However, the energy difference between two lo
ing modes is small, the same as with the@111# loading. At a
larger strain, the energy difference becomes even sma
The applied force and stress of uniaxial tension are lo
than those of the uniaxial extension for the triaxial stre
state at the beginning and higher than them at the subseq
loading ~this phenomenon will be explained later!. Just like
Fig. 5~a!, the difference of applied force and stress betwe
these two loading modes is not significant.

In order to obtain the ideal strength and analyze the
bility under uniaxial tension, we calculate the elastic co
stants and derive the stability criteria based on the stiffn
coefficients. With the tetragonal symmetry, the number
independent elastic constants is reduced to six:C33, C12,
C135C23, C115C22, C445C55, andC66; all the otherCi j
are equal to zero. With Eqs.~6!, ~7!, and ~9!, we write the
stability criteria as follows:

FIG. 4. The calculated strain energy~a! and applied stress~b!
during biaxial proportional extension with difference ratio alo
@010# (e22) and @001# (e33) directions.
e
-
is
d-

r.
r

s
ent

n

a-
-
ss
f

~C331s!~C111C12!22C13~C132s!>0, ~12!

C112C12>0, ~13!

C441
1

2
s>0, ~14!

C66>0. ~15!

The first one involves the vanishing of bulk modulus, and
referred to as spinodal instability. The second instability
volves symmetry breaking~bifurcation! with the volume
conservation; it may be identified as the tetragonal sh
breaking and referred to as Born instability. The third a
fourth are two distinct shear deformation instabilities. S
strains are designed to calculate the independent elastic
stants and are given as follows:

e115e225d, ei j 50, i , j 51,2,3,

e1152e225d, ei j 50, i , j 51,2,3,

e115e335d, ei j 50, i , j 51,2,3,

FIG. 5. The calculated strain energy~a!, applied force and stres
~b! of uniaxial extension and uniaxial tension along direction@001#.
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e1152e335d, ei j 50, i , j 51,2,3,

e125e215d, ei j 50, i , j 51,2,3,

e235e325d, ei j 50, i , j 51,2,3.

In each case, the domain of strain is@0,0.02#. The results are
shown in Fig. 6.

During uniaxial tension, the variation of mechanical pro
erties on the transverse section is comparatively small,
the corresponding elastic constants, i.e.,C11, C12, C66,
keep positive, as shown in Fig. 6~a!. However, the elastic
constants related to longitudinal strain change dramatic
and even become negative at large strain, e.g.,C13<0 when
e33>0.184,C33<0 whene33>0.352. BecauseC13<0 leads
to negative Poisson ratio, the transverse section will exp
with the increase of the longitudinal strain. This phenomen
is also shown in Fig. 2; the transverse strain variese11 pro-
portionally with e33 whene33>0.20. Negative Poisson rati
had also been investigated by Milstein a
co-workers.3,4,26,62However, in their papers, negative Poi
son ratio only occurs at branching or unstable points, and
materials investigated are monatomic metal materials Fe

FIG. 6. The calculated elastic constants~a! and stability ~b!
during uniaxial tension along direction@001#.
-
nd

ly

d
n

e
nd

Ni. In the present calculations, it is surprising thatb-SiC, a
nonmetal and two-component crystal, is still stable at t
negative Poisson ratio, shown in Fig. 6~b!. The same result is
obtained when calculations with internal atomic relaxati
are implemented. This phenomenon must be related with
bond nature ofb-SiC. The charge transfer63 and ionic
component64 of b-SiC will affect the mechanical respons
The detailed analysis of electric structure should be car
out and further investigation is necessary. The lattice tra
verse expansion leads to much quicker increase of the f
and stress of uniaxial tension than that of uniaxial extens
and the values of the previous force and stress will be hig
than those of uniaxial extension at a large strain.

On the basis of the stability criteria, we have found th
the spinodal and Born instabilities are triggered almost at
same strain 0.37 with the transverse strain20.0137. The
corresponding strength, 101.3 GPa, which is almost twice
that for @111#-oriented SiC nanorod, 53.4 GPa~Ref. 22! for
its smaller interplanar distance, is obtained. At this critic
strain, the elongation strain along@111# direction is 0.129,
comparable with the critical strain 0.144 under uniaxial la
ing along@111#. Tang and Yip43 investigated the instability
of b-SiC under hydrostatic tension with stiffness coefficie
and found that failure mode ofb-SiC is spinodal instability.
This was proved by their molecular-dynamics simulatio
and the nucleation of cracking on the$111% plane and deco-
hesion were revealed. They also showed that a shear in
bility is triggered by the spinodal instability. All of thes
results are same with our first-principles calculations.

VII. SUMMARY AND CONCLUSION

On the basis of the DFT total-energy calculation and s
bility theory, we give a detailed investigation of the m
chanical properties of a two-atomic constituent mate
b-SiC: energetics, elasticity, stress-strain relations, stabi
and strength under different loading modes and directio
The results are satisfactory.

Owing to the unequivalence of the four Si-C bonds und
the uniaxial tension along@111#, the relaxation must be
implemented and internal displacements calculated. The
ternal displacements along the@111# direction and the other
three directions, namely,@ 1̄11#, @11̄1#, and@11̄1# have the
same magnitude but the opposite sign. At the beginning
loading, the effect of relaxation is not significant and tends
diminish the difference of the four Si-C bond lengths. Ho
ever, it becomes important at the subsequent loading
results in a crack nucleated on the$111% shuffle plane, while
the Si atom and C atom through the glide plane appro
each other. The failure in this loading modes is of cleava
fracture. These conclusions are consistent with the prev
molecular-dynamics simulations. The theoretical stren
obtained agrees well with the experimental data.

Under loading along@001#, the four Si-C bonds are
equivalent for the tetragonal symmetry and the relaxat
can be neglected. The strain energy, applied force, and s
are similar despite two distinct loading modes, name
uniaxial tension and extension. During the uniaxial loadi
along@001#, the spinodal and Born instabilities are trigger
almost at the same strain. Previous molecular-dynamics
vestigation revealed similar facts. Owing to the smaller
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terplanar distance, the corresponding ideal strength,
GPa, which is much higher than the theoretical strength
the loading along@111# and the experimental data, is ob
tained; however, the Si-C bond length for loading alo
@001# and @111# at the critical strain is close. There exis
some stable range when the Poisson ratio is negative,
these phenomena are related to the unique bond natu
b-SiC, a kind of nontypical covalent material, which perm
charge transfer. A detailed analysis of electronic struct
will be brought up for further investigation.
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